artículo de publicación periódica.page.titleprefix
Object detection and statistical analysis of microscopy image sequences

dc.contributor.authorHurovitz, Sasha Ivan
dc.contributor.authorChan, Debora
dc.contributor.authorRamele, Rodrigo
dc.contributor.authorGambini, Juliana
dc.date.accessioned2022-11-04T18:47:09Z
dc.date.available2022-11-04T18:47:09Z
dc.date.issued2022
dc.description.abstract"Confocal microscope images are wide useful in medical diagnosis and research. The automatic interpretation of this type of images is very important but it is a challenging endeavor in image processing area, since these images are heavily contaminated with noise, have low contrast and low resolution. This work deals with the problem of analyzing the penetration velocity of a chemotherapy drug in an ocular tumor called retinoblastoma. The primary retinoblastoma cells cultures are exposed to topotecan drug and the penetration evolution is documented by producing sequences of microscopy images. It is possible to quantify the penetration rate of topotecan drug because it produces fluorescence emission by laser excitation which is captured by the camera. In order to estimate the topotecan penetration time in the whole retinoblastoma cell culture, a procedure based on an active contour detection algorithm, a neural network classifier and a statistical model and its validation, is proposed. This new inference model allows to estimate the penetration time. Results show that the penetration mean time strongly depends on tumorsphere size and on chemotherapeutic treatment that the patient has previously received."
dc.identifier.issn1577-5097
dc.identifier.urihttps://ri.itba.edu.ar/handle/123456789/3967
dc.language.isoen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.5565/rev/elcvia.1482
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/X.0/
dc.subjectSEGMENTACION DE IMAGENESes
dc.subjectRETINOBLASTOMAes
dc.subjectAPRENDIZAJE AUTOMATICOes
dc.titleObject detection and statistical analysis of microscopy image sequences
dc.typeArtículos de Publicaciones Periódicases
dc.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typeArtículo de Publicación Periódica
itba.description.filiationFil: Hurovitz, Sasha Ivan. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Chan, Debora. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina.
itba.description.filiationFil: Ramele, Rodrigo. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Gambini, Juliana. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Gambini, Juliana. Universidad Nacional de Tres de Febrero; Argentina.

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Articulo_Hurovitz
Size:
3.21 MB
Format:
Adobe Portable Document Format
Description:
Articulo_Hurovitz
Loading...
Thumbnail Image
Name:
Hurovitz_2022_ING_INFORMATICA_OA.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: