ponencia en congreso.page.titleprefix Training binary classifiers as data structure invariants
dc.contributor.author | Molina, Facundo | |
dc.contributor.author | Degiovanni, Renzo | |
dc.contributor.author | Ponzio, Pablo | |
dc.contributor.author | Regis, Germán | |
dc.contributor.author | Aguirre, Nazareno | |
dc.contributor.author | Frías, Marcelo | |
dc.date.accessioned | 2020-03-19T15:44:28Z | |
dc.date.available | 2020-03-19T15:44:28Z | |
dc.date.issued | 2019-05 | |
dc.description.abstract | "We present a technique to distinguish valid from invalid data structure objects. The technique is based on building an artificial neural network, more precisely a binary classifier, and training it to identify valid and invalid instances of a data structure. The obtained classifier can then be used in place of the data structure’s invariant, in order to attempt to identify (in)correct behaviors in programs manipulating the structure. In order to produce the valid objects to train the network, an assumed-correct set of object building routines is randomly executed. Invalid instances are produced by generating values for object fields that “break” the collected valid values, i.e., that assign values to object fields that have not been observed as feasible in the assumed-correct executions that led to the collected valid instances. We experimentally assess this approach, over a benchmark of data structures.We show that this learning technique produces classifiers that achieve significantly better accuracy in classifying valid/invalid objects compared to a technique for dynamic invariant detection, and leads to improved bug finding." | en |
dc.identifier.isbn | 978-1728-10-869-8 | |
dc.identifier.issn | 0270-5257 | |
dc.identifier.uri | http://ri.itba.edu.ar/handle/123456789/1911 | |
dc.language.iso | en | en |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/10.1109/ICSE.2019.00084 | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2015-2341/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2015-0586/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2015-2088/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2016-1384/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2017-1979/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2017-2622/AR. Ciudad Autónoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/ANR/INTER/18/12632675/FR. París/SATOCROSS | |
dc.subject | ESTRUCTURA DE DATOS | es |
dc.subject | INVARIANCIA | es |
dc.subject | REDES NEURONALES | es |
dc.title | Training binary classifiers as data structure invariants | en |
dc.type | Ponencias en Congresos | es |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Ponencia en Congreso | |
itba.description.filiation | Fil: Molina, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
itba.description.filiation | Fil: Molina, Facundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. | |
itba.description.filiation | Fil: Degiovanni, Renzo. Université du Luxembourg; Luxemburgo. | |
itba.description.filiation | Fil: Regis, Germán. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. | |
itba.description.filiation | Fil: Ponzio, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. | |
itba.description.filiation | Fil: Ponzio, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
itba.description.filiation | Fil: Aguirre, Nazareno. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. | |
itba.description.filiation | Fil: Aguirre, Nazareno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
itba.description.filiation | Fil: Frías, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | |
itba.description.filiation | Fil: Frías, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Molina_2019_ponencia_INFORMATICA.pdf
- Size:
- 806.68 KB
- Format:
- Adobe Portable Document Format
- Description:
- Ponencia_Molina
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.6 KB
- Format:
- Item-specific license agreed upon to submission
- Description: