Ponencia en Congreso:
SAR Image segmentation based on multifractal features

dc.contributor.authorPacheco, Cristian
dc.contributor.authorGambini, Juliana
dc.contributor.authorDelrieux, Claudio
dc.date.accessioned2020-03-26T15:14:54Z
dc.date.available2020-03-26T15:14:54Z
dc.date.issued2019-09
dc.description.abstract"Synthetic Aperture Radar (SAR) imaging is based on airborne or satellite active microwave sensors that can capture the earth surface by emitting a signal and receiving the backscattered signal that forms the resulting image. Since microwave radiation is not interfered by sunlight and can pass through clouds, SAR imagery can be generated oblivious to weather and daylight conditions. However, the active nature of the imaging process determines that SAR images are contaminated by an inherent speckle noise that may degrade significantly the quality and usefulness of the images, and specific noise-removal processes may also filter out relevant textural information. In this article, we propose a texture-based method that can be applied for region segmentation in SAR imagery. The method is based on local analysis of the multifractal spectrum and a clustering procedure. The outcomes obtained both with synthetic and real SAR images show better region segmentation results than with state-of-the-art proposals."en
dc.identifier.isbn978-1728-123-63-9
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/1918
dc.language.isoenen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1109/RPIC.2019.8882173
dc.relationinfo:eu-repo/grantAgreement/CONAE/AO-SAOCOM/AR. Ciudad Autónoma de Buenos Aires
dc.subjectRADAR DE APERTURA SINTETICAes
dc.subjectPROCESAMIENTO DE IMAGENESes
dc.subjectANALISIS ESPECTRALes
dc.subjectSEGMENTACION DE IMAGENESes
dc.titleSAR Image segmentation based on multifractal featuresen
dc.typePonencias en Congresoses
dc.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePonencia en Congreso
itba.description.filiationFil: Pacheco, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
itba.description.filiationFil: Gambini, Juliana. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Gambini, Juliana. Universidad Nacional de Tres de Febrero; Argentina.
itba.description.filiationFil: Delrieux, Claudio. Universidad Nacional del Sur; Argentina.
Archivos
Bloque original
Mostrando1 - 1 de 1
Miniatura
Nombre:
Pacheco_2019_ponencia_INFORMATICA.pdf
Tamaño:
6.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Ponencia_Pacheco
Bloque de licencias
Mostrando1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.6 KB
Formato:
Item-specific license agreed upon to submission
Descripción: