Browsing by Author "Cruz Hidalgo, R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
artículo de publicación periódica.listelement.badge Effect of physical distancing on the speed–density relation in pedestrian dynamics(2021-04) Echeverría Huarte, Iñaki; Garcimartín, Ángel; Parisi, Daniel; Cruz Hidalgo, R.; Martín-Gómez, César; Zuriguel, Iker"We report experimental results of the speed-density relation emerging in pedestrian dynamics when individuals keep a prescribed safety distance among them. To this end, we characterize the movement of a group of people roaming inside an enclosure varying different experimental parameters: (i) global density, (ii) prescribed walking speed, and (iii) suggested safety distance. Then, by means of the Voronoi diagram we are able to compute the local density associated to each pedestrian, which is afterward correlated with its corresponding velocity at each time. In this way, we discover a strong dependence of the speed-density relation on the experimental conditions, especially with the (prescribed) free speed. We also observe that when pedestrians walk slowly, the speed-density relation depends on the global macroscopic density of the system, and not only on the local one. Finally, we demonstrate that for the same experiment, each pedestrian follows a distinct behavior, thus giving rise to multiple speed-density curves."artículo de publicación periódica.listelement.badge Simulating competitive egress of noncircular pedestrians(2017-04) Cruz Hidalgo, R.; Parisi, Daniel; Zuriguel, Iker"We present a numerical framework to simulate pedestrian dynamics in highly competitive conditions by means of a force-based model implemented with spherocylindrical particles instead of the traditional, symmetric disks. This modification of the individuals’ shape allows one to naturally reproduce recent experimental findings of room evacuations through narrow doors in situations where the contact pressure among the pedestrians was rather large. In particular, we obtain a power-law tail distribution of the time lapses between the passage of consecutive individuals. In addition, we show that this improvement leads to new features where the particles’ rotation acquires great significance."