ponencia en congreso.page.titleprefix
Automatic detection of reverse‑triggering related asynchronies during mechanical ventilation in ARDS patients using flow and pressure signals

dc.contributor.authorRodríguez, Pablo Oscar
dc.contributor.authorTiribelli, Norberto
dc.contributor.authorGogniat, Emiliano
dc.contributor.authorPlotnikow, Gustavo A.
dc.contributor.authorFredes, Sebastián
dc.contributor.authorFernández Ceballos, Ignacio
dc.contributor.authorPratto, Romina A.
dc.contributor.authorMadorno, Matías
dc.contributor.authorIlutovich, Santiago
dc.contributor.authorSan Román, Eduardo
dc.contributor.authorBonelli, Ignacio
dc.contributor.authorGuaymas, María
dc.contributor.authorRaimondi, Alejandro C.
dc.contributor.authorMaskin, Luis Patricio
dc.contributor.authorSetten, Mariano
dc.date.accessioned2020-03-26T14:32:13Z
dc.date.available2020-03-26T14:32:13Z
dc.date.issued2019
dc.description.abstract"Asynchrony due to reverse-triggering (RT) may appear in ARDS patients. The objective of this study is to validate an algo-rithm developed to detect these alterations in patient–ventilator interaction. We developed an algorithm that uses flow and airway pressure signals to classify breaths as normal, RT with or without breath stacking (BS) and patient initiated double-triggering (DT). The diagnostic performance of the algorithm was validated using two datasets of breaths, that are classified as stated above. The first dataset classification was based on visual inspection of esophageal pressure (Pes) signal from 699 breaths recorded from 11 ARDS patients. The other classification was obtained by vote of a group of 7 experts (2 physicians and 5 respiratory therapists, who were trained in ICU), who evaluated 1881 breaths gathered from recordings from 99 sub-jects. Experts used airway pressure and flow signals for breaths classification. The RT with or without BS represented 19% and 37% of breaths in Pes dataset while their frequency in the expert’s dataset were 3% and 12%, respectively. The DT was very infrequent in both datasets. Algorithm classification accuracy was 0.92 (95% CI 0.89–0.94, P < 0.001) and 0.96 (95% CI 0.95–0.97, P < 0.001), in comparison with Pes and experts’ opinion. Kappa statistics were 0.86 and 0.84, respectively. The algorithm precision, sensitivity and specificity for individual asynchronies were excellent. The algorithm yields an excellent accuracy for detecting clinically relevant asynchronies related to RT."en
dc.identifier.issn1387-1307
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/1916
dc.language.isoenen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10877-019-00444-3
dc.subjectTRASTORNOS DE LA RESPIRACIONes
dc.subjectRESPIRACION ARTIFICIALes
dc.subjectALGORITMOSes
dc.titleAutomatic detection of reverse‑triggering related asynchronies during mechanical ventilation in ARDS patients using flow and pressure signalsen
dc.typePonencias en Congresoses
dc.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePonencia en Congreso
itba.description.filiationFil: Tiribelli, Norberto. Complejo Médico de la Policía Federal Argentina Churruca Visca; Argentina.
itba.description.filiationFil: Gogniat, Emiliano. Hospital Italiano de Buenos Aires; Argentina.
itba.description.filiationFil: Plotnikow, Gustavo A. Sanatorio Anchorena; Argentina.
itba.description.filiationFil: Fredes, Sebastián. Complejo Médico de la Policía Federal Argentina Churruca Visca; Argentina.
itba.description.filiationFil: Fredes, Sebastián. Sanatorio de la Trinidad Mitre; Argentina.
itba.description.filiationFil: Fernández Ceballos, Ignacio. Hospital Italiano de Buenos Aires; Argentina.
itba.description.filiationFil: Pratto, Romina A. Sanatorio Anchorena; Argentina.
itba.description.filiationFil: Madorno, Matías. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Madorno, Matías. MBMED; Argentina.
itba.description.filiationFil: Ilutovich, Santiago. Sanatorio de la Trinidad Mitre; Argentina.
itba.description.filiationFil: San Román, Eduardo. Hospital Italiano de Buenos Aires; Argentina.
itba.description.filiationFil: Bonelli, Ignacio. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno"; Argentina.
itba.description.filiationFil: Guaymas, María. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno"; Argentina.
itba.description.filiationFil: Rodríguez, Pablo Oscar. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno"; Argentina.
itba.description.filiationFil: Raimondi, Alejandro C. Universidad de Buenos Aires. Facultad de Medicina; Argentina.
itba.description.filiationFil: Maskin, Luis Patricio. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno"; Argentina.
itba.description.filiationFil: Setten, Mariano.Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno"; Argentina.
itba.description.filiationFil: Setten, Mariano. Universidad del Salvador. Facultad de Medicina; Argentina.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rodríguez_2019_BIOINGENIERIA.pdf
Size:
834.06 KB
Format:
Adobe Portable Document Format
Description:
Ponencia_Rodríguez
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: