artículo de publicación periódica.page.titleprefix
Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization

dc.contributor.authorKyburg, Felix E.
dc.contributor.authorRojas, Sergio
dc.contributor.authorCaloa, Victor M.
dc.dateinfo:eu-repo/date/embargoEnd/2022/01/31
dc.date.accessioned2022-05-12T15:33:40Z
dc.date.available2022-05-12T15:33:40Z
dc.date.issued2021
dc.description.abstract"We model incompressible Stokes flows with an adaptive stabilized finite element method, which solves a discretely stable saddle-point problem to approximate the velocity-pressure pair. Additionally, this saddle-point problem delivers a robust error estimator to guide mesh adaptivity. We analyze the accuracy of different discrete velocity-pressure pairs of continuous finite element spaces, which do not necessarily satisfy the discrete inf-sup condition. We validate the framework's performance with numerical examples."en
dc.identifier.issn0029-5981
dc.identifier.urihttp://ri.itba.edu.ar/handle/123456789/3883
dc.language.isoenen
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1002/nme.6912
dc.relationinfo:eu-repo/grantAgreement/EU/H2020/777778/EU. Bruselas
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectMETODO DE ELEMENTOS FINITOSes
dc.subjectFLUJO INCOMPRESIBLEes
dc.titleIncompressible flow modeling using an adaptive stabilized finite element method based on residual minimizationen
dc.typeArtículos de Publicaciones Periódicases
dc.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typeArtículo de Publicación Periódica
itba.description.filiationFil: Kyburg, Felix E. Instituto Tecnológico de Buenos Aires; Argentina.
itba.description.filiationFil: Rojas, Sergio. Curtin University; Australia.
itba.description.filiationFil: Caloa, Victor M. Curtin University; Australia.
itba.description.filiationFil: Caloa, Victor M. Commonwealth Scientific and Industrial Research Organisation; Australia.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kyburg_2021_MATEMATICA_embargo12meses.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
Artículo_Kyburg
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: