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a b s t r a c t
In this work, we present the combined effect of artificial neural networks (ANN) and experimental design as a
suitable analytical tool for improving the performance of thermospray flame furnace atomic absorption spec-
trometry (TS-FFAAS) using Mg as leading case.
To this end, mixtures of different amounts ofmethanol, ethanol, and i-propanol inwaterwere assayed as carriers
at different flow rates and different flame stoichiometries (air/acetylene ratios). Different levels of these variables
determined the experimental domain, consisting in a cubewhich was divided into eight identical cubical regions
that allowed increase in the number of available experimental points. A Box–Behnken design (BBD) was
employed in each one of the regions. The nameMultiple Box–Behnken design (MBBD)was given to this new ap-
proach. Then, the features of ANNwere exploited to find the optimum conditions for conducting Mg determina-
tion by TS-FFAAS.
The prediction capability of ANN was examined and compared to the least-squares (LS) fitting when applied to
the response surface method (RSM).
The suitability of the new approach and the implications on TS-FFAAS analytical performance are discussed.
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1. Introduction

Thermospray flame furnace atomic absorption spectrometry
(TS-FFAAS) was first reported by Berndt et al. [1]. This method
allows the introduction of the whole sample into the flame furnace
with no clogging, together with an increased time of residence of
the analyte in the furnace which improve limits of detection and
sensitivities up to the μg L−1 level [2–5].

In a previous paper [6], the authors reported a good analytical sensi-
tivity forMg determination by TS-FFAAS. In this work, further optimiza-
tion studies were performed in order to get the best analytical
conditions for the determination and thus, optimal response.

Considering that the traditional one variable at a time method is not
the best mean for finding optimal conditions, more advanced optimiza-
tion approaches such as the multivariable approach [7] were evaluated
on the knowledge that it allows to enhance sensitivity and save time
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and reagentswith the consequent decrease of costs. The implementation
of the multivariate approach is known as response surface methodology
(RSM) [8].

Experimental design and RSM have been proven to be useful for de-
veloping, improving, and optimizing a wide range of processes [9–21].

When RSM is applied, the experimental responses are usually fitted
to quadratic or higher order functions by least squares (LS). In most
cases studied by this methodology, a second-degree polynomic relation
can reasonably approximate the behavior of the systems under study.

Artificial neural networks (ANN) represent another smart tool for
non-linear multivariate modeling. It is a parallel distributed processor
that has the capability for storing experimental knowledge, hencemak-
ing it available for use. Due to its superior classification and prediction
capabilities, ANN has found its impact in empirical model building.
Nowadays, the use of artificial neural network (ANN) in combination
with experimental design is employed in different areas of science
[22–26]. Among the main advantages of ANN compared to LS, the for-
mer does not require a prior specification of a suitable fitting function
and has universal approximation capability, i.e. it can approximate al-
most all kinds of non-linear functions, including quadratic functions.
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LS, on the other hand, is only useful for quadratic approximations. None-
theless, it should be noticed thatmore complex functions require a larg-
er number of experiments [27].

In the presentwork, wemodified the Box–Behnken design (BBD) by
dividing the cube that defines the experimental domain in eight identi-
cal cubical zones in order to increase the sampling density and to obtain
a more efficient screening of the mentioned experimental domain. The
name Multiple Box–Behnken design (MBBD) was given to this new
method. Then, we exploited the features of the ANN to find the opti-
mum conditions for conducting the magnesium analysis by TS-FFAAS.

The results obtainedwith the combined approachwere compared to
RSM with LS fitting, showing a remarkable improvement in terms of
prediction capability.

The new approachwas employed to optimize the analytical signal of
Mg—taken as leading case—with the aim to broaden TS capabilities to
the determination of other elements not assayed yet. Special attention
was given to the physicochemical parameters that influence the gener-
ation of the analytical signal and thus, the performance of TS-FFAAS
determinations.

2. Experimental

2.1. Reagents and materials

All solutions were prepared with analytical grade chemical reagents
and double deionized water (DIW) obtained from aMilli-Q purification
system (Millipore, Bedford, MA, USA). All glassware was washed with
EXTRAN (Merck) 1% v/v and kept in 10% (v/v) HCl with further cleaning
with DDW. Magnesium standard solutions were prepared daily by ap-
propriate dilutions of 1000 mg L−1 stock standard solution (Merck).
Organic solvents methanol, ethanol, i-propanol, were Merck P.A.

2.2. Apparatus

A flame atomic absorption spectrometer Shimadzu AAS 6800
(Kyoto, Japan) equipped with a hollow cathode lamp of magnesium as
radiation source and a deuterium lamp for background correction was
used. Instrumental conditions were those provided by the manufactur-
er. Transient signals were recorded in the peak height mode.

The TS-FFAAS system was assembled with a peristaltic pump of
eight channels and six rollers (IPC, Ismatec, Glattbrugg-Zürich,
Switzerland), a six-ports rotatory valve VICI (Valco Instruments, Hous-
ton, TX, USA), 0.5 mm i.d. PTFE® tubings, a ceramic capillary (0.5 mm
i.d., 6 cm length), and a perforated (six holes) nickel flame furnace at-
omizer placed on an air/acetylene flame with the assistance of a home-
made steel holder.6 The nickel tube (Inconel 600® alloy, Camacam, São
Paulo, Brazil) compositionwas N72%wtNi, 14–17%wt Cr, and 6–10%wt
Fig. 1. Multiple Box–Behnken ex
Fe asmajor constituents. The dimensions were 9.7 mm i.d. and 100mm
length.

2.3. Neural network and least-squares optimization procedure

In this study, we investigated different concentrations of three alco-
hols in water as carriers, different carrier flow rates, and different acet-
ylene flow rates (at constant air flow rate) for the determination of
magnesium by TS-FFAAS. The levels of three independent variables
were selected based on the previous data and a preliminary work [6].
A strategy derived from the Box–Behnken design (BBD) was employed
to increase the number of sampling points. If we consider the experi-
mental domain as a cube, a BBD is built as displayed in Fig. 1 where
the thirteen colored points represent thirteen experimental runs. In
this new approach, the whole experimental domain was divided into
eight identical cubes and a BBD was performed in each one of them
(see Fig. 1). In this way, a total of 62 experimental points were defined
using this strategy which we named Multiple Box–Behnken Design
(MBBD). Note that the volumes occupied by the eight cubes on the
right (MBBD) and the one on the left (BBD) are the same. Fig. 1 shows
a difference for a better understanding.

For modeling and prediction of the analytical sensitivity of magnesium
by TS-FFAAS, ANN and LS were used. LS was applied fitting polynomials of
different degrees andevaluating the coefficientmodels throughANOVA [8].

Parallel systems of simple processing elements, neurons, are inter-
connected to produce artificial neural network. In the present study,
feed forward, multilayer perceptions (MLP) type of ANN was used to
predict the optimum conditions. Training of the ANNwas accomplished
through the back-propagation algorithm in MLP, which is the most
commonly used in supervised MLP. Three ANN were trained to predict
the response surface of each one of the alcohols. In doing that, different
network architectureswere tested and the best predictionwas obtained
for a network of one hidden layer with 50 neurons for methanol and 60
neurons for the other solvents. The transfer function was a sigmoid. In
the training procedure, the information was processed in the forward
direction from the hidden layer to the output layer obtained as the out-
put of the network.

The data were processed using Matlab 8.0 for artificial neural net-
work. Design Expert™ version 8.05.0 (Stat-Ease, Inc., Minneapolis,
USA, 2010) was used to perform experimental design and LS.

3. Results and discussion

ANN and LS fitting in combination with experimental design were
applied for the optimization of Mg determination by TS-FFAAS with
three water/alcohol mixtures: methanol, ethanol, and i-propanol,
being the key variables that control sensitivity, the alcohol/water
perimental design (MBBD).



Table 1
Mean square error (MSE) calculated for each ANN at different number of neurons on the
hidden layer.

Number of neurons Methanol (MSE) Ethanol (MSE) i-Propanol (MSE)

2 7.03E-02 2.69E-02 7.80E-02
5 3.60E-02 9.41E-03 4.54E-03
10 3.85E-03 3.68E-03 1.27E-03
20 2.79E-03 1.17E-03 3.72E-04
30 3.06E-04 2.71E-04 9.18E-04
40 1.47E-03 3.09E-03 7.22E-04
50 1.94E-04 8.76E-04 1.39E-04
60 2.63E-04 9.49E-05 4.60E-05
70 1.42E-03 7.93E-04 8.88E-04
80 1.05E-03 1.26E-03 2.70E-03
90 1.26E-03 4.14E-04 1.11E-04
100 1.76E-03 6.00E-04 3.19E-03

Note: The numbers in bold are the minimumMSE obtained.
proportion, the carrier flow rate, and the acetylene/air ratio that con-
trols flame stoichiometry. The experimental setup was the same
employed in a previous work [6].

3.1. Multiple Box–Behnken experimental design (MBBD)

According to the multivariate approach for optimization, all vari-
ables should be changed at the same time. In thiswork, BBDwas applied
Fig. 2. ANN and RSM performances: output predicted by ANN against the target values obtained
experimental data.
to three parameters that represent an experimental run. With a simple
BBD experiment, the whole experimental domain is sampled with thir-
teen experimental runs which seem not enough for a correct model
building. Then, to effectively improve the number of sampling points,
the experimental domain was divided into eight equal quadrants, and
a BBD was performed in each one of them as shown in Fig. 1, being
the volumes of both cubes (BBD and MBBD) the same as stated before.
Then a total of 62 experimental runs for each alcohol mixture was per-
formed for modeling with neural networks. This is a much more eco-
nomic approach compared to the 125 runs required for a five-level full
factorial designwhich is amust choice for solving complex problems in-
volving high-order polynomials.

3.2. Analysis by least squares

The ANOVA tests applied to the factors and responses data demon-
strated that cubic models could fit the three responses (EtOH, MetOH,
and i-PrOH). The associated probability values (p) obtained for the
models were less than 0.001 for the three cases, while the correspond-
ing p values for the lack of fit test for the three models were larger
than 0.500, thus indicating the significance of the models. Notice that
the probability value is computed assuming that the null hypothesis is
true and so, the lower the probability value, the stronger the evidence
that the null hypothesis is false. Traditionally, the null hypothesis is
rejected if the probability value is below 0.05. Nevertheless, some
from experimental data and output predicted by RSM against target values obtained from



statistical results were not satisfactory: the adjusted R2 obtained were
0.824, 0.852, and 0.837 for EtOH, MetOH, and i-PrOH, respectively, im-
plying that these models could explain only ca. 85% of the variability
in the responses, with the remaining 15% explained by the residue.
This fact could be indicative that the models are not suitable for predic-
tion purposes.
3.3. Artificial neural network training and prediction

Back-propagation neural network was applied for modeling the sys-
tems response and all the neurons had sigmoidal transfer functions.

The architecture of the net was designed using three factors (solvent
flow rate, solvent concentration, and acetylene flow rate) as each unit of
input layer. The output layerwas composed of the peak height observed
as a response variable.

Typically one hidden layer is used in a network. In the present work,
just one hidden layer was used because no significant improvement in
performance was observed by increasing the number of hidden layers.

Several iterations were conducted with different numbers of neu-
rons of hidden layer to determine the optimal ANN structure. The opti-
mumnumber of neurons in the hidden layerwas iteratively determined
by changing the number of neurons from 2 to 100. We use the mean
square error (MSE) to decide which number of neurons in the hidden
layer is the best. The results for the three neural networks are shown
in Table 1.

Afterwards, in order to assure the prediction capability of ANN, the
results were compared to 28 experimental runs specially measured
around the maxima found for the different carrier flow rates. In doing
Fig. 3. 3D surfaces and contour plots predicted by ANN. X is %v/v of alcohol, Y is
that, output values were plotted against the corresponding observed
values. The results are shown in Fig. 2.

The results show that predicted data obtained by LS have a low con-
cordance with the experimental measurements (see Fig. 2). However,
despite a few outliers, there is a very good agreement between the
ANN predictions and the experimental data (Fig. 2) as revealed by the
lowMSE values, slopes and correlation coefficients close to 1 and inter-
cepts near zero. Therefore, in contrast with LS-RSM model, ANN could
be accepted as a precise prediction for modeling the analytical sensitiv-
ity of magnesium by TS.

Fig. 3 shows some of the results predicted by ANN. The
response surfaces obtained at different sample flow rates (ranging from
0.4 to 1.4 mL.min−1) for each one of the three alcohols are displayed
as 3D surfaces and contour plots. The X, Y, and Z axis represent the %v/v
of alcohol, the acetylene flow rate (L min−1), and the peak height,
respectively.
3.4. Analysis of the optimal conditions

Figs. 3 and 4a show that as long as the carrier flow is increased,max-
imum sensitivity is reached at lower percentages of organic solvent. It
can be noticed that an increment in the carrier flow increases the abso-
lute amount of alcohol that reaches the furnace. In thisway, thepercent-
age alcohol/water can be reduced keeping constant the total amount of
organic solventwith no harm for sensitivity. Fig. 4 (down) shows the in-
fluence of carrier flow rate on the moles of oxygen consumed in a com-
bustion by the solvent per minute. With the same argument as before,
as long as the flow rate increases, alcohols with more carbon atoms in
acetylene flow rate (L min −1) rate, and Z is peak height (arbitrary units).



Fig. 4. a) Solvent percentage in the mixture vs. sample flow rate: influence on optimal sensitivity; b) moles of oxygen per minute consumed in a combustion by each alcohol mixture vs.
sample flow rate.
its molecule reach their maximum at lower organic fractions of the
solvent (Fig. 4b).

Fig. 5 took into account the organic proportion of the solvent in the
mixture and the acetylene flow rate under the optimal conditions
established for each one of the response surfaces. Each point corre-
sponds to the maximum at a certain sample flow rate. Even there is
not a fixed value for all the maxima, the tendency shows that a full
richer flame produces a more suitable environment for Mg atomization
when using a solventwithmethanol (one carbon) and that a fuel leaner
flame is advisable when the number of carbon atoms is increased
(ethanol and i-propanol).

Fig. 6 shows the analytical sensitivity for Mg (expressed as peak
height) under optimal solvent proportion and flame stoichiometry at
different sample flow rates. The inset figure shows the influence of the
solvent proportion of the carrier on the droplet sizemeasured as Sauter
Mean Diameter (SMD).

The maxima in Fig. 6 can be attributed to a compromise situation: on
onehand, the signal increases as long as theflow rate increases, and in the
other hand, the amount of sprayed solvent grows, promoting a decrease
in temperature of the furnace and, thus, a lower generation of atomic
vapor. Regarding the droplet diameter (inset Fig. 6), the higher the
organic proportion of the mixture, the smaller the droplet size and
the better the desolvation/atomization dynamics and therefore the
sensitivity.

4. Conclusions

The studies show that the combination between experimental de-
sign and ANN has been successful for predicting the behavior of magne-
sium when determined by TS-FFAAS under different operational
variables.

ANN-RSMhas revealed itself as a much better alternative for predic-
tion when compared to LS-RSM in this particular system. Moreover, the
economy in experimental runs allows saving time, reagents, and thus,
costs.

Regarding the influence on the analytical sensitivity in TS-FFAAS
with magnesium as leading case, it has been shown that the optimal
conditions arise from a proper combination of themain operational var-
iableswhich is better attained through themultivariate approach rather
than the one variable at a time.



Fig. 5. Optimal conditions at different sample flow rates. Each point shows the maximum sensitivity at a given sample flow rate. Flow rates increase downwards (see arrow).
We consider that these results could be a useful instrument and a
route to follow for attaining the determination via TS of other elements
not tested up to date, broaden in this way the analytical capabilities of
this technique.
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