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Abstract. We study the eect of internal and external noise on the phenomenon 
of resistive switching. We consider a non-harmonic external driving signal and 
provide a theoretical framework to explain the observed behavior in terms of 
the related Fokker–Planck equations. It is found that internal noise causes an 
enhancement of the resistive contrast and that noise proves to be advantageous 
when considering short driving pulses. In the case of external noise, however, 
noise only has the eect of degrading the resistive contrast. Furthermore, we 
find a relationship between the noise amplitude and the driving signal 
pulsewidth that constrains the persistence of the resistive state. In particular, 
results suggest that strong and short driving pulses favor a longer persistence 
time, an observation that may find applications in the field of high-integration 
high-speed resistive memory devices.
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1. Introduction

In recent years, several technologies have emerged as candidates to replace the cur
rent generation of non-volatile memories. A promising technology, known as resistive 
random access memories (RRAMs), relies on the storage of digital data on distinct
resistive states, and is based on the phenomenon of resistive switching, i.e. the ability 
displayed by certain materials to switch between resistive states when subjected to an 
external electric field. Such behavior provides a physical realization of a memristor, 
first introduced by Chua [1]. The potential application of resistive switching to high-
density information storage motivates the investigation of the influence of noise in such 
devices. Stotland and Di Ventra were the first to present an analysis of the influence 
of noise on memristors [2] and ensuing work by our group further explored the inter-
play between noise and resistive switching [3–6]. In [2], the influence of additive white
Gaussian noise was studied using a simple model of a memristor put forth by Strukov 
et al [7]. By means of numerical simulations, it was shown that the contrast between
low- and high-resistive states is enhanced by the addition of internal noise when a weak 
harmonic driving signal is applied, and an explanation of the observed phenomenon in 
terms of stochastic resonance was provided.

In this paper, we go back to the work by Stotland and Di Ventra and extend it in 
several directions. First, motivated by the application of resistive switching for RRAMs, 
we consider a non-harmonic (pulsed) driving signal and provide a theoretical explanation
of the observed behavior in terms of the related Fokker–Planck (FP) equation. Then,
we consider the case of external noise, i.e. noise added to a weak driving signal, a case 
of practical interest as it deals with fluctuating and/or noisy driving signals, where we 
also oer a qualitative understanding by resorting to the corresponding FP equation. 
Although we have already dealt with these problems in [3], only intuitive and incomplete
explanations were provided and a deeper understanding is obtained by studying the FP 
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equations. We must also note that Slipko et al [8] have already used the FP equation to
study the behavior of a memristor-capacitor circuit driven by white Gaussian noise.

2. A simple model of a memristor

Strukov et al [7] introduced a one-dimensional model of a memristor consisting of a
sample of length L divided into two doped/undoped regions with oxygen vacancies. 
Each region has a resistance which depends on its doping level and the net sample 
resistance is computed as the resulting in-series value of both regions. Letting [ ]∈z L0,
denote the position of a well-defined boundary between the two regions, resistance is 
calculated as

( ) ( )= − −R z R R R z L/ ,off off on

where >R Roff on. As oxygen vacancies drift under the influence of an externally applied
voltage U(t), the position z of the boundary moves. The motion of the boundary can
be modeled by

( ) ( )
( )

µ
=

z

t

R

L
F z

U t

R z

d

d
,on

where μ is the average dopant mobility. F(z) is a function that serves two purposes.
On the one hand, it accounts for the experimentally observed nonlinearities. On the 
other hand, letting F(0)  =  F(L)  =  0 implicitly constrains the boundary to move in
[0, L]. In this work, we use one of the simplest functions proposed in the literature [2, 7]:
F(z)  =  1  −  (2z/L  −  1)2.

It is sometimes convenient to work with dimensionless variables. Let A be some 
suitable normalizing voltage. Then, defining v  =  U/A, x  =  z/L, ( )δ = −R R R R/off on off,

and ( )τ µ= AR L R t/on
2

off , the resistance in a memristor can be written as

( ) ( )δ= −R x R R x1 ,off� (1)
and the new state variable [ ]∈x 0, 1  is governed by the equation

( ) ( )
τ δ

τ=
−

−
x x x

R x
v

d

d

4 1

1
. (2)

Integrating equation (2) we find that

( )
( ( ))

( )τ
τ

τ
−

=
β

x

x
g

1
,

1/� (3)

where ( )β δ= − −R1 1 and

{ }( ) ( )
( ( ))

( )∫τ =
− β

τ
g

x

x
v t t

0

1 0
exp 4 d ,

1/ 0
� (4)

where we have assumed that ( )≠x 0 1. From equation  (2), it is readily seen that the
solution is trivial and ( )τ =x 1 for all ⩾τ 0 when x(0)  =  1. Hence, ( )τx  can be found as
a solution to the equation
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( ) ( ) ( ) ( )τ τ τ τ+ − =β β βx g x g 0.� (5)

It is easy to see that in the particular case where β = 2, ( )τx  can be found as the
solution of a quadratic equation. In [9], Cai et al present an analytical study of the
behavior of the state variable x. Biolek et al [10] also derive an explicit expression for
the resistance. In our case, we only need to point out the dependence of the solution 
on the initial condition x(0).

3. Internal noise

In this section, we consider the case in which equation  (2) is modified by additive
white Gaussian noise ( )η τ  such that ( )η τ = 0 and ( ) ( ) ( )η τ η τ δ τ τ= Γ −′ ′ . We shall
understand the resulting equation as an Ito stochastic dierential equation (see [11]).
Furthermore, we consider a non-harmonic driving voltage ( )τv  consisting of a sequence
of pulses of duration τb: → → →+ − + �1 1 1

Figure 1 shows the temporal evolution of ⟨ ⟩x  for several noise intensities, τ = 1b ,
and δ =R 3/4. Observe that the maximum mean value of the state variable x reaches 
after a  +1 pulse is applied decreases as the noise intensity increases, as noted by circles 
and arrows. The usual way of quantifying the contrast between low (Rl) and high (Rh)
resistance states is through the electric pulse induced resistance (EPIR) ratio given
by ( )−R R R/h l l. As can be observed in figure 2, for certain pulse durations, the EPIR
ratio is maximized at a given noise intensity. We must note that results in figure 2 are 
dierent from those presented in [3]. The dierence is due to a floating-point rounding
error in the algorithm used in our previous work.

Results in figure 1 can be understood by resorting to the related FP equation

{ }( ) ( ) ( ) ( )
τ δ

τ τ τ
∂
∂
= −

∂
∂

−
−

+
Γ ∂
∂

P

x

x x

R x
v P x

x
P x

4 1

1
,

2
, ,

2

2� (6)

where ( )τP x,  is the probability density of ( )τx . Assuming that τb is large enough, we can
work with the stationary solution to this equation, i.e. ( ) ( )τ ≈P x P x, b s . Letting V denote
the pulse amplitude, the stationary distribution can be obtained from the solution to 
the equation

{ }( ) ( ) ( )
δ

∂
∂

=
∂
∂ Γ

−
−x

P x
x

x x

R x
VP x

2 4 1

1
.s s

2

2� (7)

Integrating once,

( ) ( )
δ
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∂
−
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=
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−=

P
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P

x

x x

R x
VP x

2 4 1

1
,s s
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s

0
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where we assume that the right-hand side is zero at x  =  0 (i.e. ( )→ =xP xlim 0x s0 ). Since
x is constrained to the interval [0, 1], the net flow of probability across its borders has
to be zero. Thus, we assume reflecting barriers at 0 and 1 (see, e.g. [11]) and, hence,

= =∂
∂ =

∂
∂ =

0
P

x x

P

x x0 1

s s . We obtain
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( ) ( )⎧
⎨
⎩

⎫
⎬
⎭∫ δ
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Γ
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P x V
y y

Ry
yexp

2 4 1

1
d ,s

x

0
� (9)

where ⟨ ( )⟩τx b  can be computed by numerical integration. Figure 3 shows a good agree-
ment between simulations of the stochastic dierential equation and results obtained 
through the stationarity hypothesis. As readily seen from equations (3)–(5), the deter-
ministic evolution of ( )τx  depends strongly on the initial condition. One of the eects of
noise is to erase the memory of the initial condition. Indeed, as expected, the station-
ary probability distribution in equation (9) does not depend on the initial condition.

Figure 1.  Temporal evolution of the state variable x for several noise intensities, 
τ = 1b , and δ =R 3/4. Results from the average of 1000 noise realizations.

Figure 2.  EPIR ratio versus internal noise intensity for δ =R 3/4. Solid and dashed 
lines correspond to quasi-analytic predictions based on the stationary probability 
distribution (equation (9)) and the deterministic solution (equations (3)–(5)) for
low noise intensities. Triangles: results of the average of 1000 realizations of the 
stochastic dierential equation.
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However, the time required to reach stationarity does depend on the initial condition 
(first term in equation (6)). In general, such convergence time decreases as the noise
intensity increases, i.e. a higher noise intensity erases the memory of the initial condi-
tion faster.

We can try and use the stationary hypothesis to compute the minimum value 
attained by x after a  −1 pulse is applied, i.e. ( )τx 2 b . Figure 4 shows ⟨ ( )⟩τx 2 b  as a func-
tion of the noise intensity (the stationary probability is similar to that in equation (9)).
The behavior for low noise intensities deviates from that predicted by the stationary 
distribution. Indeed, for the given initial condition (⟨ ( )⟩τx b  in figure 3, the mean value of

Figure 3.  ( )τx b  versus noise intensity for x (0)  =  0.9 and δ =R 3/4. Approximation
using the stationary distribution (solid line) and by integration of the stochastic
dierential equation (triangles).

Figure 4.  ( )τx 2 b  versus noise intensity for x (0)  =  0.9 and δ =R 3/4. Approximation
using the stationary distribution (solid line), approximation using the deterministic
solution (dashed), and the result of integrating the stochastic dierential equation
(triangles).
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x at the end of the previous  +1 pulse), the pulse duration τb is not long enough to allow
for the convergence to stationarity and higher noise intensities are required to erase the 
memory of the initial condition. Moreover, for a low noise intensity, the value of ⟨ ( )⟩τx 2 b

can be approximated by the deterministic solution in equations (3)–(5).
Using the predictions based on the stationary probability distribution and the deter-

ministic solution (for low noise intensities) in figures 3–4, we can estimate the EPIR
ratio. The result is shown in figure 2 and agrees very well with simulations. Intuitively, 
the main eect of adding noise is to lower the value of x at the end of the first  +1 pulse 
in such a way that ⟨ ( )⟩τx b  is smaller than that expected from the deterministic solution.
For low noise intensities, this ‘new’ initial condition of the dierential equation  for
τ τ> b results in a mean value of ( )τx 2 b  smaller than that in the noiseless case and, as
such, leads to an enhanced EPIR ratio. For higher noise intensities, the values of the
state variable x attained at the end of each pulse are independent of the initial condi-
tions and determined by the stationary solution of the corresponding FP equation.
Furthermore, as Γ increases the distribution in equation (9) broadens, ⟨ ⟩xs  tends to 1/2,
and the EPIR ratio approaches zero.

Let us now return to equations  (8)–(9). From equation  (8), it is easy to see that
Ps(x) is increasing (decreasing) when V  >  0 (<0). Thus, Ps(x) attains its maximum at
x  =  1 when a positive input is applied, and at x  =  0 when the input voltage is negative. 
Evaluating the integral in the exponent of equation (9), we find

( ) ( ) ( ) ( )
( )

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

δ δ δ δ δ
δ

∝
Γ

− + + − −
P x

V Rx Rx R R Rx

R
exp

8 2 2 2 1 log 1

2
.s 3� (10)

Although this expression is not complex, we can get a better insight by assuming that 
δ �R 1. In this case, ( )δ δ− ≈−R x R xlog 1  and

( )
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

≈
δΓ

NP x
x

exp ,s R

V

2

4

� (11)

where N  is a normalizing constant. From this expression, it is easy to see that the sta-
tionary distribution is almost uniform when 

| |
�δΓ 1

R

V4
, and that it peaks at the extremes 

of the interval when �δΓ 1
R

V4| |
. Although one may expect the dispersion of the distribu-

tion to depend on the ratio Γ V/| |, we find the influence of δR to be nontrivial. Indeed,
it is as if the noise intensity, measured by Γ, is eectively scaled by δR. Since δR is a 
measure of the highest possible contrast between the low- and high-resistance states of 
the memristor, we must conclude that a higher contrast leads to a higher uncertainty 
on the resistance attained under the influence of internal noise. Equation (11) allows us
to compute approximations to the stationary mean value of x,

{ }⟨ ⟩
⎡
⎣⎢

⎤
⎦⎥

δ
δ

≈
Γ

Γ
−Nx

R

V

V

R8
exp

4
1 .s� (12)

Using this result together with equation (1), we can estimate the EPIR ratio when the
stationary hypothesis holds
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where the superscript  +  (−) denotes the stationary values when the input voltage is

positive (negative). In the limit of large noise, ≈ ≈+ − 1N N . Moreover, when �δΓ 1
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As expected, the EPIR ratio decreases with increasing noise intensity. This behav-
ior agrees qualitatively with results shown in figure 2. For a low noise intensity and 

| |
�δΓ 1

R

V4
, ⟨ ⟩≈+x 1, ⟨ ⟩≈−x 0 and, hence, ⟨ ⟩ ( )δ δ≈ −R REPIR / 1 . It is readily seen that this

is the value observed in figure 2 for small Γ and τ = 2b .
Let us now consider the opposite case where δ ≈R 1. Letting δ =R 1 in equation (9),

it is easy to see that

( )
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

≈ ΓNP x
x

exp .s

V

2

4

� (14)

Therefore, equations derived for δ �R 1 are also valid in this case if we simply substi-
tute δ =R 1.

Summarizing, whenever the pulse length τb is long enough in order to assume that
that stationary distributions are reached, no gain in the EPIR ratio can be obtained. 
However, if τb is shorter (e.g. τ = 1b  in figure 2), then there is an optimal noise intensity
for which the EPIR ratio is maximized. As such, from an application point of view, 
internal noise may be advantageously used to make faster memory devices based on 
resistive switching.

4. External noise

In this section we consider the case of external noise, i.e. the case in which the state 
variable x is governed by the equation

( ) ( ( ) ( ))
τ δ

τ η τ=
−

−
+

x x x

R x
v

d

d

4 1

1
, (15)

where ( )η τ  is white Gaussian noise as before. Figure 5 shows the mean EPIR ratio as a
function of noise intensity for several pulse widths (x(0)  =  0.9). It is observed that there
is no optimal noise intensity that maximizes the EPIR ratio.
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An analytic expression for the probability distribution of ( )τx  in equation (15) can
be found. Indeed, it is easy to see that ( )τx  in equation (15) must satisfy equations (3)
and (5) where ( )τg  is re-defined as

{ }( ) ( )
( ( ))

( ( ) ( ))∫τ η=
−

+
β

τ
g

x

x
v t t t

0

1 0
exp 4 d .

1/ 0
� (16)

Let us call ( )τy  the integral in the exponential. Since ( )τy  is normal with mean ( )τv  and
variance τΓ , its probability density function, ( )τf y, , is well known. From equation (3),
we can write ( )τy  as

( ) ( ) ( ( )) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠τ = − − −β β

− −
y x x x xlog 1 log 1 0 0 .

1
4

1
4

1
4

1
4

Calling ( )τFy  and ( )τFx  the cumulative distribution functions of ( )τy  and ( )τx , respec-
tively, then

( ) ( ) ( ( )) ( )( ) ( ) ⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠
⎟= − − −τ τ β β

− −
F x F x x x xlog 1 log 1 0 0 ,x y

1
4

1
4

1
4

1
4� (17)

where we assumed a deterministic initial condition x(0). Taking the derivative with
respect to x, we find the probability density for ( )τx

( )
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4 1
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1
4

1
4

� (18)

Figures 6 and 7 show the probability distributions of ( )τx b  (after the  +1 pulse)
and ( )τx 2 b  (after the  −1 pulse), respectively. The initial condition is x(0)  =  0.5, and 
δ =R 3/4. As expected, the distribution broadens as Γ increases. Moreover, for high
noise intensities, ⟨ ( )⟩ ⟨ ( )⟩τ τ≈ ≈x x 2 0.5b b  and, therefore, the EPIR ratio is approximately
zero. The behavior of the EPIR ratio for other noise intensities can be understood by 

Figure 5.  EPIR ratio as a function of external noise intensity for δ =R 3/4 and 
x (0)  =  0.9. Results correspond to the average of 1000 realizations.
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observing the distributions corresponding to Γ = 1 in figures 6 and 7. Note that, in 
this case, ⟨ ( )⟩τ ≈x 2 0.7b . The state variable x does not ‘return’ to its initial condition
x(0)  =  0.5. The excursion of x values is smaller than that in the deterministic case and,
thus, the EPIR ratio decreases. We must observe that, although the probability distri-
butions seem to attain a non-zero value at the borders x  =  0 and x  =  1 for some values 
of the noise intensity, this is only an eect due to the resolution of the numerical data, 
as the probability distributions drop abruptly to zero. Indeed, from equation (15) the
rate of change of the state variable tends to zero as it approaches either 0 or 1, and 
these values cannot be attained.

Let us now go back to equation (18). The probability density function is a product
of two factors. It is not dicult to see that, for all ( )δ ∈R 0, 1 , the second factor is a

Figure 6.  Probability distribution of ( )τx b  for δ =R 3/4, x (0)  =  0.5 and several 
values of external noise intensity. The corresponding mean values are shown next 
to each distribution.

Figure 7.  Probability distribution of ( )τx 2 b  for δ =R 3/4, x (0)  =  0.5 and several 
values of external noise intensity. The corresponding mean values are shown next 
to each distribution.
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concave function for ( )∈x 0, 1  and it grows unbounded when →x 0, 1. Therefore, if the
density function has a maximum in that interval, it has to be provided by the first 
factor. However, when the product τΓ  is large, the first factor becomes nearly constant 
and, thus, we observe a bathtub shape for Γ = 0.2 in figures 6–7. Only when the prod-
uct τΓ  is small does the influence of the first factor become relevant, and the density 
exhibits a maximum approximately close to the position predicted by the deterministic 
equations (3)–(5) (see the curves for Γ = 0.01 in figures 6–7). For intermediate values
of τΓ , but τ large enough for the deterministic predictions that ( )τx  would be close to
either 0 or 1, the decreasing tail of the first factor tends to compensate the growth of 
the second factor when x tends to 1 or 0, respectively. Indeed, this behavior is observed 
for Γ = 1 in figures 6–7. From the application point of view, we conclude that memory
in a memristor is lost whenever τΓ � 1. In this sense, strong and short is more conve-
nient than weak and long pulsing. Also, if external noise is present even in the absence 
of input, we can make a rough estimation of the memory persistence time as ∼Γ−T 1.

We must note that the eect of external noise in a memristor may probably be 
considered viewed as a problem of dithering, with the state variable ( )τx  taken as the
output signal and the driving voltage ( )τv  as the input. In this sense, further insight
might be obtained by resorting to the techniques described in [12].

5. Conclusions

We introduced a Fokker–Planck approach to tackle the eect of internal and external
noise on resistive switching. In the case of internal noise, we resorted to a Fokker–
Planck approach to account for the enhancement of the resistive contrast found in 
numerical simulations with non-harmonic driving signals. In the context of resistive 
memory devices, results suggest that internal noise may be advantageous for short 
driving pulses, i.e. as in the case for high-bandwidth devices.

When exploring the eect of external noise, and by analyzing the probability den-
sity function of the state variable, we found that noise only has the eect of degrading 
the resistive contrast, and obtained a relationship between the noise amplitude and the 
pulsewidth of the driving signal that constrains the persistence of the resistive state. 
In particular, results suggest that strong and short driving pulses favor a longer per-
sistence time, an observation that may find applications in the field of high-integration 
high-speed resistive memory devices.

Although it may seem that internal and external noise are introduced into the equa-
tions almost in the same way, there is a substantial dierence between them. While 
internal noise acts additively, external noise acts multiplicatively. It is a well-known 
fact that multiplicative and additive noise terms have very dissimilar eects (see, e.g.
[13]).

Finally, it is important to point out that there exists experimental evidence of 
external noise enhancing the resistive contrast [4–6]. As we have shown, the model
in equations (1)–(2) cannot account for such behavior. Although some work has been
done towards a qualitative understanding based on phenomenological models (see
[5]), we still lack a good quantitative explanation. Changes of electrical resistance are

http://dx.doi.org/10.1088/1742-5468/2016/05/054043


commonly associated with the assisted migration of ions, such as oxygen vacancies. In 
this sense, a better explanation of the observed behavior might be found by analyzing 
the influence of external noise on ion migration models found in the literature (see, e.g.
[14, 15]). Such an analysis remains a matter of future work.
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