Browsing by Author "Dalto, Juliana F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
artículo de publicación periódica.listelement.badge Dopamine neurotransmission in the VTA regulates aversive memory formation and persistence(2022-09-01) Castillo Díaz, Fernando; Dalto, Juliana F.; Pereyra, Magdalena; Medina, Jorge Horacio"Dopamine (DA) neurons in the ventral tegmental area (VTA) innervating several limbic and neocortical regions of the mammalian brain have long been implicated in motivation, rewarding and aversive behaviors, and memory processing. Recently, we demonstrated that somatodendritic release of DA in the VTA regulates the formation and maintenance of appetitive long-term memories (LTM). However, less is known about the impact of DA neurotransmission in the VTA on aversive LTM. Here, we describe the modulation of negative-valence memories by D1/D5-type DA (D1R)-receptor-mediated neurotransmission in the VTA. As aversive stimuli elicit both active and passive behavioral responses, we used two single-trial aversive training protocols: inhibitory avoidance task and conditioned place aversion. We bilaterally microinfused SCH23390, an antagonist of D1R, into the VTA immediately after training and found that DA neurotransmission in the VTA modulates LTM consolidation and persistence of aversive experiences. Together with previous findings demonstrating that D1R mediated DA neurotransmission in the medial prefrontal cortex and hippocampus is involved in the formation and persistence of LTM for aversive events, our present results indicate that memory processing of environmental stimuli with negative-valence depends on the integration of information mediated by D1R activation in both the VTA region and in selected downstream target areas."artículo de publicación periódica.listelement.badge Time‑dependent inhibition of Rac1 in the VTA enhances long‑term aversive memory : implications in active forgetting mechanisms(Scientific Reports, 2023-08-19) Dalto, Juliana F.; Medina, Jorge H.The fate of memories depends mainly on two opposing forces: the mechanisms required for the storage and maintenance of memory and the mechanisms underlying forgetting, being the latter much less understood. Here, we show the effect of inhibiting the small Rho GTPase Rac1 on the fate of inhibitory avoidance memory in male rats. The immediate post-training micro-infusion of the specific Rac1 inhibitor NSC23766 (150 ng/0.5 µl/ side) into the ventral tegmental area (VTA) enhanced long-term memory at 1, 7, and 14 days after a single training. Additionally, an opposed effect occurred when the inhibitor was infused at 12 h after training while no effect was observed immediately after testing animals at 1 day. Control experiments ruled out the possibility that post-training memory enhancement was due to facilitation of memory formation since no effect was found when animals were tested at 1 h after acquisition and no memory enhancement was observed after the formation of a weak memory. Immediate post-training micro-infusion of Rac1 inhibitor into the dorsal hippocampus, or the amygdala did not affect memory. Our findings support the idea of a Rac1-dependent time-specific active forgetting mechanism in the VTA controlling the strength of a long-term aversive memory.