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Abstract—Synthetic Aperture Radar (SAR) imaging is based
on airborne or satellite active microwave sensors that can capture
the earth surface by emitting a signal and receiving the backscat-
tered signal that forms the resulting image. Since microwave
radiation is not interfered by sunlight and can pass through
clouds, SAR imagery can be generated oblivious to weather and
daylight conditions. However, the active nature of the imaging
process determines that SAR images are contaminated by an
inherent speckle noise that may degrade significantly the quality
and usefulness of the images, and specific noise-removal processes
may also filter out relevant textural information. In this article,
we propose a texture-based method that can be applied for region
segmentation in SAR imagery. The method is based on local
analysis of the multifractal spectrum and a clustering procedure.
The outcomes obtained both with synthetic and real SAR images
show better region segmentation results than with state-of-the-art
proposals.

Index Terms—SAR segmentation, multifractal spectrum, tex-
ture analysis

I. INTRODUCTION

Image segmentation is aimed at partitioning an image into
different disjoint regions or segments. Each one is a set of
pixels assumed to represent a homogeneous region possessing
properties that differentiates it from other regions in the image.
These regions are uniform in some sense. For instance they
share some distinguishing criteria, such as luminance, color, or
local texture, among others. Synthetic Aperture Radar is a co-
herent high resolution RADAR imaging procedure extensively
used in remote sensing. Especially in research involving soil
monitoring, spaceborn SAR imagery is a valuable information
source, given that the available SAR satellite constellations
deliver high-resolution images with wide geographic coverage,
short revisit times, and in wavelenghts that provide meaning-
ful information about specific soil properties. Based on the
imaging technology used, SAR images can be of one, two
or four polarizations. However, several difficult tasks arise
when trying to match SAR-based information together with
other information sources, like optical imagery, field-based
measurements, simulation models, etc. SAR imagery posses
significant difficulties in segmentation tasks, due to the specific
noise contamination associated with the imaging process of
capture [1]. SAR imaging is the result of evaluating the

backscatter of a coherent electromagnetic source, and since
the vast majority of surfaces, synthetic or natural, are ex-
tremely rough on the scale of its wavelength, several different
backscatterers partially reflect the same electromagnetic pulse
within the range of the same pixel. The superimposition of
their amplitudes and phases results in strong random amplitude
fluctuations among cells of the same surface, which is known
as speckle noise. This noise contamination defies most of the
widespread segmentation algorithms based on local differential
operators, since these operators indeed amplify the speckle,
turning traditional segmentation methods ineffective.

A common approach is to remove the speckle by statistical
methods. The classic approach in the literature is the use of
the local density function in the categorization. Usually, each
image region has unique textural properties, called texture
signatures, that allows to detect regions more easily. Unfor-
tunately, most texture signatures found on literature are not
invariant to geometric or luminance transformations [2], [3].

For this reason, several SAR image segmentation ap-
proaches has been proposed. Morphological region based
image analysis, for instance, is based on a texture edge detector
which is used in combination with a watershed transform.
This typically produces an over-segmented image, in which the
regions are merged using the information generated by the tex-
ture edge detector. However, the final segmented image is still
over-segmented, and further processing, usually supervised, is
required [4]. Another proposals use an unsupervised segmenta-
tion algorithm for high-resolution monopolarized SAR images,
where texture analysis is performed using reduced contourlet
transform in sub-bands, applying after a mean shift clustering.
This process computes the number of texture regions and the
center of the label class. Then, the pixels are grouped by their
distance to the class center pixel [5]. However, the use of
the mean shift algorithm requires the user to find adequate
bandwidth parameters, and thus different values result in
different segmentations.

Recently, the use of multifractal properties gained
widespread application in the analysis of complex phenom-
ena, including texture analysis. In [6] the authors apply
a multifractal-based technique combined with mean-shift to



highlight boundaries between regions in a synthetic SAR
image. The regions are well recognized but the edges are too
wide and fuzzy. In [7], another method proposed combining
multifractal spectrum (MFS) analysis and the use of iterated
function systems. To highlight the edges of various textures,
the K-Means algorithm is applied to the MFS at each point,
showing adequate results on real SAR imagery at a very
high computational cost. In [8], the authors apply Bayesian
classification on the MFS of SAR imagery, taking advantage
of the theoretical links between multifractal theory and large
deviation distribution probabilities. This relationship enables a
sound estimation of a-priori probabilities of different classes.
In [9], multifractal analysis is performed over different SAR
images of the same oil spill in different moments, to detect
how the MFS of the oil spill changes over time.

In addition to MFS, other machine learning techniques
are also widely used in SAR image segmentation. In [10] a
partition clustering method is applied, which is regarded as
a combinatorial optimisation problem. The authors apply the
watershed transform to get initial small regions, and then an
optimal clustering centroid is found using a quantum-inspired
evolutionary algorithm, with which the final segmentation
results are found. Another segmentation method is based on
artificial immune systems (AIS), which consists en several
steps. First, a joint filter is designed, which combines max-
imum likelihood estimator and partial non local means filter.
Afterwards, the cluster centroids are found using a search
algorithm with variable length of chromosomes. The last step
is a multi-objective clustering paradigm in AIS and kernel
mapping for segmentation [11]. The boundaries of the detected
regions are very well formed and the segmented image is very
clean (no oversegmented image) but instead the regions appear
oversimplified and some important features are not detected.
An adapted version of simple linear iterative clustering (SLIC)
was proposed for SAR images. The distance measure of SLIC
is modified using a similarity ratio. This ratio is used to label
the pixels within the search areas, as a previous step of the
construction of superpixels. Afterwards, this similarity metric
is used in a clustering phase, which clusters the superpixels
into wider segments [12]. It shows an improvement over SLIC
but it is not better than the other methods with which it
is compared. Another segmentation method is based on K-
Means, median filter and Otsu thresholding. This method give
good results only when the regions have very different textures
[13]. K-Means is also used as a filter to obtain a simplified
image and then a morphological processing is done to remove
small meaningless clusters [14]. It works well at low/medium
scale of representation, but at higher scales it loses some
details due to the filtering preprocessing initially applied.

In this paper we propose a segmentation method for SAR
imagery based on local MFS features combined with K-Means.
Instead of using the full MFS as a pixel feature vector for
clustering, we characterize it with only four scalar values,
namely center, width, heigh, and symmetry, which provides
robust and precise texture characterization. The method is
tested with synthetic SAR imagery generated using the well

Fig. 1. Sentinel 2 image (acquired 05/20/2018, band 2 (490 nm)) showing
the location of the subset shown in Figure 2(a).

(a) Original image (b) Supervised segmen-
tation

(c) Watershed segmenta-
tion

(d) K-Means segmenta-
tion

(e) Watershed + K-Means
segmentation

Fig. 2. (a) Part of a IW-VV Level-1 Ground Range Detected Sentinel-
1 IW-VV image with four looks (covering the geographic area marked in
Fig. 1), sensed on 05/07/2018. (b) Ground truth manually segmented by
an expert geographer. (c) Watershed-based segmentation. (d) K-Means-based
segmentation. (e) K-Means over the watershed-based segmentation.

known G0I distribution, with much better segmentation results
as compared with traditional methods. Finally, we applied the
method over part of a real SAR image of which we have
assisted segmentation provided by an expert geographer, also
with remarkable results.

II. MATERIALS AND METHODS

In this work we focus on monopolarized SAR imagery
since images in this format are the most widespread SAR
images, typically in higher spatial resolutions and with archival
imagery available from earliest dates. Our primary interest
is on IW-VV Sentinel-1 imagery (interferometric wide with
vertical-vertical polarization). The purpose of the segmentation
is to identify regions that correspond to geographical zones
with specific soil desertification properties and to relate these
regions in SAR imagery with optical imagery thus providing
sensor information fusion. The area of interest is located in
the El Moro region, Chubut province, Argentina (see Fig. 1).
Low mountain landscapes, exhumed and covered peneplains,
and volcanic plains are predominant in this region. The un-



derlying structure is defined by large basement blocks with
inclined grabens, affected by the Andean orogeny (for more
details see [15]). These characteristics make difficult a proper
image segmentation and classification with optical imagery
because spectral classes are confused and a good inter-class
separability cannot be achieved.

With monopolarized SAR imagery, traditional segmentation
and classification methods perform poorly, as can be seen in
Fig. 2. Fig. 2(a) shows part of a IW-VV Sentinel-1 image
covering the geographic area marked in Fig. 1. Fig. 2(b)
shows the ground truth manually segmented by an expert
geographer. In Fig. 2(c), (d) and (e) the results of applying
respectively watershed-based segmentation, K-Means-based
segmentation, and K-Means over the watershed-based segmen-
tation are shown. It can be seen that these methods generate
a significant over-segmentation, with no correlation with the
actual supervised segmentation provided by the expert.

A. Synthetic Images

In order to model SAR images, the G0I distribution [16]
is a good option because it is able to characterize all kind
of textures that may possibly arise. G0I is governed by three
parameters: α, related to texture of the region, γ, related to the
brightness and L, the number of looks. Two synthetic images
are generated to test our method. The first one consists of
a foreground circle with G0I distribution parameters different
to the background. The second one is a lattice of sixteen
regions, where one of the G0I distribution parameters vary
from left to right and other from top to bottom. In most
cases, coarseness or smoothness of SAR images, caused by the
variability or uniformity of image tone, have textural properties
with valuable information for analysis.

B. Multifractal Spectrum

As stated in [17] the MFS is a vector of fractal dimensions
of some image measure µ (for example, the luminance). A
remarkable property of MFS is its invariance under illumi-
nation and affine geometric transformations. This invariance
makes MFS a robust textural feature as compared with texture
signatures. Let µ be a measure function on <2. For x ∈ <2,
denote with B(x, r) a ball of radius r centered at point
x. Then, the local density function, also called the Hölder
coefficient or singularity exponent, at the point x, is defined
as

d(x) = lim
r→0

logµ(B(x, r))

log r
(1)

This density function describes how the measurement µ satis-
fies locally a power law behavior. For any ε ∈ <, we define

Eε =
{
x ∈ <2 : d(x) = ε

}
(2)

That is, Eε is the set of all image points x with local density
equal to ε. The set Eε has a fractal dimension dim(Eε) defined
as

dim(Eε) = lim
r→0

logN(r, Eε)

− log r
(3)
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Fig. 3. Sample plot of a MFS spectrum, where the main properties of the
curve are highlighted: center of the curve, its max value (high), its amplitude
(width) and its symmetry (both areas of the curve, separated by the center
line, might be different).

where N(r, Eε) is the smallest number of sets of diameter less
than r that cover Eε. Thus, a point categorization is obtained
of the image with a MFS denoted as

f(ε) = {dim(Eε) : ε ∈ <} (4)

The MFS f(ε) defined by (4) is the natural extension of fractal
dimension.

C. A MFS Characterization

A typical MFS has the following properties (as shown in
Fig. 3):
Width The width of the curve is calculated as maximum

epsilon with f(ε) > 0 (εmax) minus the minimum epsilon
with f(ε) > 0 (εmin). The width of the MFS indicates
the range of local fractal dimensions in the image.

High The maximum value (f(ε)max) of the curve.
Center The ε that results in f(ε)max is called εcenter.
Symmetry The symmetry indicates the skew of the MFS. It

is calculated as (εmax−εcenter)/(εcenter−εmin). Values
above one arise when the the MFS is skewed towards the
left (as shown in the figure).

D. Local MFS Computation

The experiments in this paper are based on a direct compu-
tation of the MFS at each pixel. The density ε(x) is found at a
given pixel x by linear fitting of a scatter plot of logµ(B(x, r))
against log r. For each r value, µ(B(x, r)) can be computed
taking into account one of several pixel features found within
the ball of decreasing radius r. For instance the maximum
luminance, the luminance range, the accumulated luminance,
and many other. In the experiments presented here, µ(B(x, r))
evaluates the accumulated luminance by means of a prior
averaging filtering with a given window size. All these features
are non-decreasing monotonic functions of r, and the slope of
the linear fit in log-log space provides a good estimation of
ε(x).

In images, the possible values for ε(x) are within 0 (isolated
pixels) and 2 (dense regions), but these extreme values are
infrequent in SAR images. ε(x) values are discretized in a



set of intervals (the amount of MFS coefficients). For all the
pixels in the image whose ε(x) falls within a given interval,
a regular box counting (mono)fractal dimension is computed,
producing the final f(ε) MFS.

E. Image Segmentation

The image segmentation algorithm follows these steps,
using the software described in Table I:

1) A square window of a given size slides over the image.
The default size is 32 × 32 but the user can modify
this value (smaller windows yeld faster but less accurate
results).

2) For each window position, the MFS is calculated. The
amount of MFS coefficients (i.e., the amount of ε(x)
bins) and the pixel feature (in our case, cumulative
luminance over a given window size) are set by default
but can be redefined by the user.

3) For each MFS, the four features of the spectra (maxi-
mum, center, width, and symmetry, see section II-C) are
computed. For illustration purposes we represent these
features in four separate images.

4) The four features are squared and added together, gen-
erating the enhanced texture image.

5) The enhanced texture image is clusterized using the K-
Means algorithm (MFS cluster).

6) If only one cluster is found, then the averaging filter
window size is lowered, and the whole process is
repeated from step 2.

7) If required, a majority rule filter is applied over the MFS
cluster image to merge together small clusters and to
remove small artifacts (see below).

The rationale of this algorithm is to have only few texture
descriptors that can be clustered together without overseg-
mentation, and that these features are unlikely to be similar
when the speckle texture is different. If the spectrum of
each region has at least one of these feature with a different
value from other regions, then the regions can be segmented
apart. However, the MFS may depend on the pixel feature
used to compute the Hölder exponent (maximum luminance,
luminance range, accumulated luminance, etc.). if all the
values of the features of the spectrum curves of all the regions
are the same, the regions can not be separated with the current
pixel averaging parameter of the MFS algorithm, and a smaller
value of the pixel averaging parameter must be used, or an
increase in the spectrum size should be explored.

F. K-Means clustering and majority filter

The K-Means algorithm clusters a given data set in a
given number K of clusters [18]. K-Means is extensively
used in image processing for segmentation of color image
data or as a multilevel thresholding method. For instance in
[19], the performance of K-Means as a multilevel grayscale
thresholding is compared with the Otsu multilevel method.
Despite being equivalent in this sense, K-Means considered to
be more efficient and fast. The grayscale K-Means multilevel
thresholding starts with K random gray levels (cluster centroid

TABLE I
LIBRARIES AND APPLICATIONS USED IN THE RESEARCH

Library / Tool Description

Imfractal A library to compute (multi)fractal dimensions of images
written in Python.

GDAL Read and write of the satelital images.
ArrayFire General-purpose library that simplifies the process of

developing software that targets parallel and massively-
parallel architectures including CPUs, GPUs, and other
hardware acceleration devices.

SAGA GIS GIS platform for scientific analysis and modeling.
ESA SNAP Application that supports viewing, editing, and analysis

of geospatial data (specialized in Sentinel data).

initialization), within the n-bit grayscale range (0 ≤ K ≤
2(n−1)). Each image pixel is then assigned to the nearest
centroid, by minimum distance (asignment stage). New values
for the cluster centroids are computed as the average of each
cluster after the asignment (update stage). Assignment and
update stages are iterated until pixels no longer change their
assigned cluster. This procedure is guaranteed to converge to
the same stable result regardless of the initialization. Finally,
each class is characterized by its corresponding centroid.
Majority filter may be required in cases where this procedure
generates small intertwined clusters. This filter processes over
a sliding window of a given size (usually twice the size of the
MFS window) assigning to each pixel the class of the most
frequent class.

III. RESULTS

In Fig. 4(a), a synthetic image composed by a circular
foreground against a flat background is shown. Each region
is generated with different values of α and γ parameters of
G0I distribution, the background has α = −2 and γ = 1, the
foreground has α = −3 and γ = 2, and L = 4 in the whole
image. The MFS was computed at eleven ε(x) values, with
an averaging window size of six and a sliding window of
32 × 32. It can be observed in Figs. 4(b)–(f) that the MFS
features discriminate correctly foreground from background,
especially the center of the MSF (Fig.4(c)), since there appears
to be a strong relationship between the γ parameter of the G0I
distribution and the monofractal dimension of the synthetic
speckle.

In Fig. 5(a), a synthetic image with a grid of 16 regions
is shown. Each region is generated with different values of
the α and γ parameters of G0I distribution. By rows, the α
value varies from −4 to −7, and by columns the γ parameter
varies from 4 to 7 (see Table II). The MFS was computed at
50 ε(x) values, with an averaging window size of three and a
sliding window of 32 × 32. It can be observed that only the
MFS maximum exhibits meaningful results (see Fig. 5(c)).
The changes in γ parameter have a strong influence in the
monofractal dimension of the generated speckle. However,
this is barely noticeable with changes in the α value. After
K-Means is applied over the enhanced texture with sixteen
clusters, the regions start to be noticeable (each cluster is



(a) Original image (b) MFS asymme-
try

(c) MFS center (d) MFS maximum

(e) MSF width (f) Enhanced tex-
ture

(g) Clustering

Fig. 4. MFS processing of a synthetic image of a circle, where the background
has α = −2 and γ = 1 and the foreground has α = −3 and γ = 2 and four
looks. The processing was made with a MFS of eleven values and a averaging
of six pixels.

represented with a different color) (see Fig. 5(e)). Finally, a
majority filter is applied to the K-Means image, with a kernel
size three times bigger than sliding window to group small
clusters together. In order to measure the performance of the
method, we compute the Jaccard index for each segmented
image, given by:

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

(5)

where X is the ideal set of pixels with a given class and Y
is the segmentation result set of pixels with the same class.
It is a measure of similarity for the two sets of data, with
a range from 0 to 1. The higher the value, more similar
the two populations are. Table III shows the results. It can
be seen that the classes in the expected regions (Fig. 5(b))
and the segmented image (Fig. 5(f)) have a high correlation,
but the detection loses its accuracy as the α value increases
negatively. The results appear to be much more satisfactory
than the region segmentation provided by the current state of
the art (see Fig. 5(e)).

(a) Original image (b) Original re-
gions

(c) MFS maxi-
mum

(d) Enhanced tex-
ture

(e) Clustering (f) Majority filter

Fig. 5. Synthetic image with a grid of 4 × 4 regions, each with different
α and γ parameters (see Table II). (a) Original image. (b) Original regions.
(c) Grayscale representation of the Maximum MFS feature (see the text for
explanation). (d) Enhanced texture. (e) Results after K-Means clustering. (f)
Results after applying majority filter.

TABLE II
PARAMETERS USED IN EACH REGION OF THE GRID 4× 4 (SEE FIG. 5).

FORMAT USED (α, γ).

(-4,4) (-5,4) (-6,4) (-7,4)
(-4,5) (-5,5) (-6,5) (-7,5)
(-4,6) (-5,6) (-6,6) (-7,6)
(-4,7) (-5,7) (-6,7) (-7,7)

In Fig. 6 we show the results of processing the image of
Fig. 2(a) with the proposed workflow, using 50 ε(x) values
and an averaging filter of width two. It can be noticed
that, the centers, maxima, width and asymmetries are more
variate than with the synthetic images (see Figs. 6(a)–(d)).
The enhanced texture is clustered with K = 2, and then a
majority filter of width 6 is applied. The results (Fig. 6(g)) is
much more consistent with the ground truth provided by an
expert supervised segmentation (Fig. 2(b)).

TABLE III
JACCARD INDEXES OF THE THREE SEGMENTED IMAGES IN FIGURES 4(G),
5(F) AND 6(G). EACH INDEX IN GRID COLUMN CORRESPONDS TO EACH

REGION IN 5(B).

Fig. 4(g) Fig. 5(f) Fig. 6(g)

0.9181

0.7812 0.5590 0.6748 0.6768
0.8902 0.4845 0 0,7296
0.3732 0.3169 0 0.4198
0.2010 0 0 0

0.8034



(a) MFS center (b) MFS maximum

(c) MFS width (d) MFS asymmetry

(e) Enhanced texture (f) Clustering

(g) Majority filter

Fig. 6. Results of processing the Sentinel 1 image with two regions of the
Figure 2(a). The processing was made with a spectrum of fifty elements and
a averaging of two pixels.

IV. DISCUSSION, CONCLUSIONS, AND FURTHER WORK

We presented a SAR image segmentation method based
on local features of the multifractal spectrum, together with
clusterization. The performance of the method was analyzed
with two synthetic images with controlled speckle properties,
and with an actual SAR image over a geographic region
within which expert land cover recognition was available.
As can be seen in the results, the method is very sensitive
to γ changes. Besides, experimental results show that rising
the spectrum size (the amount of ε(x) evaluations per pixel)
produces an increase in the algorithm sensitivity to distinguish
apart similar α parameter values in the G0I distribution, and
that this parameter is strongly related to the local monofractal
dimension. The averaging filter and the sliding window sizes
both increase the spectrum accuracy. On the other hand, these
factors also increase significantly the computation times. For
this reason, we are currently devising quality measures that
can be evaluated without supervision, in a way such that
an exploration of these parameter values can be performed
automatically to achieve the best results with the minimum
computation.
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