
		

CARRERA: ESPECIALIZACIÓN EN CIENCIA DE DATOS 

TRABAJO FINAL INTEGRADOR 

"Comparativa de rendimiento de clasificacion de espectrogramas de 
ondas gravitacionales mediante la utilizacion de tecnicas de machine 

learning" 

Nombre y Apellido del Alumno/a:  Msc. Ezequiel H. Martinez 

Título de grado o posgrado (último): MBA 

Tutor:   

Dr. Rodrigo Ramele 

Lugar y Fecha: Buenos Aires, 06 de Septiembre de 2020 

ITBA – Especialización en Ciencia de Datos                 | P a g e1



CAREER: DATA SCIENCE SPECIALIZATION 

FINAL WORK 

“Analysis and benchmarking for gravitational waves spectrogram’s 
classification by usage of machine learning techniques" 

Student:  Msc. Ezequiel H. Martinez 

Maximum Degree: Master of Business Administration 

Tutor:   

PhD. Rodrigo Ramele 

Date & Place: Buenos Aires, September 6th, 2020	

ITBA – Especialización en Ciencia de Datos                 | P a g e2



Table	of	contents	

1.	Abstract	 4	...............................................................................................................................
2.	Introduc6on	 5	.........................................................................................................................
3.	Challenges	 9	...........................................................................................................................
4.	Methodology	 11	.....................................................................................................................
4.1	Methods	and	Materials	 11	....................................................................................................
4.1.1	Introduc6on	to	the	GW	spectrograms	 12	............................................................................
4.2	Classifica6on	through	Linear	SVC	 16	......................................................................................
4.3	Convolu6onal	Neural	Network	Approach	 20	.........................................................................
4.4	Recurrent	Neural	Network	Approach	 24	................................................................................
4.5	Light	GBM	Approach	 28	........................................................................................................
5.	Conclusions	 34	........................................................................................................................
6.	Appendix	A	-	the	dataset	in	detail	 37	......................................................................................
7.	Appendix	B	-	The	metrics	used	in	this	work	explained	 39	........................................................
8.	Acknowledgements	 41	............................................................................................................
9.	References	 42.........................................................................................................................

ITBA – Especialización en Ciencia de Datos                 | P a g e3



1.	Abstract		

Gravita(onal	waves,	the	seed	of	the	2015	Nobel’s	prize	are	the	cause	of	several	complex	celes(al	
phenomena	that	is	non-observable	for	the	naked	eye.	Their	iden(fica(on,	classifica(on	and	study	
is	s(ll	a	handmade	work	which	is	s(ll	nascent.	There	has	been	several	approaches	to	produce	novel	
tools	 to	 aid	 the	 scien(sts	 behind	 the	 discovery	 of	 these	 deep	 space	 events.	 One	 of	 the	 most	
thrilling	 examples	 has	 been	 the	 usage	 of	 ar(ficial	 intelligence	 classifica(on	 to	 aid	 in	 the	 pre-
iden(fica(on	of	certain	signals.	We	took		one	of	these	tools,	Gravity	Spy,	and	study	its	base	paper,	
trying	to	reproduce	some	of	their	classifica(on	results	using	the	very	same	base	dataset.	

This	 research	 aims	 to	 compare	 the	 results	 obtained	 from	 the	 original	 paper,	 with	 a	 binary-
classifica(on	approach	and	several	different	algorithms	taken	from	the	knowledge	base	of	machine	
learning	 and	 deep	 learning,	 alike.	We	 confirmed	 the	 original	 paper	 results	 and	 obtained	 a	 new	
approach	 for	 the	 same	 solu(on.	 In	 this	 study	we	 trained	 several	models	 that	 could	 be	used	 for	
further	 development	 of	 an	 eventual	 alterna(ve	 engines	 for	 gravita(onal	 waves	 signal’s	
classifica(on	or	any	other	sort	of	signal	heavily	influenced	by	noise	and	analysed	by	spectrograms.	
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2.	Introduc1on	

The	Advanced	Laser	Interferometer	Gravita(onal-Wave	Observatory	(LIGO)	has	opened	the	field	of	
gravita(onal	 wave	 astronomy	 through	 the	 direct	 detec(on	 of	 signals	 predicted	 by	 Einstein’s	
General	Theory	of	Rela(vity.	Advanced	LIGO's	first	observing	run	(O1)	saw	the	first	detec(ons	of	
binary	black	hole	mergers.	Advanced	 LIGO	and	Virgo's	 second	observing	 run	 (O2)	 included	both	
binary	black	hole	and	binary	neutron	star	mergers.	

Gravita(onal	waves	are	signals	emiUed	by	objects	of	high	mass	that	resides	in	deep	space.	Usually,	
they	 can	 be	 emiUed	 in	 the	 occurrence	 of	 a	 celes(al	 event.	 They	 cons(tute	 disturbances	 in	 the	
space-(me	fabric.	These	object	are	typically	massive	and	of	the	size	of	a	star.	These	signals	occurs	
in	a	moment	at	which	there	is	heavy	ac(vity,	which	could	be:	

• A	Supernova	explosion	

• A	merging	of	two	binary	stars.	

• A	merge	of	two	binary	black	holes.	

• Other	types	

These	 signals	 are	 measures	 by	 a	 specific	 kind	 of	 massive	 observatory	 named	 LIGO .	 The	 first	1

successful	readings	were	taken	during	2015 .	These	measurements	are	organised	in	blocks	of	data	2

that	are	being	structured	in	different	datasets.	Some	of	these	datasets	are	freely	available	and	are	
related	 to	 a	 specific	 (me	 and	 place.	 Despite	 the	 fact	 that	 not	 all	 the	 data	 is	 openly	 available;	
humanity	 count	 today	with	 around	 four	 years	 of	measurements 	 organised	 in	 several	 rounds	 of	3

observa(ons.	

The	instruments	at	the	core	of	these	readings	that	take	those	signals	from	deep	space	are	called	
interferometers 	and	work	inside	the	LIGO	observatories.	An	“interferometer"	it	is	analogous	to	a	4

telescope	 for	 electromagne(c	 signals.	 As	 the	 name	 states,	 is	 a	 sensor	 designed	 to	 iden(fy	
interferences.	 There	 are	 of	 several	 sizes,	 but	 the	 ones	 you	 can	 find	 in	 Livignston	 and	 Handford	
observatories	 are	 par(cularly	 big.	 Size	 maUers,	 and	 their	 intent	 is	 to	 catch	 the	 specific	
interferences	produced	by	a	gravita(onal’s	events	of	magnitude.	
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Figure	2.1	-	The	general	internal	organisa(on	of	a	LIGO	interferometer. 	5

 

As	we	can	see	in	figure	2.1,	they	are	built	with	a	single	laser	beam	that	is	being	divided	between	
two	rays.	The	varia(ons	in	length	and	frequency	of	any	of	those	two	arms	in	respects	to	the	other	
produces	the	detec(on	of	a	possible	valid	signal.	

Figure	2.2	-	LIGO	is	made	up	of	two	observatories:	one	in	Louisiana	and	one	in	Washington.	Each	
observatory	has	two	long	“arms”	that	are	each	more	than	2	miles.  6
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Since	an	interferometer	catches	 interferences,	they	are	highly	sensi(ve	to	all	sort	of	white	noise.	
There	are	techniques	and	challenges	associated	with	the	prepara(on	of	these	measurements.	One	
of	the	few	being	the	signal’s	filtering	and	cleanse .	Aber	proper	treatment,	the	signals	taken	by	the	7

sensors	are	digitalised	for	its	later	analysis.	They	are	structured	in	“data-burst”	that	are	measured	
by	frac(ons	of	a	second .	8

In	 spite	 that	 some	 of	 the	 historical	 data	 is	 available	 and	 refers	 to	 past	 observa(on’s	 runs,	 the	
complete	current	dataset	 isn't	open	 to	 the	public.	These	are	data	already	par(ally	classified	and	
treated.	 In	 this	 sense,	we	will	be	able	 to	work	with	data	 that	 is	already	classified	and	 tagged	by	
scien(sts.	

Currently,	the	data	is	generated	from	four	different	observatories:	

• 'G1'			-	GEO600	

• 'H1'	-	LIGO-Hanford	

• 'L1'	-	LIGO-Livingston	

• 'V1'	-	(Advanced)	Virgo	

These	 sensors	 create	 datasets	 from	 the	 same	 events,	 measured	 by	 different	 la(tudes	 and	
longitudes	from	earth.	These	varied	measurements	help	to	apply	techniques	that	could	help	in	the	
iden(fica(on	 of	 miss	 readings	 or	 false	 posi(ves	 in	 the	 iden(fica(on	 of	 waves.	 There	 are	 some	
specific	 signals	 that	 looks	 very	 closely	 to	 what	 a	 gravita(onal	 wave	 might	 look	 like,	 they	 are	
referred	as	glitches.	

The	 glitches	 can	 be	 defined	 as	 peculiari(es	 in	 the	 signal	 that	 simulate	 o	 are	 similar	 to	 what	 a	
gravita(onal	wave	might	look	like.	 	These	are	considered	“false	posi(ves”	and	supposes	one	of	the	9

most	 dreaded	 occurrences	 to	 deal	 with	 during	 the	 study	 of	 these	 events.	 S(ll,	 they	 are	 fairly	
common.	

All	 these	measurements	 has	 been	 standardised	 and	 resolved	 in	 structured	 datasets	 that	 can	 be	
consumed	by	a	regular	Python	script.	There	are	in	place	several	efforts	to	work	in	the	readings	and	
cleaning	of	the	signal	out	of	noise .	 	We	understand	that	there	are	a	variety	of	methods	to	test	10

and	apply	for	this	to	be	accomplished;	we	know	that	some	of	the	techniques	u(lised	make	use	of	a	
technique	denominated	Deep	Filtering 	which	is	making	usage	of	convolu(onal	 	neural	networks	11

and	 other	machine	 learning	 algorithms	 to	 do	 so.	When	 not,	 we	 used	 some	 of	 these	 papers	 as	
inspira(on	for	the	present	work.			

In	spite	all	this,	data	around	these	discoveries	are	par(ally	publicly	available,	along	with	associated	
sobware	 libraries.	 This	 work	 is	 based	 in	 one	 dataset	 and	 its	 paper:	 "Gravity	 Spy:	 integra(ng	
advanced	LIGO	detector	characteriza(on,	machine	learning,	and	ci(zen	science” ,	published	over	12

the	classifica(on	of	"glitches"	that	affects	those	waves'	readings	and	the	project	developed	around	
it:	Gravity	Spy.	All	of	which	was	designed	for	scien(sts	and	students	pursuing	research	in	this	field,	
both	 inside	and	outside	 the	LIGO	Scien(fic	Collabora(on.	This	paper	 speaks	of	a	dataset	of	pre-
classified	 spectrograms	 over	 these	 waves.	 They	 were	 classified	 by	 a	 public	 science	 effort	made	
possible	by	crowd	classifica(on .	This	dataset	and	paper	provides	us	with	info	over:	13
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• A	par(cular	kind	of	"glitch":	the	"chirp",	which	was	iden(fied	as	being	to	most	close	to	a	
gravita(onal	wave	form.	

• Assesses	the	performance	of	different	"Machines	Learning"	techniques	in	order	to	classify	
these	spectrograms	as	specific	glitches	occurred	during	readings.		

We	will	 then	train	several	models	 that	will	classify	 just	one	of	 the	glitches:	 the	chirp.	Given	this,	
we’ll	be	trying	to	approximate	the	results	that	the	author	of	the	original	paper	achieved.	Besides	
this,	 our	 main	 intent	 will	 be	 to	 assess	 these	 algorithms	 performance	 in	 comparison	 with	 each	
other.	Taking	relevant	metrics	and	assessing	the	results.	

A	few	ques(ons	that	we	want	to	answer	are:	

• How	hard	might	be	for	some	of	the	presented	algorithms	to	iden(fy	a	gravita(onal	wave	
given	its	due	spectrogram?	

• Can	we	approximate	the	classifica(on	of	the	same	dataset,	when	it	comes	to	“chirps”	to	
what	the	Gravity	Spy	has	achieved?	

• Can	we	validate	alterna(ve	ways	 to	classify	“chirps”	 that	weren’t	present	 in	 the	original	
paper?	

• Can	we	be	able	to	train	a	model	that	classifies	at	least	one	“Chirp”?	

• It	is	the	same	to	classify	the	gravity	spy’s	dataset	with	a	deep	learning	technique	than	with	
a	more	tradi(onal	machine	learning	technique?	

• These	spectrograms	supposes	a	un-structured	dataset,	given	that	they	are	 images,	or	 its	
data	is	truly	regular?	

• Can	 we	 arrive	 to	 some	 of	 the	 same	 conclusions	 or	 validate	 some	 of	 the	 conclusions	
obtained	by	the	gravity	spy	paper?	

Some	of	the	contribu(ons	of	this	work	are	expected	to	be:	

• Provide	 a	 comparison	 of	 several	 models’	 performance	 to	 bring	 more	 light	 over	 the	
classifica(on	and	characterisa(on	for	noisy	signals	when	represented	as	spectrograms.	

• It	will	provide	several	models	capable	of	classifying	a	spectrogram	in	a	binary	way:	either	a	
candidate	gravita(onal	wave	or	not.	

• Provide	 a	 cue	 about	 how	 to	 automa(cally	 iden(fy	 candidate	 gravita(onal	 waves	
throughout	the	usage	of	spectrograms.		

• Give	another	glance	of	how	to	deal	with	these	signals,	providing	an	already	trained	model	
to	try	for	binary	classifica(on	of	newer	signals.	

• Deliver	a	trained	model	that	could	help	scien(sts	to	classify	specific	signals,	against	all	the	
others.	
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• Verifica(on	through	reproduc(on	of	the	findings	found	in	the	Gravity	Spy	paper	is	some	of	
the	due	diligence	expected	in	science.	

3.	Challenges	

There	was	a	challenge	held	 for	 the	LIGO	open	data	workshop	of	2020 ,	 in	which	with	a	 limited	14

and	 open	 held	 data,	 the	 aUendees	 tried	 to	 classify	 several	 binary	 black	 holes	 generated	 by	 the	
scien(sts	 that	 held	 the	workshop.	 The	 aim	was	 to	 allow	 students	 and	 senior	 scien(sts	 to	 learn	
about	 the	 datasets	 structure	 and	 sobware	 tools 	 involved	 in	 the	 work	 that	 the	main	 scien(st	15

involved	 in	 the	 research	 for	 LIGO	 are	 currently	 doing.	 The	 aim	 in	 those	workshops	was	 to	 train	
enthusiasts	 and	physicists	 in	 the	 classifica(on	methodology	 commonly	 used	 to	 iden(fy	 valuable	
signals.	The	difficulty	to	classify	these	waves	isn’t	trivial,	given	the	dataset’s	size 	and	the	technical	16

complexity	needed	to	filter	and	evaluate	the	samples	up	to	a	point	at	which	it	can	be	understood .	17

Therefore,	 developing	 a	 technique	 that	 could	 aid	 in	 the	 classifica(on	 of	 candidate	 gravita(onal	
waves	could	be	of	great	value	for	the	average	astrophysicist.		

One	of	the	issues	for	an	automa(c	method	to	succeed	has	been	the	availability	of	a	pre-classified	
datasets	with	which	to	train	a	model.	The	amount	of	recognised	celes(al	events	is	scarce,	and	the	
training	is	done	with	ar(ficial	built	up	signals;	as	we	can	see	from	the	paper	“"Deep	Learning	for	
real-(me	 gravita(onal	 wave	 detec(on	 and	 parameter	 es(ma(on:	 Results	 with	 Advanced	 LIGO	
data" .	 More	 over:	 the	 complete	 most	 recent	 readings	 aren’t	 publicly	 available	 for	 the	 whole	18

scien(fic	 community	 as	 they	 are	 being	 produced.	 There	 is	 a	 plan	 in	 place	 to	 release	 these	
measurements	that	usually	felt	several	months	or	years	aber	they	were	taken .	19

Figure	3.1	-	The	current	data	release	plan	for	LIGO	data	measurements .	20
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We	got	a	dataset	of	pre-classified	spectrograms	 that	we	might	use	as	a	base	study	 to	show	and	
study	how	the	model’s	used	 in	a	project	 like	Gravity	Spy 	could	have	been	developed.	Since	the	21

dataset	 for	 the	 same	 paper	 is	 publicly	 available;	 to	 reproduce	 some	 of	 these	 findings	 between	
different	 techniques	 could	 end	 providing	 another	 tool	 to	 use	 for	 the	 people	 involved	 in	 the	
classifica(on	of	these	signals.	There	has	been	different	efforts	for	classifica(on	of	these	waves,	like	
deep	filtering	for	sound	signals 	or	deep	learning	for	real-(me	gravita(onal	waves ,	s(ll	most	of	22 23

the	work	is	being	done	manually	and	with	sta(s(cal	methodologies.	

In	this	work,	we	are	going	to	train	four	models	with	a	pre-classified	dataset	of	real	readings	which	
were	manually	 classified	as	glitches	by	a	 crowd	of	 scien(sts.	This	 is	 the	dataset	provided	by	 the	
“Gravity	Spy	paper”.	We	will	use	it	for	the	intent	of	evalua(ng	four	algorithm’s	performance	in	the	
classifica(on	 of	 the	 “chirps”	 sawn	 in	 the	 same	 paper.	 We	 are	 going	 to	 aim	 to	 a	 “binary	
classifica(on”	of	the	kind:	“chirp	/	gravita(onal	wave”	vs	the	rest.	Since	our	approach	is	to	analyse	
a	 one-vs-all	 kind	 of	 classifica(on,	 it	 could	 open	 the	 door	 for	 comparison	 against	 the	 process	
performed	by	Gravity	Spy.	That	paper	classified	every	category	in	a	non-binary	non-itera(ve	way.	
The	main	difference	between	this	approach	and	the	general	classifica(on	made	by	Gravity	Spy	 is	
that	 we	might	 find	 subop(mal	 algorithms	 that	 could	 miss	 classify	 some	 signals	 for	 the	 “chirp”	
category.	Having	some	signals	“approximately”	classified	as	“chirps”	we	could	bring	insights	about	
some	 other	 sort	 of	 signals,	 not	 yet	 discovered,	 that	 could	 lead	 a	 trained	 human	 observer	 to	 a	
breakthrough	discovery.	

Moreover,	given	this	idea	in	place,	a	future	researcher	could	try	to	go	for	binary-classifica(on	of	all	
the	glitches	in	the	dataset.	Evalua(ng	the	spectrograms	nature,	similari(es	and	characterisa(on	in	
a	different	view.	

However,	these	are	side	goals	of	this	work.	Out	main	goal	is	to	evaluate	these	four	algorithms	and	
compare	their	performance	against	the	findings	in	the	“Gravity	Spy”	paper.	
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4.	Methodology		

The	main	methodology	used	for	this	work	involves	different	machine	learning	and	deep	learning	
algorithms	compara(ves.	We	are	going	to	use	the	following	algorithms	and	measure	its	
performance	trying	to	execute	a	binary	classifica(on	of	spectrograms	of	half	seconds	for	signals	
taken	from	deep	space.	

4.1	Methods	and	Materials		

Algorithms	and	model’s	sources	

For	this	research	we	will	be	able	to	use	the	scikitlearn ,	pandas ,	keras 	and	numpy 	libraries	24 25 26 27

provided	by	the	body	of	tools	found	in	the	Python's	universe.	We’ve	worked	with	four	different	
algorithms:	

	 Machine	Learning	algorithms 	28

• Linear	SVC:	the	core	of	a	support	vector	machine,	specialised	in	binary	
classifica(ons.	It	uses	the	concept	of	an	hyperplane	that	“divides”	the	dataset	in	
two	using	several	“support	vectors”	distances	to	it	as	minimum	factor	for	
classifica(on	of	every	observa(on.	These	are	good	image	classifiers.	

• Light	GBM:	(Gradient	Boos(ng	Machines)	gradient	boosted	classifica(on	is	a	
“vo(ng”	kind	of	training	tree	classifica(on	where	trees	are	built	in	series	and	
compared	to	each	other	based	on	their	scores.	The	winning	classifica(on	is	
evaluated	on	weighted	leaf	scores	within	each	of	the	best	performing	trees.	

	 Deep	Learning	algorithms 	29

• Convolu(onal	Neural	Networks:	a	neural	network	that	has	other	neural	networks	in	
its	inner	layers,	feeding	the	following	layers	with	the	output	of	each	one.	They	
contain	many	convolu(onal	layers	over	each	other,	each	one	capable	of	classifying	
more	complex	data.	These	networks	are	said	to	be	good	to	recognise	images	and	
other	complex	paUerns.	

• Recurrent	Neural	Networks:	Convolu(onal	Neural	Networks	that	introduces	the	
concept	of	“memory”	in	their	design.	They	refine	every	classifica(on	based	on	their	
own	performance	in	the	“past”.	These	are	good	for	classifica(on	of	(me	series	
data.	

We	have	developed	several	models	to	work	with	everyone	of	them.	Since	the	dataset	has	been	
constrained	to	just	spectrograms,	we	are	classifying	these	images	regardless	of	their	(me	series	
natural	scope.	The	base	for	these	model’s	training	and	valida(on	of	the	datasets	are	the	methods	
suggested	by	François	Chollet 	and	James	Gareth	“et	al” 	which	entails	the	training	of	different	30 31

deep	learning	algorithms		and	machine	learning	ones	by	dividing	the	dataset	in	three	layers:	

• A	training	set:	where	we	will	be	taming	the	models	for	binary	classifica(on.	

• A	valida6on	set:	where	the	trained	models	will	be	validated	during	training,	if	applicable.	
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• A	tes6ng	set:	where	we	will	evaluate	the	model’s	performance	and	therefore	raise	
metrics.	

(We	are	going	to	use	the	division	sets	used	in	the	“Gravity	Spy” 	paper,	since	the	same	comes	32

already	divided	and	tagged	in	these	three	subsets.	Besides,	we	wanted	to	keep	the	experiments	as	
similar	to	the	original	paper	as	possible.)	

Aber	this	step	was	taken,	we	configured	the	different	algorithms,	trained	them,	saved	the	model	
and	measured	its	performance.	

Algorithms	metrics	

The	general	metrics	we	have	in	mind	to	evaluate	performance	are	the	following:	

• To	verify	that	the	trained	model	classifies	a	“Chirp”	class	(a	Gravita(onal	Wave).	

• Usage	of	“Loss”	and	“Accuracy”	func(ons	in	order	to	es(mate	how	“good”	the	trained	
model	is.	

• ROC’s	area	under	the	curve	(AUC).	

• Precision.	

• Recall.	

• Times	to	train.	

We	haven’t	used	any	specific	of	technique	for	hyper	parameters	search,	aside	from	the	ones	
proposed	in	the	men(oned	bibliography.	For	more	info	about	the	metrics	used,	please	refer	to	
Appendix	B.	

Research’s	experimental	code	base	

All	the	algorithms	and	experiments	performed	during	this	research	could	be	found	in:	hUps://
github.com/exemar(nez/gravita(onal_waves_classifiers/tree/master/gw	

4.1.1	Introduc1on	to	the	GW	spectrograms	

The	images	we	will	be	classifying	are	spectrograms;	this	means	they	are	signals	representa(on	in	a	
constrained	span	of	(me	by	its	intensity.	In	order	to	properly	understand	the	results	we	will	be	
taking,	we	need	to	understand	how	they	look	and	how	the	transforma(on	work	over	them	went.		

A	gravita(onal	wave	looks	like	a	“chirp”	in	the	spectrogram,	such	a	signal	looks	like	the	one	
represented	in	figure	4.1.1.1,	which	was	recovered	from	the	dataset	we’ll	be	dealing	with.	
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Figure	4.1.1.1	 -	 This	 is	 a	 “Chirp”,	 a	 signal	 candidate	 to	be	 classified	as	 a	 gravita(onal	wave	by	a	
Physicist. 	33

There	signals	will	be	compared	and	classified	with	other	images	of	the	same	kind,	like	the	ones	
described	in	the	Gravity	Spy	paper:	

Figure	4.1.1.2	-	Several	spectrograms	examples	that	aren’t	chirps	neither	gravita(onal	waves. 	34
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In	figure	4.1.1.2	we	see	the	different	kind	of	images	and	how	their	(meframes	affect	their	look;	
we’ll	deal	only	with	images	in	the	0.5	seconds	span	and	analyse	the	algorithm’s	findings.		

In	spite	of	the	appearance	of	the	spectrograms,	we	need	to	remember	that	we	will	be	classifying	
the	140x170	matrix	that	defines	those	images.	We	checked	these	and	discovered	that	there	are	
only	data	related	to	every	pixel	of	the	main	images;	as	we	discussed	in	appendix	A.	

Something	else	to	take	into	account	from	the	base	dataset	is	the	analysis	and	results	obtained	
during	the	“Gravity	Spy”	research.	We	will	use	these	as	a	benchmark	to	which	we	could	compare	
our	results,	more	specifically,	the	“Chirp”	row/column	in	comparison	with	everything	else.	These	
results	could	be	found	in	figure	4.1.1.3,	where	the	author	sustains	the	confusion	matrix 	for	the	35

CNN	classifica(on	he	made	over	the	same	dataset;	we’ll	be	doing	the	same	thing	within	a	binary	
approach.	

Figure	4.1.1.3	-	The	confusion	matrix	for	the	classifica(on	of	the	20	glitches	with	a	trained	CNN .	36

Figure	4.1.1.3	shows	the	precision	and	recall	for	every	given	class	(see	Appendix	B	for	more	details	
on	the	metrics).	Here,	we	count	with	18	different	classes	with	a	mul(	class	analysis.	In	a	confusion	
matrix,	the	main	diagonal	represents	“how	well”	that	par(cular	class	was	classified	(ranging	from	0	
to	 1,	 higher	 the	 beUer).	 Numbers	 out	 of	 the	 diagonal	 represents	 elements	 that	 were	 miss	
classified.	This	image	is	important	because	we	base	all	our	comparison	analysis	over	these	results.	
As	 a	 maUer	 of	 fact,	 the	 metrics	 we	 use	 in	 this	 research	 are	 either	 these	 same	metrics	 or	 a	 a	
deriva(on	of	them:	

• The	confusion	matrix	is	the	base	for	he	ROC/AUC.	

• The	precision	and	recall,	composes	the	f1	metric.	
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• We	added	some	other	metric	for	“inter	model”	comparison	when	applicable,	like	accuracy	
and	loss.	

Keep	in	mind	that	we	will	base	all	our	analysis	over	the	performance	of	the	category	“chirp”	alone.	

The	main	take	away	here	is	this:	the	algorithms	used	in	the	paper	achieved	perfect	score	for	the	
“chirp”	category.	This	is	remarkable	and	we	tried	to	approximate	these	results	in	our	work.	
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4.2	Classifica1on	through	Linear	SVC	

Hardware	and	configura6ons	pre-sets	

This	work	has	been	performed	over	a	home	hosted	virtual	machine	with	the	following	
configura(on:	

• 2	Cores	

• 16	GB	of	RAM	

• Linux	Ubuntu	19.0	(worksta(on)	as	Opera(ng	System	

Algorithm’s	models	and	evaluated	results	

The	Linear	SVC	(Linear	Support	Vector	Classifier)	it’s	a	kind	of	support	vector	machine	designed	to	
deal	with	binary	classifica(on	of	complex	data.	It	is	a	special	kind	of	support	vector	machine	with	a	
linear	kernel	and	a	distance	from	the	hyperplane	to	classify	two	classes .		37

We	used	the	Sci	Kit	Learn	library 	to	test	this	classifica(on	and	draw	metrics	from	it.	The	38

configura(on	we	build	for	our	first	classifica(on	upon	it	was	as	follows:	

• A	linear	kernel.	

• A	“C”	parameter		1.0	(the	span	distance	to	the	division	hyperplane	supported	by	the	
vectors).	

• We	trained	the	algorithm	within	the	original	“train”	label,	composed	of	5,587	float	
matrices	that	corresponds	to	every	spectrogram.	We	knew	that	in	this	set	we’ll	face	
roughly	41	“Chirps”.	

• We	provided	a	balanced	“class_weight”	param;	since	we	know	that	the	chirps	supposes	
less	than	the	1%	of	the	observa(ons	in	the	set.	

We	trained	this	model	and	then	validated	it.	We	used	the	standard	way	of	training	suggested	by	
the	library	and	then	we	used	cross-valida(on 	over	five	epochs.	The	valida(on	set	was	the	very	39

same	one	labeled	and	suggested	“as	is”	in	the	“Gravity	Spy"	paper;	this	was	inten(onal	due	to	the	
fact	that	it	will	allow	us	to	contrast	findings	and	classifica(on	results	over	the	former	ones.	

Table	4.2.1	-	The	1st	model	predic(on	against	the	“valida(on”	set	

Label Precision Recall f1 #

0 1 1 1 1191

1 1 1 1 9

ROC/AUC 1
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Alongside	with	what	we	can	see	in	table	4.2.1,	the	ROC/AUC	metric	was	of	1	as	well.	It	probed	to	
be	a	“perfect	score”	that	was	checked	and	confirmed	by	its	performance	over	the	test	set	
suggested	by	“Gravity	Spy”.	It	classified	all	the	spectrograms	without	a	mistake.	We	performed	
several	other	configura(ons	over	the	same	training	set	in	order	to	try	to	understand	this	behaviour,	
since	an	algorithm	that	classifies	with	a	AUC/ROC	score	of	1.0	is	suspicious	of	errors	or	even	
overfiung.	However,	as	can	be	observed	in	Figure	4.1.1.3	(the	confusion	matrix	obtained	in	the	
gravity	spy	classifica(on	by	a	CNN.),	we	see	that	the	classifica(on	performance	of	“chirps”	is	1.0.	
Which	is	encouraging	and	gave	us	a	cue	about	the	current	set’s	nature.	These	findings	could	be	
reproduced	execu(ng	the	scripts	found	in	the	code	base .		40

Table	4.2.2	-	The	model	classifica(on	of	the	valida(on	and	test	set	got	the	right	images.	

As	we	can	see	in	table	4.2.2,	all	the	images	were	correctly	recognised.	

To	understand	this	performance	and	the	ra(onale	behind	it,	we	performed	several	other	trainings	
and	classifica(ons.	For	our	2nd	model	we	changed	the	following:	

• We	took	all	the	41	“chirps”	from	the	gravity	spy	“train”	set	and	mixed	them	together	with	
41	spectrograms	randomly	extracted	from	the	same	set	(taking	care	in	not	picking	another	
“chirp”,	also).	

• 	We	reduced	the	C	parameter	progressively	from	1,	leading	it	all	the	way	down	to	
0.000075.	

• We	validated	the	set	without	cross-valida(on	and	then	check	it	against	the	labeled	“test”	
set.	

The	results	we	found	where	the	same	as	long	as	the	C	parameter	was	over	0.000075;	as	far	as	we	
approximated	this	hyperparameters	to	this	value	or	surpassed	it	the	en(re	model	precision,	recall,	
ROC/AUC	and	f1	parameter	started	to	deplete.		

Table	4.2.3	-	Once	the	C	parameter	approximated	to	0.000075	the	metrics	fell.	

Table	 4.2.3	 shows	 how	 the	 metrics	 started	 to	 get	 down.	 Therefore,	 the	 model	 predic(on	
performance	in	the	original	“valida(on”	and	“test”	set	were	as	the	ones	showed	in	figure	4.2.4.	

No-GW GW Identified

Validation	Set 1192 9 9

Test	Set 1169 10 10

Label Precision Recall f1 #

0 1 0.94 0.97 1191

1 0.12 1 0.21 9
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Table	4.2.4	-	The	predic(on’s	performance	turned	out	to	“predict”	much	more	false-posi(ves	aber	
we	diminished	the	C	parameter.	

As	we	sae	in	table	4.2.3	the	f1,	precision	and	recall,	all	s(ll	sustained	a	preUy	high	score.	The	ROC	/	
AUC	dropped	only	to	0.88.	However,	the	false	posi(ves	iden(fied	by	the	model,	as	we	see	in	table	
4.2.4	soared.	(All	these	metrics	and	what	they	do	represent	has	been	described	in	Appendix	B).	

We	tested	several	other	approaches	in	order	to	understand	why	this	behaviour	happened,	as	such:	

• We	mixed	the	labels	and	observed	the	metrics,	under	the	guess	that	something	could	be	
oddly	 configured	 or	 that	 the	 library’s	 version	 could	 be	 wrong	 or	 “bugged”	 (trying	 to	
implement	 an	 informa(cs	 equivalent	 to	 a	measurement’s	 error	 avoidance	 technique ).	41

The	metrics	ROC/AUC,	Precision,	Recall	and	F1	were	below	0.35	approximately.	

• We	 tried	 to	 use	 our	 very	 own	 training	 and	 test	 sets,	 and	 ended	 up	with	 similar	 results	
across	all	the	training	experiments	previously	tested.	

• We	 tried	with	different	 values	of	C:	 0.5,	 0.1.	 These	maintained	 the	ROC/AUC,	precision,	
recall	and	f1	performance	that	we	found	when	we	used	1	as	the	parameter.	With	values	
like	0.0005	and	0.000075	or	below	the	model	started	to	miss	classify	again.	

The	 training	 code	 for	 the	 final	 algorithm,	 can	 be	 retrieved	 from	 the	 code	 base .	 The	 predict’s	42

scripts	and	their	metrics	can	be	found	from	the	code	base .	43

Table	4.2.5	-	The	(mes	for	the	op(mal	configura(on	

We	 conclude	 that	 the	 spectrograms	 cons(tute	 a	 very	 regular	 set	 of	 samples.	 These	 are	 bicolor,	
centred	 and	 regular	 images.	 Given	 those,	 and	 considering	 the	 small	 magnitudes	 at	 which	 the	
hyperplane	drawn	by	the	algorithm	was	star(ng	to	falter	(below	0.0005);	it	gives	us	the	idea	that	

No-GW GW Identified

Validation	Set 1192 9 78

Test	Set 1169 10 67

Linear	SVC Training	Times Predict	Times

Train	Set 76	secs. NA

Validation	Set 3	secs. 3	secs.

Cross	Validation 60	secs. NA

Test	Set NA 3	secs.
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the	support	vectors	between	the	chirps	and	every	other	image	are	very	far	away	from	one	another.	
Which	rides	us	to	the	conclusion	that	the	dataset,	for	the	given	classes	and	the	available	data,	has	
more	 structure	 than	 other	 typical	 classified	 images’	 dataset	 (like	 the	 ones	 found	 in	 the	MNIST	
dataset ,	for	example,	which	has	been	broadly	studied ).		44 45

It	 is	worth	 to	 no(ce	 the	 regularity	 of	metrics	 like	 the	 precision,	 the	 recall	 or	 the	 F1,	which	 are	
interrelated	and	 represents	 the	model’s	 “accuracy”.	Those	metrics,	alongside	with	 the	ROC/AUC,	
never	go	below	0.8;	which	is	a	fairly	high	score.	The	reason	for	this	to	happen,	we	conjecture,	has	
to	be	with	the	fact	 that	 the	cardinality	of	 the	class-1	 (“Chirps”)	 images	are	 far	below	that	of	 the	
class-0.	 As	 a	 result,	 these	 metrics	 became	 altered	 in	 the	 sense	 that	 the	 “non-gw	 /	 class-0”	 is	
massive	and	easily	iden(fied.	
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4.3	Convolu1onal	Neural	Network	Approach	

Hardware	and	configura6ons	pre-sets	

This	work	has	been	performed	over	a	home	hosted	virtual	machine	with	the	following	
configura(on:	

• 2	Cores	

• 16	GB	of	RAM	

• Linux	Ubuntu	19.0	(worksta(on)	as	Opera(ng	System	

Algorithm’s	models	and	evaluated	results	

We	applied	here	the	given	sub-set	of	training	pre-classified	samples;	they	were	5587	images.	We	
configured	the	network	with	different	layers;	which	were	inspired	on	an	exercise	from	the	Deep	
Learning	book 	example	for	classifica(on	of	digits	of	the	MNIST	classic	dataset:	46

The	“Conv2D”	is	a	convolu(onal	neural	network	organised	for	a	2D	matrix.	The	amount	of	outputs	
are	the	values	that	will	go	for	the	next	layer.	The	“Dense”	layer,	represents	a	regular	neural	
network	layer.	The	ac(va(on	is	the	kind	of	func(on	that	transforms	the	score	output	in	every	exit	
as	a	classifier.		

We	configured	the	op(misers	and	loss	func(ons	as	“RMS"	and	“Binary	Cross	Entropy”	and	trained	
over	the	same	dataset	over	five	epochs.	

This	network	failed	to	classify	the	images;	in	spite	the	fact	that	the	“accuracy”	metric	stayed	over	
0.992	with	a	“loss”	below	0.007.	The	small	amount	of	error	remained	s(ll	higher	than	the	
percentage	of	“gravita(onal	waves”(class-1)	spectrograms;	which	were	below	the	0.008	of	the	
total.	We	then	trained	over	50	epochs	within	the	same	results.	We	used	these	metrics	just	as	a	first	
approach	to	the	set.	In	spite	the	high	value	metrics	the	model	failed	to	iden(fy	a	single	
gravita(onal	wave	in	any	of	the	“valida(on”	or	“test”	sets.	

Later,	we	found	that	the	network	“deepness”	was	the	problem.	With	the	given	posi(ves’	set	(41	in	
5587),	we	needed	to	build	up	a	bigger	network.	Therefore,	we	changed	the	model	for	a	similar	one	
found	in	the	same	book 	for	classifica(on	of	a	small	set	of	images	of	“dogs”	vs	“cats”	(The	dataset	47

Layer	Type Outputs Activation

Conv2D 32 Relu

Conv2D 64 Relu

Conv2D 64 Relu

Dense 64 Relu
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was	small,	roughly	2000	images,	but	the	categories	remained	binary	as	well).	We	adapted	such	a	
model	in	the	following	way:	

We	added	three	more	layers;	and	changed	the	ac(va(on	for	the	last	layer	to	“sigmoid”.	This	
network	showed	the	following	performance	during	training:	

Table	4.3.1	-	Generated	during	the	training	session	for	the	Convolu(on	Neural	Network	approach.	

Aber	we	trained	the	network	for	30	epochs,	the	trainer	algorithm	found	that	the	loss	and	accuracy	
ceased	to	improve	aber	the	ninth	epoch.	Therefore,	we	tested	the	model	against	the	“tes(ng	set”,	
which	thrown	the	results	shown	in	table	4.3.1.	

Figure	4.3.2	-	ConvNet	accuracy	vs	valida(on	set	

Layer	Type Output Activation

Conv2D 32 Relu

Conv2D 64 Relu

Conv2D 128 Relu

Conv2D 128 Relu

Dense 512 Relu

Dense 1 Sigmoid

Accuracy 0.000121

Loss 0.99915
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Figure	4.3.3	-	ConvNet	loss	vs	valida(on	set	

The	history	for	these	epochs,	as	can	be	appreciated	in	both	images	(Figure	4.3.2	and	4.3.3),	shows	
that	the	training	and	valida(on	sets	converges	during	cross-valida(on	training	for	almost	all	nine	
epochs;	which	ensures	that	we	are	avoiding	overfiung	issues.	

Table	4.3.4	-	ConvNet	precision,	recall,	f1	and	ROC/AUC	for	the	“valida(on”	set.	

Table	4.3.5	-	ConvNet	precision,	recall,	f1	and	ROC/AUC	for	the	“test”	set.	

Label Precision Recall f1 #

0 1 1 1 1191

1 1 1 1 9

ROC/AUC 1

Label Precision Recall f1 #

0 1 1 1 1169

1 1 0.90 0.95 10

ROC/AUC 1
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As	can	be	sawn	in	Table	4.3.4	and	4.3.5,	the	second	convolu(onal	neural	network’s	model	reached	
an	asympto(c	curve	around	epoch	5;	we	saw	aberwards	that	the	network	classified	all	the	
valida(on	set’s	gravita(onal	waves	(9	out	of	9)	and	most	of	the	same	images	from	the	tests	set	(9	
out	of	10).	The	ROC/AUC	curve	was	1.0	for	both	sets.		

Table	4.3.6	-	The	(mes	for	the	op(mal	configura(on	

The	 performance	 for	 the	 trained	 algorithms	 seems	 to	 reach	 a	 “perfect”	 score	 of	 one	 in	 almost	
every	metric.	As	such,	we	understand	that	the	peculiari(es	of	the	dataset	might	be	the	reason	for	
this	behaviour:	the	signals	are	very	regular	and	with	liUle	to	no	change.	The	fact	that	the	ROC	score	
is	one	means	that	there	are	no	“false-posi(ves”.	Since	it	is	an	interest	of	any	scien(fic	endeavour	to	
iden(fy	new	events,	having	a	perfect	score	could	be	a	symptom	of	“overfiung”	in	a	more	general/
business-like	approach.	

However,	given	the	regularity	of	the	set	and	the	scarce	class-1/gravita(onal	waves	in	it,	we	see	that	
not	 “any”	model	 could	 do	 the	match.	With	 the	first	model,	 the	metrics	 for	 accuracy,	 loss,	were	
fairly	high,	but	s(ll	not	a	single	image	was	correctly	classified.	We	understand	this	effect	was	due	to	
the	 fact	 that	 class-0	 was	 vast	 and	 easily	 iden(fiable.	 For	 the	 second	 model,	 we	 changed	 the	
network’s	 deepness	 and	 evaluated	 the	 precision,	 recall,	 f1	 and	 ROC/AUC.	 All	 of	 them,	 different	
views	of	the	same	measure:	how	well	the	true	posi(ves	are	being	iden(fied	in	the	trained	model.	

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 20	minutes NA

Test	Set NA 26	secs.
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4.4	Recurrent	Neural	Network	Approach	

Hardware	and	configura6ons	pre-sets	

This	work	has	been	performed	over	a	home	hosted	virtual	machine	with	the	following	
configura(on:	

• 2	Cores	

• 16	GB	of	RAM	

• Linux	Ubuntu	19.0	(worksta(on)	as	Opera(ng	System	

Algorithm’s	models	and	evaluated	results	

We	decided	to	test	a	LSTM	model.	However,	a	RNN	works	best	when	classifying	(me	series	kind	of	
data	instead	of	images;	since	a	spectrogram	is	based	in	a	kind	of	progressive	data,	we	adapted	the	
RNN	to	take	the	abscise	axis	as	the	(me	dimension	and	trained	the	models	under	this	assump(on.	
With	this	approach	we	classified	the	“Chirps”	(gravita(onal	waves)	as	in	the	other	methods.	The	
configura(on	will	entail	the	usage	of	a	LSTM	(Long-Short	Term	Memory)	configura(on .	We	used	48

the	following	configura(on	in	a	“sequen(al”	model:	

The	“LSTM”	is	a	recurrent	neural	network	organised	as	a	long-short	term	memory.	The	amount	of	
outputs	are	the	values	that	will	go	for	the	next	layer.	The	“Dense”	layer,	represents	a	regular	neural	
network	layer.	The	ac(va(on	is	the	kind	of	func(on	that	transforms	the	score	output	in	every	exit	
as	a	classifier.	

We	used	three	LSTM	RNN’s	layers	in	sequence	with	an	sigmoid	ac(va(on	func(on.	The	model	was	
compiled	with	the	following	parameters:	

• op(mizer	=	op(mizers.RMSprop(lr=1e-4)	-	A	Root	Mean	Square	op(mizer .	49

• loss	=	‘binary_crossentropy’	-	Using	the	loss	as	Binary	Cross	Entropy .	50

• metrics=[‘binary_accuracy']	

And	trained	with	the	following	parameters:	

• epochs	=	90	-	we	instructed	the	algorithm	to	fit	during	90	epochs	

• pa(ence	=	3	-	If	one	epoch	doesn’t	improves	three	(mes	in	a	row,	we	cease	the	training.	

Layer	Type Outputs Activation

LSTM 4 NA

LSTM 4 NA

LSTM 4 NA

Dense 1 Sigmoid
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• batch_size=100	

• valida(on_data=	used	the	one	proposed	by	Gravity	Spy.	

• class_weight	=	we	balanced	the	classes	weights	with	the	balance	we	iden(fied	from	the	
dataset	(0.008	class	1,	and	0.992	for	class	0)	

In	the	69th	epoch,	we	reached	the	peaks	of	improvement	for	the	model.	With	the	results	showed	
in	table	4.4.1,	accuracy	above	0.99	and	loss	below	0.11;	the	Recurrent	Network	returned	
predic(on’s	probabili(es	for	each	of	the	given	binary	classes.	Aber	try-and-test,	we	decided	to	
assign	a	threshold	of	0.75	for	the	class	1	(the	“Chirp”)	and	take	a	binary	classifica(on	over	it.	

Table	4.4.1	-	The	Recurrent	Network,	first	classifica(on	model	loss	and	accuracy.	

In	spite	the	fact	that	those	metrics	seems	to	be	very	high,	they	are	non-conclusive.	These	were	
later	checked	on	the	“predict”	phase.	

Tables	4.4.2	-	The	trained	LSTM	RecNet	performance	results.	

Valida6on	Set	

Test	Set	

In	tables	4.4.2	we	see	a	comparison	pair	to	pair	between	the	valida(on	set	and	the	test	set.	We	see	
that	 the	 classifica(on	 for	 the	 class-0	 (non-gravita(onal	waves)	 has	 a	 perfect	 score	 of	 1	 in	 every	
column,	while	the	class-1	(gravita(onal	waves	/	“Chirps”)	have	a	high	score	(0.8-0.95)	in	precision,	
recall	 and	 f1	 columns.	 This	 seems	 to	 suggest	 that	 the	model	 has	 a	 harder	 (me	 iden(fying	 the	

Loss 0.1025

Accuracy 0.9957

Label Precision Recall f1 #

0 1 1 1 1191

1 0.9 1 0.95 9

ROC/AUC 0.9991

Label Precision Recall f1 #

0 1 1 1 1169

1 0.8 0.8 0.8 10

ROC/AUC 0.8721
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chirps.	We	see,	that	the	ROC/AUC	metric	induces	us	to	think	that	the	coverage	of	the	cases	is	quite	
good	as	well.	

Figure	4.4.3	-	The	trained	LSTM	Loss	

Figure	4.4.4	-	The	trained	LSTM	Accuracy	
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The	figures	in	figure	4.4.3	and	4.4.4,	suggests	that	the	risk	of	overfiung	is	low,	since	the	model	
seems	to	converge	in	the	training	and	valida(on	sets.	The	Recurrent	Network	was	able	to	classify	
the	first	class	par(ally.	Nevertheless,	the	ROC/AUC	metrics	show	that	we	got	some	false-posi(ves	
(20%	as	we	can	check	in	the	precision	for	class	1	in	table	4.4.2).	The	model	classified	the	majority	
of	the	gravita(onal	waves,	introducing	some	addi(onal	images	false-posi(ves.	

Table	4.4.5	-	The	predic(on	made	for	every	set	

Table	4.4.5	shows	that	all	the	chirps	were	correctly	iden(fied;	with	some	false	posi(ves.	

Table	4.4.6	-	The	(mes	for	the	op(mal	configura(on	

The	total	amount	to	train	and	to	predict,	as	shown	in	table	4.4.6,	has	reached	one	of	the	best	(mes	
from	the	four	analysed	algorithms.	

A	recurrent	network,	like	the	one	used	here,	provides	us	with	a	third	leg	to	where	to	sustent	some	
of	our	future	conclusions.	We	see	here	that	the	spectrograms,	in	spite	of	being	images,	retained	its	
(me	series	nature.	Which	opens	the	door	for	the	idea	that	we	can	use	some	of	these	techniques	
for	the	pre	classifica(on	of	the	raw	data	extracted	directly	from	the	interferometer’s	used	in	LIGO.	

No-GW GW GW	-	Identified

Validation	Set 1192 9 10

Test	Set 1169 10 10

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 7	minutes NA

Test	Set NA 1	sec.
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4.5	Light	GBM	Approach	

Hardware	and	configura6ons	pre-sets	

This	work	has	been	performed	over	a	home	hosted	virtual	machine	with	the	following	
configura(on:	

• 2	Cores	

• 16	GB	of	RAM	

• Linux	Ubuntu	19.0	(worksta(on)	as	Opera(ng	System	

Algorithm’s	models	and	evaluated	results	

Aber	analysing	the	dataset	and	understanding	the	images,	we	conjecture	that	the	present	dataset	
could	be	approached	in	a	very	systema(cal	form.	In	this	regards,	we	planned	to	test	the	
performance	of	an	algorithm’s	model	that	is	typically	more	suited	for	very	structured	data:	a	kind	
of	decision	trees	algorithm.	For	this	approach,	we	are	going	to	use	“Light	GBM”.	

The	first	model	configura(on	asserted	was	the	default	for	the	lightgbm 	library,	as	is	out	of	the	51

box.	The	default	hyper	parameters	were:	

• boos(ng_type	=	gbdt	-	Tradi(onal	Gradient	Boos(ng	Tree	

• num_leaves	=	31		-	Number	of	leaves	

• max_depth	=	-1			-	Maximum	allowed	deep	

• learning_rate	=	0.1	-	learning	speed	

• n_es(mators	=	100	-	Number	of	boosted	trees	to	fit	

• subsample_for_bin	=		200000	-	number	of	samples	for	construc(ng	bins	

• objec(ve	=	Binary	-	the	kind	of	classifier's	"op(mizer"	func(on.	

• class_weight	=	None	-	How	much	inference	has	every	class	type	to	predict.	

• min_split_gain	=	0	-	Minimum	loss	reduc(on	required	to	make	a	further	par((on	on	a	leaf	
node	of	the	tree.	

• min_child_weight	=	1e-3	–	Minimum	sum	of	instance	weight	(hessian)	needed	in	a	child	
(leaf).	

• min_child_samples	=	20	–	Minimum	number	of	data	needed	in	a	child	(leaf).	

• subsample	=	1	–	Subsample	ra(o	of	the	training	instance.	

• subsample_freq	=	0	–	Frequence	of	subsample,	<=0	means	no	enable.	

• colsample_bytree	=	1	–	Subsample	ra(o	of	columns	when	construc(ng	each	tree.	

• reg_alpha	=	0	–	L1	regulariza(on	term	on	weights.	
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• reg_lambda	=	0	–	L2	regulariza(on	term	on	weights.	

• random_state	=	None	–	Random	number	seed.		

• n_jobs	=	-1	–	Number	of	parallel	threads.	

• silent	=	True	–	Whether	to	print	messages	while	running	boos(ng.	

• importance_type	='split'	–	The	type	of	feature	importance	to	be	filled	into	
feature_importances_.	If	‘split’,	result	contains	numbers	of	(mes	the	feature	is	used	in	a	
model.	

Table	4.5.1	-	The	light	GBM	default	model	training	results	

In	the	table	4.5.1	we	see	that	the	ROC/AUC	metric,	which	measures	the	rela(on	of	true	posi(ves	
predicted,	gave	a	very	high	score	of	above	0.99.	The	precision,	recall	and	f1	showed	values	almost	
averaging	0.67	to	0.75.	Those	are	high	values,	which	could	suggest	that	the	model	is	classifying	the	
set	 preUy	well.	 As	 we	 can	 see	 in	 Table	 4.5.2,	 the	 training	 (mes	were	more	 than	 acceptable	 in	
comparison	with	the	(mes	of	the	other	experiments	explored	in	this	paper.	

Table	4.5.2	-	The	(mes	for	the	op(mal	configura(on	

Table	4.5.3	-	The	predic(on	made	for	every	set	

Label Precision Recall f1 #

0 1 1 1 1191

1 0.75 0.67 0.71 9

ROC/AUC 0.9991

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 5	minutes NA

Cross	Validation 13	minutes NA

Test	Set NA 1	sec.

No-GW GW GW	-	Identified

Validation	Set 1192 9 8

Test	Set 1169 10 9
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As	we	see	in	table	4.5.3,	the	model	is	capable	of	classifying	almost	all	the	gravita(onal	waves	found	
in	the	dataset.	However,	aber	careful	analysis	of	the	classified	images,	we’ve	detected	that	the	
metrics	remained	high	in	spite	of	detec(ng	some	false-posi(ves	and	one	less	chirp	in	every	case.	

We	aUributed	this	behaviour	to	the	fact	that	the	basic	hyper	parameter	configura(on	is	placed	for	
mul(	class	and	the	class	weight	is	ignored.	We	designed	a	second	model,	in	which	we	took	special	
care	to	reflect	the	complexi(es	this	dataset	has,	as	such:	

• objec(ve	=	“binary”	-	we	set	this	“explicitly”.	

• class_weight	=	“balanced”	-	which	means	it	will	give	the	due	weight	to	each	class	in	
rela(on	to	its	frequency.	

Besides	this,	as	we	see	in	table	4.5.2	the	training	and	fit	(mes	are	more	than	acceptable	for	tes(ng	
of	different	models	in	short	spams	of	(me.	

Table	4.5.4	-	The	light	GBM	balanced	model		training	results	

Table	4.5.5	-	The	(mes	for	the	light	GBM	balanced	model	configura(on	

Table	4.5.6	-	The	predic(on	made	for	every	set	for	light	GBM	balanced	model	

Label Precision Recall f1 #

0 1 1 1 1191

1 1 0.89 0.94 9

ROC/AUC 0.9860

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 5	minutes NA

Cross	Validation 16	minutes NA

Test	Set NA 1	sec.

No-GW GW GW	-	Identified

Validation	Set 1192 9 8

Test	Set 1169 10 9
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As	we	see	in	table	4.5.4	some	metrics	improved	against	the	“default	model”;	but	aber	analysing	
the	classified	images	we	confirmed	that	the	classifica(on	missed	one	signal	in	every	case	(see	table	
4.5.6),	but	didn’t	produced	any	false	posi(ves	(it	improved,	slightly	in	comparison	with	the	original	
model).	We	tried	with	other	two	models	that	balanced	the	two	classes.	As	shown	in	table	4.5.5,	
the	training	(mes	and	predict	performance	remained	more	or	less	the	same.	

The	third	model	simply	took	the	41	gravita(onal	waves	from	the	training	set	and	added	an	equal	
amount	of	shuffled	“other”	spectrograms,	for	a	total	training	set	of	82	images.	

Table	4.5.7	-	The	light	GBM	third	model	training	results	

Table	4.5.8-	The	(mes	for	the	light	GBM	third	model	configura(on	

Table	4.5.9	-	The	predic(on	made	for	every	set	for	light	GBM	third	model	

In	spite	the	fact	that	table	4.5.7	shows	most	metrics	to	fare	preUy	high	(above	0.90)	for	most	
except	for	the	f1,	the	analysis	over	the	iden(fied	images	is	conclusive:	this	model	increases	the	
amount	of	false	posi(ves	iden(fied	significantly	(we	can	see	this,	in	table	4.5.9).	The	(mes	for	
training,	as	we	can	check	in	table	4.5.8	are	more	or	less	the	same	ones	that	we	saw	before.	Our	
conjecture	is	that	the	set	has	a	low	amount	of	class-0	during	training	to	be	able	to	generalise	the	
model	well.	

We	tested	a	fourth	model,	that	repeated	the	41	“chirps”	un(l	it	reached	the	amount	of	“other	
signals”,	doubling	the	size	of	the	dataset.	This	will	take	into	account	the	whole	set	of	available	

Label Precision Recall f1 #

0 1 1 1 1191

1 1 0.89 0.94 9

ROC/AUC 0.9879

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 4	secs NA

Cross	Validation 16	minutes NA

Test	Set NA 1	sec.

No-GW GW GW	-	Identified

Validation	Set 1192 9 118

Test	Set 1169 10 135
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signals	involved	and	the	ones	we	already	know	as“gravita(onal	waves”	to	an	ar(ficially	balanced	
set	of	more	than	10.000	images.	The	idea	here,	was	to	balance	the	class-1	and	class-0	before	
training.	

Table	4.5.7	-	The	light	GBM	third	model	training	results	

Table	4.5.8-	The	(mes	for	the	light	GBM	third	model	configura(on	

Table	4.5.9	-	The	predic(on	made	for	every	set	for	light	GBM	third	model	

As	we	may	observe	in	table	4.5.7	and	4.5.9	this	model	arrangement	was	the	one	with	the	best	
performance	in	terms	of	training	(mes	and	iden(fica(on	of	“chirps”.	The	amount	of	available	
gravita(onal	waves	in	the	set	and	its	regularity	at	the	(me	of	iden(fica(on	of	them	seems	to	be	
the	key	issue	with	the	efforts	that	these	models	try	to	convey.	We	used	a	“decision	tree	algorithm”,	
thought	to	deal	with	more	structured	datasets	than	images.	Even	thought,	was	capable	of	
classifying	most	of	the	images	in	the	valida(on	and	test	dataset	right	aber	balancing	the	amount	of	
data	searched.	Besides	this,	in	comparison	with	the	former	models,	the	training	(mes	were	more	
or	less	the	same	for	every	tested	model	(see	table	4.5.8).	

In	this	algorithm,	we	choose	to	test	four	different	models,	and	described	the	whole	set	of	results	
we	achieved	with	different	approaches.	This	helped	us	to	understand:	

• That	the	whole	dataset,	as	spectrograms	were,	is	very	regular.	Such	as	it	can	be	correctly	
classified	by	a	decision	tree	kind	of	algorithm.	

Label Precision Recall f1 #

0 1 1 1 1191

1 0.80 0.89 0.84 9

ROC/AUC 0.9475

Convolution	Neural	Network Training	Times Predict	Times

Train	Set 7		minutes NA

Cross	Validation 16	minutes NA

Test	Set NA 1	sec.

No-GW GW GW	-	Identified

Validation	Set 1192 9 10

Test	Set 1169 10 10
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• For	any	given	model	the	imbalance	in	the	classes	affected	them	beyond	what	balancing	
capabili(es	could	be	provided	by	the	different	libraries.	It	is	key,	that	the	analyst	takes	his	
(me	to	imbue	the	dataset	and	the	model	with	his	domain	knowledge.	
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5.	Conclusions	

Let’s	start	with	a	comparison	of	the	metrics,	side	by	side,	and	by	algorithm,	for	the	best	models	
trained	for	every	approach.		

Table	5.1	-	The	metrics	compared	for	every	model	against	the	Test	set	

*(In	regards	of	table’s	5.1	ROC/AUC	metric	for	the	Gravity	Spy	column;	it	was	inferred	from	table	
4.1.1.3.)	

We	see	in	table	5.1,	that	Linear	SVC	got	the	most	approximated	results	to	the	ones	obtained	in	the	
Gravity	Spy	paper.	All	the	other	algorithms	aided	to	get	a	beUer	understanding	of	the	dataset	
nature.	One	addi(onal	important	remark	is	this:	the	Gravity	Spy’s	paper	achieved	these	results	
using	a	“Deep	Learning”	algorithm.	

Table	5.2	-	The	training	(mes	compared	across	algorithms	for	the	Test	set	

As	we	can	see	in	table	5.2,	the	Linear	SVC	training	(mes	are	very	low	in	comparison	with	all	the	
others	(we	do	not	know	the	(mes	for	Gravity	Spy	algorithm,	but	we	can	guess	they	could	be	in	the	
range	of	the	CNN	and	RNN).	For	the	performance	shown	in	table	5.1	these	numbers,	for	the	Linear	
SVC,	seems	to	be	very	good.	Taking	into	account	that,	strictly	speaking,	these	results	aren’t	directly	
comparable	to	the	ones	obtained	in	the	Gravity	Spy	paper	since	they	trained	a	CNN	over	different	
(mes	spans	(the	four	of	it:	0.5,	1,	1.5	and	2	seconds).	S(ll,	the	results	remains	very	relevant	in	the	
face	of	understanding	the	challenges	ahead	and	the	dataset	itself.	When	not,	to	give	a	glance	over	
the	limits	that	these	algorithms	could	present	within	the	presented	models	in	the	process	of	signal	
classifica(on	throughout	spectrograms.	

We	saw	the	performance	of	several	algorithms,	some	from	the	body	of	knowledge	of	machine	
learning	and	others	from	the	side	of	deep	learning.	We	saw	algorithms	oriented	to	classify	images	
that	performed	poorly	or	were	more	difficult	to	configure	than	more	structured	ones,	and	we	saw	
algorithms	that	where	supposed	to	fare	preUy	bad	with	un-structured	data	and	performed	well	

Class-1	
prediction

Gravity	Spy Linear	SVC CNN RNN Light	GBM

Precission 1 1 1 0.80 0.80

Recall 1 1 0.90 0.80 0.89

f1 NA 1 0.95 0.80 0.84

ROC/AUC 1	(approx.)* 1 1 0.87 0.94

Gravity	Spy Linear	SVC CNN RNN Light	GBM

Training	times Unknown 76	secs 20	minutes 7	minutes 7	minutes
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s(ll	with	this	dataset.	As	we	explained	in	appendix	A,	this	is	a	par(cular,	very	well	categorised	
dataset.	Most	of	the	images	are	centred,	the	140x170	matrix	is	regular	and	standardised,	the	(me	
series	complexity	was	constrained	to	a	span	of	half	a	second	and	we	worked	over	it	to	approach	
the	same	results	that	the	gravity	spy	paper	has	obtained.	We	were,	in	essence,	trespassing	“well	
known	ground”.	

The	linear	SVC	algorithm,	in	terms	of	training	(mes,	model	complexity,	and	general	metrics	got	the	
best	performance	in	all	the	relevant	dimensions.	

Some	of	the	ques(ons	we	intended	to	respond,	got	the	following	answers:	

• How	hard	might	be	for	some	of	the	presented	algorithms	to	iden6fy	a	gravita6onal	wave	given	
its	due	spectrogram?	

The	 SVMs	 where	 the	 best	 algorithm	 of	 the	 few	 we	 tested,	 having	 the	 lowest	 threshold	 for	
configura(on,	 training	 and	 classifica(on.	 The	 only	 caveat	 could	 be	 how	 much	 these	 metrics	
suppose	to	provide	a	model	that	has	overfiUed	the	dataset.	And	more	importantly,	if	such	a	model	
could	be	generalised	for	classifica(on	of	the	regular	signals	obtained	from	an	interferometer.	

• Can	we	approximate	the	classifica6on	of	the	same	dataset,	when	it	comes	to	“chirps”	to	what	
the	Gravity	Spy	has	achieved?	

As	we	saw	in	figure	4.1.1.3,	the	“Chirp”	has	ben	classified	with	precision,	recall	and	other	metrics	
with	a	“perfect”	score	of	one.	Some	of	our	algorithms	draw	 it	close	 to	 it,	and	 the	SVM	got	 it	as	
well.	However,	we	tried	to	increase	a	liUle	bit	of	the	study	done	for	the	original	work,	adding	some	
other	metrics,	like	ROC/AUC.	We	checked	that	the	overall	performance	was	preUy	high	as	well.	

• Can	we	validate	alterna6ve	ways	to	classify	“chirps”	that	weren’t	present	in	the	original	paper?	

We	tested	at	least	two	different	algorithms	that	weren’t	in	the	original	paper	and	fared	preUy	well	
in	binary-classifica(on.	

• Can	we	be	able	to	train	a	model	that	classifies	at	least	one	“Chirp”?	

Yes,	we	did	it.	

• It	is	the	same	to	classify	the	gravity	spy’s	dataset	with	a	deep	learning	technique	than	with	a	
more	tradi6onal	machine	learning	technique?	

No,	 it	 is	 not.	 The	 complexity	 to	 design	 a	 deep	 learning	 network,	 isn’t	 jus(fied	 by	 its	 overall	
performance	in	comparison	with	the	mode	“classical”	machine	learning	algorithms.	

• These	spectrograms	supposes	a	un-structured	dataset,	given	that	they	are	images,	or	its	data	is	
truly	regular?	

We	saw	that	algorithms	aimed	to	classify	more	structured	datasets,	 like	data	tables,	 fared	preUy	
high	 in	 their	metrics.	Giving	us	 an	 insight	 to	 the	nature	of	 the	dataset.	 These	waves,	 in	 spite	of	
being	flooded	by	noise,	seems	to	be	very	regular.	This	gives	us	the	 idea	that	the	scien(st	behind	
their	analysis	could	be	more	concerned	about	how	to	deal	with	“glitches”	and	their	effect	over	new	
discoveries	than	how	to	iden(fy	well	known	signals	(Even	if	they	came	along	in	a	“messy”	sample).	
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However,	in	spite	this,	these	analysis	were	performed	over	a	“controlled”	dataset.	The	real	dataset	
is	massive,	and	its	processing	is	challenging	even	for	well	known	signal’s	forms.	

• 	Can	we	arrive	to	some	of	the	same	conclusions	or	validate	some	of	the	conclusions	obtained	
by	the	gravity	spy	paper?	

The	original	paper	was	a	work	of	engineering;	it	was	looking	for	automa(c	classifica(on	of	most	of	
the	know	“glitches”	that	can	be	found	in	a	spectrogram	by	an	astrophysicist.	As	an	appliance,	the	
models	found	in	this	paper	could	be	trained	to	classify	every	glitch	against	all	others	using	a	binary	
classifier.	Iden(fying	each	single	kind	of	glitch,	when	they	appear.	Therefore,	opening	the	door	to	a	
different	 approach:	 classifying	 specific	 events	 instead	of	 all	 of	 them	at	 once.	 The	benefit	of	 this	
approach	 is	 that,	 in	 a	 prospec(ve	 “future”	 tool,	 the	 astrophysicist	 could	 try	 to	 “pick”	 a	 specific	
model	 to	 iden(fy	 each	 type	of	 specific	 event	 that	 he	might	 like	 to	pick.	 Thinking	 in	 a	 “sobware	
tool”,	 this	 can	 be	 an	 advantage.	 I	 imagine	 this	 tool	 coun(ng	with	 a	 classifier	 for	 every	 possible	
celes(al	event	ac(ng	as	a	“plugin”	of	this	sobware	tool,	aiding	 in	the	visualisa(on	of	the	signals.	
Allowing	the	astrophysicists	to	pick	and	choose	which	model	he	will	use,	to	try	to	filter	a	specific	
kind	of	event,	glitch	or	error.	Or	all	of	them,	at	once,	in	“parallel”	instead	of	in	“series”.	These	are	
just	specula(ons,	and	should	be	explored	in	a	different	work.	

This	research,	was	just	the	kick-off	for	a	deeper	future	analysis	over	these	kind	of	signals,	providing	
just	another	point	of	view	for	the	same	phenomena.	
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6.	Appendix	A	-	the	dataset	in	detail	

The	dataset	is	the	same	one	men(oned	in	the	“Gravity	Spy”	paper	that	serves	as	base	for	this	
research,	which	was	publicly	available	in	Zenodo’s	site .	We	used	for	this	work	a	subset	of	it	52

composed	of	two	files:	

• “trainingse_v1d1_metadata.csv”:	a	comma	separated	file	composed	by	the	hashed	GPS	(mes	of	
every	observa(on,	its	classifica(on.	This	file	has	many	columns,	but	there	are	a	few	which	are	
the	main	ones:	gravityspy_id,	label,	and	sample_type.		

• The	gravityspy_id	is	the	unique	10	character	hash	given	to	every	“Gravity	Spy”	sample.		

• The	label	is	the	string	label	of	the	sample	(its	classifica(on).		

• The	sample_type	indicates	whether	this	sample	was	used	in	the	paper	for	tes(ng,	training	
or	valida(ng	the	models.	

• “trainingset1v1d1.h5”:	an	.h5/HDF	format	for	hierarchical	mul(dimensional	scien(fic	data	
storage .	This	file	is	composed	by,	approximately,	40,000	rows	in	3.1	Gb.	Each	one	of	these	with	53

a	140x170	matricidal	representa(on	of	every	signal’s	spectrogram	organised	in	the	following	
hierarchical	way:	

• label	->	sample_type	->	gravityspy_id	->	“{(me	range}.png”	

(“Time	range”	being:	“0.5”,	“1.0”,	“2.0”	or	“4.0”)	

Given	the	scope	of	this	work,	we	extracted	the	spectrograms	for	the	“half	second”	observa(ons	
and	mapped	them	all	to	each	row	in	the	.csv	file;	pairing	the	image’s	matrices	with	the	30’s	fields	
and	keeping	just	the	following	columns:	

• label:	Air	compressor,	Blip,	Chirp,	Extremely	loud,	Helix,	Koi	fish,	Light	modula(on,	Low	
frequency	burst,	Low	frequency	line,	None	of	the	above,	No	glitch,	Paired	doves,	Power	
line	,	Repea(ng	blips,	ScaUered	light,	Scratchy,	Tomte,	Violin	mode	harmonic,	Wandering	
line,	Whistle		

• sample_type:	train,	test	or	valida(on	

• png:	the	140x170	float	matrix	that	represents	the	spectrogram	of	a	single	observa(on.	

Since	these	images	are	“glitchs”	classifica(ons,	we	do	know	that	there	are	some	that	resemble	
“gravita(onal	waves”.	As	far	as	we	could	tell,	these	are	the	ones	catalogued	as	“Chirps”.	They	are	
roughly	the	0.8%	of	the	dataset.	We	changed	there	labels	to	work	as	such:	

• Label:	1	and	0;	where	1	represents	“Gravita(onal	Wave”	and	0	“Non-Gravita(onal	Wave“.	

We	end	up	with	a	pandas’	data	frame	composed	of	these	three	columns.	Which	includes	the	
spectrograms	of	“candidate”	gravita(onal	waves.		

One	remarkable	note	about	the	140x170	matrices:	these	are	representa(ons	of	an	internal	
mathplotlib 	compa(ble	format.	In	this	format,	which	entails	the	usage	of	the	func(on	imshow ,	54 55

we	can	store	and	retrieve	the	main	spectrogram’s	image	in	a	float	matrix	of	140x170.	Such	a	matrix	
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can	be	represented	by	this	library	through	a	colormap.	These	color	maps	represents	the	RGB	pixel	
color	range	with	a	single	float	number	between	0	and	1 .	56

Summary	of	the	final	dataset	with	which	all	training	and	classifica(ons	will	be	made:	

• Label:	1	and	0,	where	1	represents	“Gravita(onal	Wave”	and	0	“Non-Gravita(onal	Wave“.	

• sample_type:	train,	test	or	valida(on	

• png:	the	140x170	float	matrix	that	represents	the	spectrogram	of	a	single	observa(on	that	
has	a	color	value	that	goes	from	0	to	1.	

The	Python	script	that	aUains	this,	could	be	found	in	hUps://github.com/exemar(nez/
gravita(onal_waves_classifiers/blob/master/gw/generate_gw_dataset.py	

We	stored	this	“tailored”	dataset	into	a	.pickle	file	for	later	use.	Therefore,	we	performed	other	
transforma(ons	in	order	to	work	with	the	different	libraries	and	adapt	the	sets	to	their	required	
input’s	format.	

The	whole	set	is	organised	in	the	following	way:	

• Training	set:	5587	images.	(41	“chirps”	waves)	

• Tes(ng	set:	1179	images	(10	“chirps”	waves)	

• Valida(on	set:	1200	images	(9	“chirps”	waves)	
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7.	Appendix	B	-	The	metrics	used	in	this	work	explained	

All	the	metrics	used	in	this	paper	got	a	mark	that	goes	from	zero	to	one;	zero	being	the	worse	
possible	escenario	and	one	the	highest	“perfect”	rank .	57

Accuracy 	58

This	metric	creates	two	local	variables,	total	and	count	that	are	used	to	compute	the	frequency	
with	which	predicted	labels	matches	true	labels.	Since	the	kind	of	classifica(on	we’ve	used	is	
binary	classifica(on,	all	the	models	used	the	Keras	“binary_accuracy”	keyword.		This	metric	is	the	
default	for	Deep	Learning	networks	in	the	Keras	/	Tensorflow	library.	When	not,	we	used	Root	
Mean	Squared	Error .	59

Loss 	60

The	purpose	of	loss	func(ons	is	to	compute	the	quan(ty	that	a	model	should	seek	to	minimise	
during	training.	We	can	write	our	own	loss	func(ons,	which	will	compute	a	value	between	0	and	1,	
the	lowest	the	value,	the	beUer.	There	are	many	loss	func(ons	which	outputs	a	“loss”	value.	The	
one	we	used	the	most	for	our	models	is	Binary	Cross	Entropy ,	as	it	is	suggested	in	the	Keras	61

library.	This	metric	is	the	default	for	Deep	Learning	networks	in	the	Keras	/	Tensorflow	library.	

ROC	/	AUC	

Receiver	Opera(ng	Characteris(c	/	Area	Under	the	Curve,	is	the	area	under	the	ROC	curve,	which	
represents	the	diagnos(c	skill	of	a	binary	classifier	system.	The	ROC	curve	is	created	by	ploung	the	
true	posi(ve	rate	against	the	false	posi(ve	rate.	The	higher	the	score,	the	beUer.	

Precision	

The	precision	is	the	amount	of	“correctly”	iden(fied	posi(ve	results	divided	by	the	number	of	all	
possible	posi(ve	results,	including	those	one	which	were	not	iden(fied	correctly.	In	essence:	

	 True	Posi(ves	/	(All	Real	Posi(ves)	+	(False	posi(ves)	

The	higher	the	score,	the	beUer.	

Recall	

The	recall	is	the	number	of	correctly	iden(fied	posi(ve	results	divided	by	the	amount	of	all	
samples	that	should	have	been	iden(fied	as	posi(ve.	In	essence:		

	 True	Posi(ves	/	All	Real	Posi(ves	

The	higher	the	score,	the	beUer.	

F1	
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The	F1	score	(also	F-score	or	F-measure)	is	a	measure	of	accuracy.	It	is	calculated	from	the	
precision	and	recall	of	the	test.	In	essence:	

The	higher	the	score,	the	beUer.	
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