artículo de publicación periódica.page.titleprefix
Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network

dc.contributor.authorMartin, Rafael F.
dc.contributor.authorParisi, Daniel
dc.date.accessioned2020-06-26T20:35:59Z
dc.date.available2020-06-26T20:35:59Z
dc.date.issued2020-02
dc.description.abstract"Data-driven simulation of pedestrian dynamics is an incipient and promising approach for building reliable microscopic pedestrian models. We propose a methodology based on generalized regression neural networks, which does not have to deal with a huge number of free parameters as in the case of multilayer neural networks. Although the method is general, we focus on the one pedestrian - one obstacle problem. Experimental data were collected in a motion capture laboratory providing high-precision trajectories. The proposed model allows us to simulate the trajectory of a pedestrian avoiding an obstacle from any direction. Together with the methodology specifications, we provide the data set needed for performing the simulations of this kind of pedestrian dynamic system."en
dc.identifier.issn0925-2312
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/2230
dc.language.isoenen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2019.10.062
dc.relationinfo:eu-repo/grantAgreement/PID/2015-0003/AR. Ciudad Autónoma de Buenos Aires
dc.relationinfo:eu-repo/grantAgreement/ITBACyT/2018-42/AR. Ciudad Autónoma de Buenos Aires
dc.subjectPEATONESes
dc.subjectDINAMICAes
dc.subjectSIMULACIONes
dc.subjectNAVEGACIONes
dc.subjectREDES NEURONALESes
dc.subjectINTELIGENCIA ARTIFICIALes
dc.titleData-driven simulation of pedestrian collision avoidance with a nonparametric neural networken
dc.typeArtículos de Publicaciones Periódicases
dc.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typeArtículo de Publicación Periódica
itba.description.filiationFil: Martin, Rafael F. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Parisi, Daniel. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Parisi, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9_Martin_Parisi_NEUCOM.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Artículo_Martin