Browsing by Author "Gilbert, E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
artículo de publicación periódica.listelement.badge Curing process of benzoxazine systems. An experimental and theoretical study(2019-09) Gilbert, E.; Forchetti, A.; Pesoa, Juan I.; Berkenwald, Emilio; Spontón, Marisa E.; Estenoz, Diana"A mathematical model that simulates the curing process of benzoxazine (Bz) systems is presented. The model predicts the conversion, gel point and Tg along the curing process, and considers the diffusional limitations to mass transfer due to the increase in the system viscosity along the process. This model can be used to select an appropriate combination of time and temperature in order to obtain a material with pre-specified properties. The theoretical parameters were adjusted with experimental data: conversion, weight-average molecular weight, weight fraction of solubles and Tg. The Bz based on bisphenol A and aniline (BzBA) was used to adjust the model. The curing kinetic of this Bz was followed by FTIR, SEC and DSC, considering five different curing conditions. A very good agreement between experimental and simulated values was observed, even when curing is carried out under different temperatures profiles."artículo de publicación periódica.listelement.badge The organic chemistry behind the recycling of poly(bisphenol-A carbonate) for the preparation of chemical precursors: A review(2022-07) Gilbert, E.; Polo, Mara Lis; Maffi, Juan M.; Guastavino, Javier Fernando; Vaillard, Santiago Eduardo; Estenoz, Diana"Production and consumption of poly(bisphenol-A carbonate) resins are seeing a worldwide increase. However, their usage lifetimes are short and their final disposition as landfills pose environmental and health risks, due to the release of toxic bisphenol-A (BPA). The development of alternative recycling routes is thus becoming subject of increasing interest. In this review, the main recycling processes of poly(bisphenol-A carbonate) are described and critically compared, with special focus on the chemical mechanisms. While mechanical recycling is possible, the end products are restricted only to polymer blends, whose main mechanical properties decrease with each compounding cycle. In turn, chemical recycling can produce BPA monomer and a variety of byproducts that can be used in different industries, including the polymeric field, as synthesis reagents and precursors. The operation conditions of each method are reviewed, as well as the different results obtained in terms of product yield, composition, selectivity and reaction times. Reaction mechanisms are described in detail and a view on the usability of each end product is offered."