Presentaciones a Congresos
Permanent URI for this collection
Browse
Browsing Presentaciones a Congresos by Subject "SISTEMAS NO LINEALES"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
ponencia en congreso.listelement.badge A characterization of iISS for time-varying impulsive systems(2018-12) Haimovich, Hernán; Mancilla-Aguilar, J. L."Most of the existing characterizations of the integral input-to-state stability (iISS) property are not suitable for time varying or switched (nonlinear) systems. Previous work by the authors has shown that in such cases where converse Lyapunov theorems for stability are not available, iISS-Lyapunov functions may not exist. In these cases, the iISS property can still be characterized as the combination of global uniform asymptotic stability under zero input (0-GUAS) and uniformly bounded energy input-bounded state (UBEBS). This paper shows that such a characterization remains valid for time-varying impulsive systems, under an appropriate condition on the number of impulse times on each finite time interval."ponencia en congreso.listelement.badge On bounding a nonlinear system with a monotone positive system(2017-12) Haimovich, Hernán; Mancilla-Aguilar, J. L."How to bound the state vector trajectory of a nonlinear system in a way so that the obtained bound be of practical value is an open problem. If some norm is employed for bounding the state vector trajectory, then this norm should be carefully selected and the state vector components suitably scaled. In addition, practical applications usually require separate bounds on every state variable. Bearing this context in mind, we develop a novel componentwise bounding procedure applicable to both real and complex nonlinear systems with additive disturbances. A bound on the magnitude of the evolution of each state variable is obtained by computing a single trajectory of a well-specified 'bounding' system constructed from the original system equations and the available disturbance bounds. The bounding system is shown to have highly desirable properties, such as being monotone and positive. We provide preliminary results establishing that key stability features are preserved by the bounding system for systems in triangular form."