trabajo final de especialización.page.titleprefix
Analysis and benchmarking for gravitational waves spectrogram’s classification by usage of machine learning techniques

dc.contributor.advisorRamele, Rodrigo
dc.contributor.authorMartínez, Ezequiel H.
dc.date.accessioned2021-01-26T14:51:23Z
dc.date.available2021-01-26T14:51:23Z
dc.date.issued2020-09-06
dc.description.abstract"Gravitatonal waves, the seed of the 2015 Nobel’s prize are the cause of several complex celestial phenomena that is non-observable for the naked eye. Their identification, classification and study is s(ll a handmade work which is s(ll nascent. There has been several approaches to produce novel tools to aid the scientists behind the discovery of these deep space events. One of the most thrilling examples has been the usage of artificial intelligence classification to aid in the preiden identification of certain signals. We took one of these tools, Gravity Spy, and study its base paper, trying to reproduce some of their classification results using the very same base dataset. This research aims to compare the results obtained from the original paper, with a binary classification approach and several different algorithms taken from the knowledge base of machine learning and deep learning, alike. We confirmed the original paper results and obtained a new approach for the same solution. In this study we trained several models that could be used for further development of an eventual alternative engines for gravita(onal waves signal’s classification or any other sort of signal heavily influenced by noise and analysed by spectrograms."en
dc.description.notesTrabajo Final Ciencia de Datos (especialización) - Instituto Tecnológico de Buenos Aires, Buenos Aires, 2020es
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/3351
dc.language.isoenen
dc.subjectAPRENDIZAJE AUTOMATICOes
dc.subjectPROCESAMIENTO DE SEÑALESes
dc.subjectCLASIFICACIONes
dc.subjectONDAS GRAVITACIONALESes
dc.titleAnalysis and benchmarking for gravitational waves spectrogram’s classification by usage of machine learning techniquesen
dc.titleComparativa de rendimiento de clasificacion de espectrogramas de ondas gravitacionales mediante la utilizacion de tecnicas de machine learninges
dc.typeTrabajo final de especializaciónes
dspace.entity.typeTrabajo final de especialización
itba.description.filiationFil: Martínez, Ezequiel H. Instituto Tecnológico de Buenos Aires; Argentina.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TFI Hernan Ezequiel Martinez.pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format
Description:
Trabajo_Especialización_Martínez
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections