artículo de publicación periódica.page.titleprefix
A novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometry

dc.contributor.authorMorzan, Ezequiel
dc.contributor.authorStripeikis, Jorge
dc.contributor.authorGoicoechea, Héctor
dc.contributor.authorTudino, Mabel Beatriz
dc.dateinfo:eu-repo/date/embargoEnd/2018-02-15
dc.date.accessioned2023-01-03T17:00:26Z
dc.date.available2023-01-03T17:00:26Z
dc.date.issued2016-02
dc.description.abstract"In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spectrometry (TS-FFAAS) using Mg as leading case. To this end, mixtures of different amounts of methanol, ethanol, and i-propanol in water were assayed as carriers at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables determined the experimental domain, consisting in a cube which was divided into eight identical cubical regions that allowed increase in the number of available experimental points. A Box–Behnken design (BBD) was employed in each one of the regions. The name Multiple Box–Behnken design (MBBD) was given to this new approach. Then, the features of ANN were exploited to find the optimum conditions for conducting Mg determination by TS-FFAAS. The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to the response surface method (RSM). The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed."en
dc.identifier.issn0169-7439
dc.identifier.urihttps://ri.itba.edu.ar/handle/123456789/4129
dc.language.isoen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.11.011
dc.subjectREDES NEURONALESes
dc.subjectESPECTROMETRIA DE ABSORCION ATOMICAes
dc.subjectMAGNESIOes
dc.titleA novel combination of experimental design and artificial neural networks as an analytical tool for improving performance in thermospray flame furnace atomic absorption spectrometryen
dc.typeArtículo de Publicación Periódicaesd
dspace.entity.typeArtículo de Publicación Periódica
itba.description.filiationFil: Morzan, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
itba.description.filiationFil: Stripeikis, Jorge. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Goicoechea, Héctor. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina.
itba.description.filiationFil: Goicoechea, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
itba.description.filiationFil: Tudino, Mabel Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morzan_ING_QUIMICA_2016_24 meses embargo.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:
Artículo_Morzan
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: