Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gil Garbagnoli, Francisco"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    póster.listelement.badge
    Desarrollo de un alcoholímetro de bajo costo utilizando Arduino
    (2017) Blanc, María Cecilia; Gil Garbagnoli, Francisco; Hasbani, Jonathan Eliel; Mosquera, Valeria; Schröder Langhaeuser, Julia
    "La meta de este proyecto es diseñar y desarrollar un alcoholímetro de bajo costo que tenga una precisión comparable a la de los alcoholímetros comerciales. Para dicho propósito, se implementó un programa en Arduino capaz de relacionar el nivel de tensión obtenida de un sensor con el nivel de alcohol en sangre."
  • Loading...
    Thumbnail Image
    proyecto final de grado.listelement.badge
    Diseño de aplicativo mobile para la mejora y/o recuperación de las capacidades cognitivas
    (2021-06-04) Gil Garbagnoli, Francisco; Rohleder, Matías
    "El objetivo del proyecto fue el diseño de una aplicación mobile para su utilización en tratamientos de rehabilitación / estimulación enfocada en pacientes con discapacidades cognitivas y/o motoras."
  • Loading...
    Thumbnail Image
    ponencia en congreso.listelement.badge
    Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters
    (2018) Zorgno, Ivanna; Blanc, María Cecilia; Oxenford, Simón; Gil Garbagnoli, Francisco; D'Giano, Carlos; Quintero-Rincón, Antonio
    "Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals."
  • Loading...
    Thumbnail Image
    póster.listelement.badge
    Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters
    (2018) Zorgno, Ivanna; Blanc, María Cecilia; Oxenford, Simón; Gil Garbagnoli, Francisco; D'Giano, Carlos; Quintero-Rincón, Antonio
    "Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals."

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback