Browsing by Author "Gil Garbagnoli, Francisco"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
póster.listelement.badge Desarrollo de un alcoholímetro de bajo costo utilizando Arduino(2017) Blanc, María Cecilia; Gil Garbagnoli, Francisco; Hasbani, Jonathan Eliel; Mosquera, Valeria; Schröder Langhaeuser, Julia"La meta de este proyecto es diseñar y desarrollar un alcoholímetro de bajo costo que tenga una precisión comparable a la de los alcoholímetros comerciales. Para dicho propósito, se implementó un programa en Arduino capaz de relacionar el nivel de tensión obtenida de un sensor con el nivel de alcohol en sangre."proyecto final de grado.listelement.badge Diseño de aplicativo mobile para la mejora y/o recuperación de las capacidades cognitivas(2021-06-04) Gil Garbagnoli, Francisco; Rohleder, Matías"El objetivo del proyecto fue el diseño de una aplicación mobile para su utilización en tratamientos de rehabilitación / estimulación enfocada en pacientes con discapacidades cognitivas y/o motoras."ponencia en congreso.listelement.badge Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters(2018) Zorgno, Ivanna; Blanc, María Cecilia; Oxenford, Simón; Gil Garbagnoli, Francisco; D'Giano, Carlos; Quintero-Rincón, Antonio"Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals."póster.listelement.badge Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters(2018) Zorgno, Ivanna; Blanc, María Cecilia; Oxenford, Simón; Gil Garbagnoli, Francisco; D'Giano, Carlos; Quintero-Rincón, Antonio"Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals."