Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fascio, Mirta"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    artículo de publicación periódica.listelement.badge
    Absorption of siderite within a chemically modified poly(lactic acid) based composite material for agricultural applications
    (2018-05) García, Nancy L.; Fascio, Mirta; Errea, María Inés; Dufresne, Alain; Goyanes, Silvia Nair; D'Accorso, Norma Beatriz
    "Iron is an essential micronutrient for higher plants. Although abundant in most soils, Fe3+ is not available for plant uptake, because of its poor solubility. Ferrous sulfate is a fertilizer used for crops but, Fe2+ is readily oxidized to the plant-unavailable ferric form. It is therefore important to provide Fe2+ to plants, minimizing the loss of this nutrient by oxidation in Fe3+. This paper reports the development of a composite material consisting of a matrix (PLARAM), obtained by the chemical modification of poly(lactic acid), capable of retaining ferrous carbonate (siderite) within PLARAM (PLARAMFe). From the matrix, Fe2+ is released into the soil, enhancing its bioavailability. PLARAM and PLARAMFe films were obtained and their water wettability was studied. One side of the films was more hydrophilic than the other, turning this material attractive as a protective film when it is necessary to avoid loss of humidity."

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize