ArtĂculo de PublicaciĂłn PeriĂłdica: Model selection: using information measures from ordinal symbolic analysis to select model subgrid-scale parameterizations
Model selection: using information measures from ordinal symbolic analysis to select model subgrid-scale parameterizations
dc.contributor.author | Pulido, Manuel | |
dc.contributor.author | Rosso, Osvaldo A. | |
dc.date.accessioned | 2019-08-14T19:20:45Z | |
dc.date.available | 2019-08-14T19:20:45Z | |
dc.date.issued | 2017 | |
dc.description.abstract | "The use of information measures for model selection in geophysical models with subgrid parameterizations is examined. Although the resolved dynamical equations of atmospheric or oceanic global numerical models are well established, the development and evaluation of parameterizations that represent subgrid-scale effects pose a big challenge. For climate studies, the parameters or parameterizations are usually selected according to a root-mean-square error criterion that measures the differences between the model-state evolution and observations along the trajectory. However, inaccurate initial conditions and systematic model errors contaminate root-mean-square error measures. In this work, information theory quantifiers, in particular Shannon entropy, statistical complexity, and Jensen–Shannon divergence, are evaluated as measures of the model dynamics. An ordinal analysis is conducted using the Bandt–Pompe symbolic data reduction in the signals. The proposed ordinal information measures are examined in the two-scale Lorenz-96 system. By comparing the two-scale Lorenz-96 system signals with a one-scale Lorenz-96 system with deterministic and stochastic parameterizations, the study shows that information measures are able to select the correct model and to distinguish the parameterizations, including the degree of stochasticity that results in the closest model dynamics to the two-scale Lorenz-96 system." | en |
dc.identifier.issn | 0022-4928 | |
dc.identifier.uri | http://ri.itba.edu.ar/handle/123456789/1710 | |
dc.language.iso | en | en |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/10.1175/JAS-D-16-0340.1 | |
dc.relation | info:eu-repo/grantAgreement/ANPCyT/PICT/2015-2368/AR. Ciudad AutĂłnoma de Buenos Aires | |
dc.relation | info:eu-repo/grantAgreement/CONICET/PIP/11220120100414CO/AR. Ciudad AutĂłnoma de Buenos Aires | |
dc.subject | PARAMETRIZACION | es |
dc.subject | TEORIA DE LA INFORMACION | es |
dc.subject | MODELOS MATEMATICOS | es |
dc.subject | MODELOS CLIMATICOS | es |
dc.title | Model selection: using information measures from ordinal symbolic analysis to select model subgrid-scale parameterizations | en |
dc.type | ArtĂculos de Publicaciones PeriĂłdicas | es |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | ArtĂculo de PublicaciĂłn PeriĂłdica | |
itba.description.filiation | Fil: Pulido, Manuel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. | |
itba.description.filiation | Fil: Pulido, Manuel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. | |
itba.description.filiation | Fil: Rosso, Osvaldo A. Instituto TecnolĂłgico de Buenos Aires; Argentina. | |
itba.description.filiation | Fil: Rosso, Osvaldo A. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. | |
itba.description.filiation | Fil: Rosso, Osvaldo A. Universidad de los Andes; Chile. | |
itba.description.filiation | Fil: Rosso, Osvaldo A. Universidade Federal de Alagoas; Brasil. |
Archivos
Bloque original
1 - 1 de 1
- Nombre:
- Pulido_2017_embargo12meses.pdf
- Tamaño:
- 1.84 MB
- Formato:
- Adobe Portable Document Format
- DescripciĂłn:
- Articulo_Pulido
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.6 KB
- Formato:
- Item-specific license agreed upon to submission
- DescripciĂłn: