Proyecto final de Grado:
People counting using visible and infrared images

dc.contributor.advisorParisi, Daniel
dc.contributor.authorBiagini, Martín
dc.contributor.authorFilipic, Joaquín
dc.dateinfo:eu-repo/date/embargoEnd/2021-11-15
dc.date.accessioned2021-04-07T14:57:14Z
dc.date.available2021-04-07T14:57:14Z
dc.date.issued2020-10-19
dc.description.abstract"We propose the use of convolutional neural networks that consider as input four channels images (RGB+IR) for counting and positioning people in images. Our data set was made of images based on photographs taken from a drone using a dual FLIR camera. Comparison between 3 (RGB) and 4 (RGB+IR) channels are studied for different lightning conditions. The four channel network performs better in all situations, particularly in cases of poor visible illumination that can be found in real night scenarios. The average precision of this network on a testing data set (independent from the training one) is approximately 1 cm in nding the positions of pedestrians (from 15 and 30 m altitude images) and 0.0001% in the relative counting error."en
dc.description.notesProyecto final Ingeniería Informática (grado) - Instituto Tecnológico de Buenos Aires, Buenos Aires, 2020es
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/3428
dc.language.isoenen
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectREDES NEURONALESes
dc.subjectPROCESAMIENTO DE IMAGENESes
dc.subjectPEATONESes
dc.subjectMULTITUDESes
dc.titlePeople counting using visible and infrared imagesen
dc.typeProyecto final de Gradoes
dspace.entity.typeProyecto final de Grado
itba.description.filiationFil: Biagini, Martín. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Filipic, Joaquín. Instituto Tecnológico de Buenos Aires; Argentina.
Archivos
Bloque original
Mostrando1 - 1 de 1
Miniatura
Nombre:
Informe.pdf
Tamaño:
8.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Proyecto_Final_Biagini
Bloque de licencias
Mostrando1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.6 KB
Formato:
Item-specific license agreed upon to submission
Descripción: