Proyectos finales (grado)
Permanent URI for this collection
Browse
Browsing Proyectos finales (grado) by Subject "AGENTES TERAPÉUTICOS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
proyecto final de grado.listelement.badge Avances hacia nanosistemas híbridos para la liberación controlada de agentes terapéuticos : nanopartículas mesoporosas de sílice y sistemas Pluronic F-127-Colágeno(2024-03-14) Teubal, Manuel; Heredia, Matías; Ostapchuk, Gabriel; Catalano, PaoloLas enfermedades crónicas son de las causas de muerte más prevalentes en el mundo, representando uno de los mayores problemas de la salud pública. Estas enfermedades pueden requerir tratamientos administrados por el paciente, tales como inyecciones o administración oral, donde sólo un 50 % se adhiere correctamente, causando a ́un más complicaciones de salud. Estos tratamientos pueden fallar por el lado del paciente, debido no recordar la toma del medicamento, percepciones de incomodidad o aversión a inyecciones. Por otro lado, el tratamiento puede ser menos efectivo debido a la falta de sincronización entre el efecto del agente y los procesos biológicos del organismo. Esto resalta la necesidad de sistemas de aplicación única que promuevan la liberación prolongada y a demanda de agentes terapéuticos en el tratamiento de enfermedades crónicas. La presente investigación se enfoca en el desarrollo de nanosistemas híbridos compuestos por nanopartículas mesoporosas de sílice y nanopartículas huecas mesoporosas de sílice, envueltas en una matriz de colágeno y copolímero Pluronic F-127, para lograr la liberación controlada de agentes terapéuticos destinados al tratamiento de enfermedades crónicas. El proyecto se centra en la caracterización y desarrollo de nanocompósitos poliméricos para el tratamiento de enfermedades crónicas. Se buscó evaluar la capacidad de carga y la cinética de liberación con el fin de asegurar un tratamiento más eficaz y un mayor cumplimiento terapéutico. Por su simplicidad, bajo costo y características compartidas con fármacos como el ibuprofeno por ejemplo, se utilizo la fluoresceína como agente terapéutico modelo. La síntesis de las nanopartículas se logró a través del método Stöber, modificando las concentraciones de los reactivos y las condiciones de reacción para perfeccionarlas a los parámetros deseados. La remoción del surfactante fue un paso crucial previo al ahuecamiento de las nanopartículas mesoporosas de sílice, obteniendo así las nanopartículas huecas mesoporosas de sílice de tamaño comparable y baja polidispersión. El proceso de ahuecamiento por etapas demostró una mejor remoción del núcleo interno y un depósito de sílice en la carcasa externa, resultando en un marcado aumento de tamaño entre ambas nanopartículas, mientras que el ahuecamiento continuo resultó en partículas más homogéneas. Se logró aumentar la carga superficial de las nanopartículas a m ́as de +30mV a través de su funcionalización, destacando que las nanopartículas huecas mesoporosas de sílice requirieron un mayor volumen de APTES para alcanzar una carga superficial similar a las nanopartículas mesoporosas de sílice debido a su mayor área superficial. Las isotermas de adsorción de fluoresceína evidenciaron la capacidad de carga de las partículas dependiente de su potencial de superficie, ajustándose al modelo de Freundlich, mostrando una adsorción en multicapa, coherente con su estructura mesoporosa. Además, en experimentos de binding se confirmó la correcta adsorción observada en las isotermas, revelando una liberación prolongada del 40 % para las nanopartículas huecas mesoporosas de sílice y 65 % para las nanopartículas mesoporosas de sílice después de 24 horas de comenzado el experimento. Por otro lado, se logró obtener un ensamblado de Pluronic F-127-colágeno, que permitió evaluar la liberación prolongada de fluoresceína en condiciones fisiológicas.proyecto final de grado.listelement.badge Optimización en el desarrollo de microreservorios para liberación pulsátil y controlada de agentes terapéuticos(2023) Cereigido, Diego; Catalano, Paolo Nicolás; Villarruel, Luis; Didonato, AndrésEl presente trabajo final consiste en la optimización del sistema de liberación de un sistema microelectromecánico (MEMS) para liberación pulsátil y controlada de agentes terapéuticos. Algunas patologías, como la deficiencia de la hormona de crecimiento, requieren de tratamientos crónicos con esquemas terapéuticos pulsátiles para alcanzar una alta eficacia. Actualmente las formulaciones disponibles no pueden cumplir adecuadamente con estos requerimientos. Por otro lado, por tratarse de métodos de administración manuales, puede ocurrir una disminución de la adherencia al tratamiento, lo que perjudica la eficacia del tratamiento. Es por ello que surge la necesidad de desarrollar sistemas que permitan la liberación de principios activos de manera controlada en el tiempo. Los MEMS podrían ser diseñados y fabricados para cumplir con estas funciones. En este contexto, el proyecto marco plantea el desarrollo de un microdispositivo implantable con microreservorios para la hormona de crecimiento, que puedan ser abiertos de manera selectiva. Al comienzo de este proyecto final, el microdispositivo ya había superado la etapa de diseño y simulación, y debía enfrentarse a los desafíos de la etapa de fabricación. El objetivo de este proyecto es la optimización de la fabricación del sistema de liberación del microdispositivo. Este consiste en microreservorios, generados en una oblea de silicio monocristalino nitrurada y compuestos por una membrana metálica suspendida (formada por un depósito de Pt-Ti-Pt) y contactos eléctricos de cobre para garantizar su apertura de manera selectiva mediante la aplicación de una diferencia de potencial eléctrico. El trabajo se desarrolló en la sala limpia del Departamento de Micro y Nanotecnología ubicado en el Centro Atómico Constituyentes. Para la microfabricación y optimización del sistema de liberación se hizo uso de diversas técnicas de microfabricación. Estas son: fotolitografía, evaporación de metales, recocido térmico rápido, sputtering, electroplating, ataque por iones reactivos (RIE), y ataque húmedo con hidróxido de potasio (KOH). Para evaluar los resultados obtenidos, se emplearon técnicas de caracterización como la microscopía óptica, perfilometría óptica y mecánica, y elipsometría. Durante el transcurso del proyecto, se fabricó iterativamente el dispositivo con el objetivo de optimizar la fabricación de las estructuras mencionadas. Para esto fue necesario realizar calibraciones y optimizaciones de las distintas técnicas de fabricación, y sortear diferentes obstáculos y dificultades encontradas. Uno de estos obstáculos fue el uso de fotomáscaras de filmina de acetato para las etapas de fotolitografía, lo que conducía a resultados con mala definición y alineación de las estructuras. Se fabricaron nuevas fotomáscaras en cuarzo, de modo de mejorar la morfología de las estructuras. A su vez, se optimizó el proceso de evaporación de metales para conseguir depósitos del espesor deseado. Por otro lado, se evaluó el efecto del tratamiento térmico sobre la resistividad de las membranas metálicas de liberación, de manera de caracterizar dicho valor y encontrar el tratamiento óptimo. Por último, se evaluaron diferentes concentraciones de KOH y obleas nitruradas de distinto fabricante, con el objetivo de optimizar el procedimiento de ataque húmedo para la generación de los microreservorios. Se obtuvieron exitosamente las estructuras mencionadas (membranas metálicas, contactos de cobre, y reservorios) que conformarán el microdispostivo, mediante la utilización de las fotomáscaras diseñadas, alcanzando mejoras sustanciales respecto de las fabricadas con filminas de acetato. Esto es: disminución de irregularidades, deformaciones y defectos en los bordes. Se optimizó el espesor de las membranas metálicas de Pt-Ti-Pt y se caracterizó la resistividad de las mismas, además de evaluar el tratamiento térmico óptimo que minimice dicha resistividad. Por último, se avanzó de manera apreciable en la fabricación de los microreservorios. El proyecto planteó numerosos desafíos y dificultades en las primeras etapas de fabricación del microdispositivo que pudieron ser enfrentados. En tal sentido, las mejoras implementadas, como ser el rediseño de fotomáscaras, la caracterización de la resistividad de las membranas y el trabajo en la generación de reservorios, resultan de suma importancia a la hora de poder continuar con la fabricación del dispositivo final.