proyecto final de grado.page.titleprefix
Optimización de estrategias de contenido en medios digitales : un enfoque de algoritmos genéticos basado en clusters

dc.contributor.advisorRodriguez Varela, Juan Pablo
dc.contributor.authorGonzalez Crespo, Agustina
dc.contributor.authorMurtagh, Ines
dc.contributor.authorWeintraub, Sofía
dc.date.accessioned2024-10-16T16:10:21Z
dc.date.available2024-10-16T16:10:21Z
dc.date.issued2024
dc.description.abstractEl presente proyecto tiene como objetivo generar un reporte detallado sobre el análisis de interacciones en las notas de un diario digital argentino, utilizando técnicas avanzadas como análisis de sentimiento, LDA, clustering y algoritmos genéticos. Esta solución busca profundizar en los factores que influyen en la interacción con la audiencia, permitiendo al diario tomar decisiones informadas sobre la presentación y promoción de su contenido para aumentar las pageviews y la participación de los lectores. En el ámbito de los medios digitales, comprender qué elementos influyen en el éxito de las notas es crucial para captar y retener la atención de los lectores. Sin embargo, el diario enfrenta varios desafíos con los métodos tradicionales de análisis, como la falta de herramientas adecuadas para aprovechar sus datos, lo que dificulta la identificación de oportunidades de crecimiento y la maximización de pageviews. Estos factores pueden llevar a decisiones subóptimas en la presentación y promoción del contenido. Para abordar estos desafíos, se desarrolló un sistema basado en algoritmos genéticos que recomienda estrategias específicas para cada nota, analizando atributos como el sentimiento, el tipo de autor, el título, el subtítulo y si el título debe o no contener una pregunta retórica. Este sistema utiliza datos históricos para identificar patrones y ajustar las estrategias con el fin de maximizar las pageviews en diferentes clusters o segmentos de notas. El proyecto se desarrolló en varias etapas, incluyendo la integración y limpieza de datos del diario digital, asegurando la corrección de cualquier inconsistencia; la exploración profunda del conjunto de datos para identificar patrones y posibles irregularidades, utilizando técnicas descriptivas y visuales; la selección y ajuste de algoritmos de Machine Learning y optimización, el entrenamiento de modelos y la evaluación de su desempeño; y la implementación de las estrategias recomendadas, evaluando su impacto en los indicadores clave de desempeño (KPI) del diario. El proyecto culmina en una herramienta que proporciona estrategias optimizadas para mejorar las vistas de página en las notas del diario digital. Esta herramienta permitirá al diario ofrecer un análisis más eficiente de su contenido, facilitando la identificación de estrategias más efectivas para atraer a los lectores. El modelo de optimización mostró un aumento promedio, por cluster, del 8,19% en el crecimiento de pageviews y en la ganancia neta. También mostró una variación ponderada total del 8,17%, lo que refuerza la confianza en la efectividad de las estrategias implementadas. El desarrollo de esta herramienta no solo optimiza la gestión del contenido del diario digital, sino que también proporciona una base para futuras investigaciones y mejoras en el campo del análisis de datos en medios digitales. Además, la colaboración con el diario garantizará la relevancia y aplicabilidad de la solución en entornos reales, adaptándose a las necesidades específicas del mercado.
dc.identifier.urihttps://ri.itba.edu.ar/handle/123456789/4750
dc.language.isoes
dc.subjectMEDIOS DIGITALES
dc.subjectALGORITMOS
dc.subjectALGORITMOS GENÉTICOS
dc.subjectCLUSTERING
dc.subjectAPRENDIZAJE AUTOMÁTICO
dc.subjectOPTIMIZACIÓN
dc.subjectCONTENIDO EDITORIAL
dc.titleOptimización de estrategias de contenido en medios digitales : un enfoque de algoritmos genéticos basado en clusters
dc.typeProyecto final de Grado
dspace.entity.typeProyecto final de Grado
itba.description.filiationFil: Gonzalez Crespo, Agustina. Instituto Tecnológico de Buenos Aires, Argentina.
itba.description.filiationFil: Murtagh, Ines. Instituto Tecnológico de Buenos Aires, Argentina.
itba.description.filiationFil: Weintraub, Sofía. Instituto Tecnológico de Buenos Aires, Argentina.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
82.02 - Proyecto Final - Con el diario del lunes.pdf
Size:
4.9 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: