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Abstract Cluster space control is a method of mul-
tirobot formation keeping that considers a group of 
robots to be a single entity, defining state variables to 
represent characteristics of the group, such as posi-
tion, orientation, and shape. This technique, however, 
suffers from singularities when a minimal state rep-
resentation is used. This paper presents three alter-
native implementations of this control approach that 
eliminate singularities through changes in the control 
architecture or through redundant formation defini-
tions. These proposed solutions rely on quaternions, 
dual quaternions, and control implementations that 
produce singularity-free trajectories while maintain-
ing a cluster level abstraction that allows for simple
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specification and monitoring. A key component of
this work is a novel concept of representing formation
shape parameters with dual quaternions. Simulation
results show the feasibility of the proposed solutions
and illustrate their differences and limitations.
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1 Introduction

The coordination of groups of mobile robots is a
topic of increasing interest in recent years. The abil-
ity to distribute sensors, actuators, and task execu-
tion promises great improvements in terms of cover-
age, throughput, and dynamic reconfiguration in the
automation of missions. These missions include a slew
of possibilities, including search and rescue opera-
tions, forest fire control, agricultural monitoring, etc.
where the level of automation can range from human-
supervised tasks to fully autonomous operation. Such
systems have potential to operate in diverse environ-
ments, including land, sea, air and space. Examples
of specific techniques for mobile robot coordina-
tion range from biologically inspired methods [1] to
leader-follower architectures [2], virtual structure def-
initions [3], and potential field configurations [4]. A
method of particular interest for multirobot coordi-
nation is Cluster Space Control, where the group of
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robots is considered as a single entity, namely a clus-
ter, and state variables are defined representing charac-
teristics of the group such as position, orientation and
shape. This allows to conceptualize the formation as
a full degree of freedom virtual kinematic mechanism
that can be intuitively specified, controlled, and moni-
tored by an operator or an autonomous supervisor. The
cluster space approach has been successfully imple-
mented in a wide variety of robotic platforms, ranging
from land rovers to marine surface vessel systems [5],
and for target applications such as escorting/patrolling
[6] and multirobot object manipulation [7].

In previous work, implementations of a cluster
space (CS) controller relied on the use of an inverse
cluster space Jacobian matrix for the case of rate-
resolved robots or on cluster space Jacobian trans-
pose matrices for dynamic control architectures [5].
Such configurations allow for a controller to oper-
ate directly on the cluster space variables and their
errors, but suffer from limitations related to repre-
sentation singularities. Analogous to singular poses
in the classic robot manipulator theory, cluster space
singularities occur when the formation attains a pose
where some of the formation parameters are undeter-
mined. This also leads to numerical instability in the
close vicinity of singular poses, which corrupts control
performance. As a distinctive characteristic, CS singu-
larities are often due to representation choices instead
of physical constraints as in the case of manipulators.
This paper presents alternative implementations of CS
control that eliminate singularities through changes in
the control architecture or through redundant forma-
tion definitions.

Earlier work by the authors have not addressed
this topic in detail, as most of the work [5–8] dealt
with wheeled ground robots or marine autonomous
surface vessels, where the formation operates in a
common plane. This characteristic either limits the
existence of singular poses or allows then to be easily
avoided by choosing alternative definitions to operate
around singularity-free poses. One explicit initiative to
address this issue was the creation of a state represen-
tation management system which actively switched
between representations in order to avoid singular
configurations [9]. This was done by computing the
condition number of the Jacobian matrix for each pos-
sible representation and selecting the best-conditioned
state definition for use in the control system.

The concept of defining position, orientation and
shape characteristics for a formation of mobile robots
has been previously proposed by many authors. Initial
works relied on leader-follower schemes, using graphs
to define a rigid formation shape, and defining trajec-
tories for the leader [10, 11]. Other variations allowed
for role changes between leaders and followers [12].
In contrast, CS allows the cluster reference point to be
assigned at any location relative to the group of robots;
furthermore, it accommodates any fully constraining
set of variables to be used to specify formation geom-
etry, and all of these may be arbitrarily varied to allow
full degree-of-freedom evolution of the size and shape
of the formation. This is contrasted to virtual rigid
body techniques [3, 13] and an approach that maps
the robot configuration space to a lower dimensional
manifold which defines the group’s shape as a con-
centration ellipse [14] where robots are statistically
bounded. Because it conserves the dimensionality of
the system, the CS approach can be computation-
ally challenging for large numbers of robots and
highly coupled cluster state definitions. This can be
addressed by using alternate state representations that
reduce the number of robots used to define cluster
position and/or various shape variables; taken to its
limit, the CS approach devolves into a leader-follower
chain [10–12], which is completely scalable.

The contributions of this article are three alter-
nate implementations of CS control, all of which are
free of representation singularities. The first alter-
native converts the cluster space specification of
motion to the robot space, with a robot space con-
troller implementing these motions in realtime; this
changes the nature of group motion and constrains
state estimation, but it avoids singular configurations.
The other two alternatives avoid minimal state rep-
resentations through the use of quaternions, a single
quaternion representation for formation orientation or
dual quaternion representations for describing forma-
tion position and shape. In addition to introducing the
use of quaternions, controller stability is proven and
simulations in the ROS/Gazebo environment verify
functionality.

Previous use of quaternions in formation control
has simply used quaternions for representing the ori-
entation of each individual robot with respect to a
global frame [15] or with respect to one of the
other vehicles serving as an orientation reference [16].



The work presented here is the first to use a single
quaternion orientation representation of the aggregate
formation.

Dual quaternions offer the most compact and com-
putationally efficient screw transformation formal-
ism [17] and can be used as a representation to
describe rigid body motions because they simultane-
ously describe positions and orientations with only
eight parameters [18]. Similar to homogeneous trans-
formation matrices, they can describe a complete rigid
motion with a single mathematical object. Hence, a
sequence of rigid motions is represented by a sequence
of dual quaternion multiplications. Dual quaternions
are starting to be used in different applications such
as control of single free rigid bodies [19], cooperative
manipulator arms [18], and leader-follower implemen-
tations of multirobot systems [20]. Related work in the
literature using dual quaternions is limited to leader-
follower configurations [21], where dual quaternions
are used to express relative position and orientation of
a follower with respect to the leader [22]. This concept
has also been extended to leaderless consensus, where
the bodies synchronize with each other without the
presence of a leader [23]. To the authors’ knowledge,
the use of dual quaternions has not been extended
beyond the representation of position and orienta-
tion to concepts such as size and shape. This work
presents such an extension in order to represent and
control these characteristics in a formation of mobile
robots.

2 Background

The CS framework for controlling mobile robot for-
mations was formally introduced in [8]. The method
relies on the definition of a vector of CS variables
that describes the position, orientation, and shape of
a virtual kinematic mechanism representing the for-
mation, allowing for full specification and control of
the system. For a group of N robots with m degrees
of freedom (DOF) each, the framework defines a set
of kinematic transforms c = KIN(r) –where r is the
vector of (N × m) robot space variables, (i.e., posi-
tion and orientation of the robots), and c is a vector of
(N × m) cluster space variables– as well as a set of
inverse kinematic transforms r = INVKIN(c). Addi-
tionally, relations between velocities in both spaces

can be obtained through the square Jacobian matrix
J (r) such that ċ = J (r) ṙ.

Throughout this article, a system of two mobile
robots with 4 DOF each will be used to demonstrate
the techniques being presented. The pose of each robot
i is defined by (xi, yi, zi, θi), where (xi, yi, zi) is the
robot’s position in three translational dimensions and
θi is the robot’s yaw orientation. Pitch and roll are
neglected and not independently specified for these
robots, assumptions that are appropriate for the under-
water robot and aerial drone multirobot testbeds the
authors use for much of their work. It should be noted
that, since the use of general 6-DOF robots is not
assumed, singularities do not arise when representing
the pose of a single robot. This allows to focus the use
of quaternions and dual quaternions specifically on
the representation of multirobot quantities, and it does
not limit the applicability of the proposed approach.
Given the use of a formation consisting of two 4-
DOF robots, the definition of the cluster is chosen in
the following way. The cluster frame is located at the
midpoint between robots. The cluster space variables
are defined as c = (xc, yc, zc, βc, γc, dc, φ1, φ2),
where (xc, yc, zc) is the cluster position; βc and γc

are the cluster yaw and pitch angles respectively; dc

is the shape parameter that specifies half the distance
between robots; and φi is the yaw angle of robot i with
respect to the cluster yaw angle, as shown in Fig. 1.
The resulting kinematics are therefore:

xc = (x1 + x2)/2 (1)

yc = (y1 + y2)/2 (2)

zc = (z1 + z2)/2 (3)

βc = atan2

(
x2 − x1

y1 − y2

)
(4)

γc = atan2

(
z1 − z2

2
√

(x1 − xc)2 + (y1 − yc)2

)
(5)

dc =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2/2 (6)

φ1 = θ1 − βc (7)

φ2 = θ2 − βc (8)

Inverse kinematic relations can also be analytically
derived. This approach allows for a control archi-
tecture driven by errors calculated in cluster space.
Control compensation signals are then transformed
through the Cluster Space inverse Jacobian matrix to



Fig. 1 Cluster space
variables definition for a
system of two 4-DOF
mobile robots

robot level–and ultimately actuator level–commands
to produced the required motions. Figure 2 shows the
block diagram of a typical CS implementation.

Representation singularities in CS control are sit-
uations where certain formation poses result in one
or more undetermined values of cluster parameters.
Alternatively, singularities can be thought of as poses
for which the Jacobian matrix loses rank and is no
longer invertible. When the formation reaches a singu-
lar pose, the system becomes unstable and its behavior
is unpredictable. Of course, this situation must be
avoided.

For the two-robot cluster definition presented in
Eqs. (1–8), the singular poses are those where |γc| =
π/2 or where dc = 0. The second case is disregarded
given that dc = 0 is also a physical constraint of the
system (i.e. two robots being in the same location) and
can be neglected for the purpose of this work.

The singular condition for γc (cluster pitch angle)
is critical given that the situation of having one robot

directly above the other may be of interest in particular
tasks.

3 Singularity-free Approaches

Three control and representation alternatives to pro-
duce cluster architectures that do not have singular
poses are proposed in this article, allowing for the
execution of any trajectory while maintaining the
abstraction level that allows for simple specification
and monitoring. The first alternative is to maintain
the CS framework at the operator interface while
implementing the controller in the robot space. The
second proposed solution is a unit quaternion repre-
sentation of the formation orientation, together with
a unit quaternion representation of the robot orienta-
tions with respect to the cluster, a vector representing
the cluster position, and scalars representing the for-
mation size. The third proposed approach is a cluster

Fig. 2 Cluster Space
Control Architecture.
Control actions are
computed in cluster space
and converted to robot
space for actuation. Robot
sensor information is
converted back to cluster
space through the forward
kinematics to close the loop



Fig. 3 Cluster Space
implementation using a
Robot Space controller

definition based on dual unit quaternions, where a
compact expression can be used to represent position,
orientation, and shape of the formation.

3.1 Robot-Space Formation Control

In this architecture, the desired formation trajectories
are specified for all CS variables as before, but the
inverse kinematic transform is used to obtain the cor-
responding desired trajectory in robot space. Errors
between these trajectories and the measurements from
the robot sensors are used to operate a robot-space
controller that commands the vehicles. In this imple-
mentation, the inverse Jacobian matrix is not used to
transform controller commands and singularities do
not arise. Figure 3 shows a block diagram of this
implementation.

This singularity-free architecture has an important
limitation: as the controller operates in robot space,

motions evolve in robot space and are not ‘well
behaved’ as seen from the formation perspective. This
is demonstrated in Fig. 4 for the example of a 180◦
step input command for the formation yaw angle.
A conventional CS controller produces the motion
shown in Fig. 4a, moving the robots through the short-
est CS path, producing what from the robot space
perspective looks like a circular motion, and there-
fore keeping the formation shape as they move. On
the other hand, a controller in robot space commands
the robots through the shortest robot-space path, pro-
ducing the motions shown in Fig. 4b. In this case, the
robots simply swap positions and the formation shape
is not naturally maintained over the motion.

3.2 Quaternion-based Formation Control

Quaternions can be considered as extensions of com-
plex numbers to R4. A unit quaternion can be used
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Fig. 4 Controllers operating in different spaces result in different formation behaviors for a step trajectory with similar initial and
final positions



Fig. 5 Quaternion-based
cluster frame definitions

to describe a rotation. For a frame rotation about a
unit axis n with angle 0 ≤ θ < 2π , there is a
unit quaternion q = [cos(θ/2); sin(θ/2)n] repre-
senting such rotation. Quaternion representations have
been widely used to represent and control the rela-
tive attitude of one vehicle with respect to another
vehicle, as in the case of leader-follower configura-
tions [24], but they have not been used to represent
the orientation of a formation as a whole. A forma-
tion of robots can be represented by a cluster position
vector and a cluster orientation unit quaternion. Addi-
tionally, scalars describing the formation shape and
quaternions describing the orientation of the robots
with respect to the cluster can be defined.

For the 4-DOF two-robot system presented in this
article, the cluster space can be defined as c =
(xc, qc, dc, qc1, qc2), where xc = (xc, yc, zc) is the

centroid of the two robots, qc is a unit quaternion rep-
resenting a frame aligned with a segment going from
robot 2 to robot 1, dc is half the length of such seg-
ment, and qci represents the orientation of robot i with
respect to the cluster orientation. It should be noted
that quaternions naturally represent 3-DOF rotations,
therefore a system of two full 6-DOF robots would be
represented in the same way. The forward kinematic
transforms are

xc = (x1 + x2)/2 (9)

qc = [cos(η/2); sin(η/2)n12] (10)

dc = ‖x1 − x2‖/2 (11)

qc1 = q∗
c ◦ q1 (12)

qc2 = q∗
c ◦ q2, (13)

Fig. 6 Cluster Space
implementation with
quaternion definition



Fig. 7 Representation of
cluster and robots dual
quaternion frames

with

η = atan2

(‖î × (x1 − x2)‖
î · (x1 − x2)

)
(14)

n12 = î × (x1 − x2)

‖î × (x1 − x2)‖
, (15)

where î = (1, 0, 0), and the operator ◦ indicates
quaternion multiplication. Figure 5 shows the cluster
and robot frames for the chosen definition. The inverse
kinematics are

x1 = xc + qc ◦ dc ◦ q∗
c (16)

q1 = qc ◦ qc1 (17)

x2 = xc − qc ◦ dc ◦ q∗
c (18)

q2 = qc ◦ qc2, (19)

where dc = (0, dc, 0, 0). Motions are specified in
cluster space and desired formation trajectories are
compared to the formation state recovered from robot
sensor information through the forward kinematic
transform (9–13) in a controller that operates in the

space of the cluster. The control compensation is con-
verted to robot space commands using the inverse
Jacobian matrix derived from Eqs. (16–19). Although
the inverse Jacobian matrix is not square as it was
in the original Cluster Space formulation, it has full
rank equal to the total DOF of the physical system for
any attainable formation pose, therefore singularities
do not arise. The controller implements proportional
compensation for the position and shape variables,
ẋc cmd = −Kxexc + ẋc des, where exc = xc − xc des

and ḋc cmd = −kdedc + ḋc des, where edc = dc − dc des.
To control orientations, quaternion errors qej = qj ◦
qj des = (q0j ; q̃j ); j = {c, c1, c2} are minimized
using:

q̇j cmd = 1

2
qj ◦

[
0
−sgn(q0j )Kwq̃j

]
(20)

where Kw ∈ R3×3 is a diagonal matrix of positive
constant gains, and sgn(q0j ) is the signum function of
the real part of the error quaternion. Figure 6 shows
the described implementation.

Fig. 8 Implementation of
dual quaternion cluster
space



Proof Proposing the positive-definite Lyapunov can-
didate function in terms of the errors in cluster space:

V (c)= 1

2

(
e∗
xcexc+e2

dc+
∑

j={c,c1,c2}
(1−q2

0j +q̃∗
j q̃j )

)
,

(21)

the time derivative of the Lyapunov function is

V̇ (c)=e∗
xcėxc + edcėdc+

∑
j

(− q0j q̇0j +q̃∗
j
˙̃qj

)
(22)

Using the proposed controller and relying on the
fact that q̇ej = (q̇0j ; ˙̃qj ) = 1

2qej ωj cmd , where

ωj cmd = −sgn(q0j )Kwq̃j , or expressed as a matrix
multiplication:

q̇ej = 1

2

[ −q̃∗
j

q0j I3 + Q̃xj

]
ωj cmd (23)

where Q̃xj is the cross-product operator skew-
symmetric matrix form of q̃j and I3 is the 3 by 3
identity matrix. Replacing (23) in (22):

V̇ (c) = e∗
xcKxexc + kde2

dc + . . .∑
j

( − 1

2
q0j q̃

∗
jKwsgn(q0j )q̃j . . .

− 1

2
q̃∗

j q0jKwsgn(q0j )q̃j . . .

− 1

2
q̃∗

j Q̃xjKwsgn(q0j )q̃j

)
(24)

Fig. 9 Baseline cluster
space trajectory tracking
results. Singularities
become apparent in βc at
t = 27.5s
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Noting that Kw is a diagonal positive matrix, and
when multiplied by the skew-symmetric matrix Q̃xj

the result is skew-symmetric, then the last term of (24)
has the form X∗SX = 0, where S is skew-symmetric.
Therefore, (24) simplifies to

V̇ (c) = − e∗
xcKxexc − kde2

dc · · ·
−

∑
j={c,c1,c2}

(
q̃∗

j |q0j |Kwq̃j

) ≤ 0 (25)

rendering the system stable.

This definition is singularity-free due to the
redundant orientation representation provided by unit
quaternions, and maintains the desired level of con-
trol abstraction. The drawback of this approach is the
increase in the number of cluster space variables to be
tracked; in the case of two 4-DOF robots, the resulting
8-DOF system is represented by 16 variables, adding
to the computational complexity.

3.3 Dual Quaternion Formation Control

A dual number is defined as α̂ = a + εb with ε2 = 0,
but ε �= 0, where a and b are real numbers, called
the principal part and the dual part, respectively. A
dual quaternion can be treated as a dual number with
quaternion components, i.e., q̂ = qr + εqd , where qr

and qd are quaternions.
The main contribution of this section is the repre-

sentation of position, orientation and shape concepts
by dual quaternions. The dual quaternion q̂ = q +
ε 1

2p ◦ q represents a rigid motion where the princi-
pal part P(q̂) = q represents the rotation and the
dual part D(q̂) = 1

2p ◦ q indirectly represents the
translation. The translation can be retrieved using dual
quaternion operation p = 2D(q̂) ◦ P(q̂)T , where
p = (0, x, y, z)T .

The aim of this section is to represent the for-
mation parameters with a set of dual quaternions.

Fig. 10 Tracking results
using the robot space
controller
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In particular, the goal is to integrate in a compact and
redundant –i.e. singularity free– representation the ori-
entation of the formation and its position and shape
using respectively the principal part and dual part of
dual quaternions.

Using the presented two-robot system, a cluster
definition based on two dual quaternions is proposed,
where one quaternion is related to the center of the
formation and the other carries information of its
shape. This concept is based on developments for
dual quaternion-defined multi-arm manipulation [25].
Given a dual quaternion representation of the robots’
position and orientation: q̂1 = q1+ε 1

2p1◦q1 and q̂2 =
q2 + ε 1

2p2 ◦ q2, where qi is the quaternion represent-
ing the orientation of robot i and pi = (0, xi, yi, zi)

represents its position, then the cluster can be speci-
fied with a set of two dual quaternions q̂c, q̂s , where

q̂c = q̂2 ◦ (q̂∗
2 ◦ q̂1)

1/2 (26)

q̂s = q̂∗
2 ◦ q̂1. (27)

Figure 7 shows the physical interpretation of the
cluster dual quaternions of Eqs. (26, 27), where q̂c

represents an average frame located between the two
robot frames, and q̂s indicates the shape with a rep-
resentation of the relative rotation and separation
between robot frames. Furthermore, the inverse kine-
matics are defined by q̂1 = q̂c ◦ (q̂∗

s
1/2)

∗
and q̂2 =

q̂c ◦(q̂1/2
s )

∗
. Given these definitions, a dual quaternion

Fig. 11 Parameters
tracking results using the
quaternion definition
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cluster Jacobian matrix can be derived and used in a
cluster dual quaternion space controller as shown in
Fig. 8.

The proposed controller considers the dual
quaternion errors q̂ek = q̂k ◦ q̂k des =
(qp0k

; ˜̂qpk
; 0; ˜̂qdk

); k = {c, s}, such that:

˙̂qk cmd = 1

2
q̂k ◦

⎡
⎢⎢⎣

0

−sgn(qp0k
)Kdw

˜̂qpk

0

−sgn(qp0k
)Kdw

˜̂qdk

⎤
⎥⎥⎦ (28)

where Kdw ∈ R3×3 is a diagonal matrix of positive
constant gains, and sgn(qp0k

) is the signum function
of the real element of the principal part of the dual
quaternion error.

Proof Proposing the Lyapunov candidate function in
cluster space

V (c) =
∑

k={c,s}

(
1 − q2

p0k + ˜̂q∗
pk

˜̂qpk
+ ˜̂q∗

dk

˜̂qdk

)
, (29)

its time derivative has the form

V̇ (c)=
∑

k={c,s}

(−2qp0kq̇p0k+2 ˜̂q∗
pk

˙̂̃qpk
+2 ˜̂q∗

dk

˙̂̃qdk

)
. (30)

The time derivative of the dual quaternion error ˙̂qek =
(q̇p0k

; ˙̂̃qpk
; 0; ˙̂̃qdk

); k = {c, s} can be expressed as

˙̂qek = 1

2

⎡
⎢⎢⎢⎣

−˜̂q∗
pk

0
qp0kI3 + Q̃xpk 0
−˜̂q∗

dk
−˜̂q∗

pk

Q̃xdk qp0kI3 + Q̃xpk

⎤
⎥⎥⎥⎦

[
ωpk cmd

ωdk cmd

]
(31)

where Q̃xpk and Q̃xdk are the cross-product operator

skew-symmetric matrix form of ˜̂qpk
and ˜̂qdk

respec-
tively, and I3 is the (3 × 3) identity matrix. Addition-
ally, ωpk cmd and ωdk cmd are defined by the controller

as ωpk cmd = −sgn(qp0k
)Kdw

˜̂qpk
and ωdk cmd =

−sgn(qp0k
)Kdw

˜̂qdk
. These expressions can be substi-

tuted in (30) to obtain:

V̇ (c) =
∑

k={c,s}

( − ˜̂q∗
pk

|qp0k|Kdw
˜̂qpk

. . .

− ˜̂q∗
pk

|qp0k|Kdw
˜̂qpk

. . .

− ˜̂q∗
pk

sgn(qp0k)Q̃xpkKdw
˜̂qpk

. . .

− ˜̂q∗
dk
Q̃xdksgn(qp0k)Kdw

˜̂qpk
. . .

− ˜̂q∗
dk

|qp0k|Kdw
˜̂qdk

. . .

− ˜̂q∗
dk
Q̃xpksgn(qp0k)Kdw

˜̂qdk

)
. (32)

Noting that Kdw is a diagonal positive matrix, and
when multiplied by the skew-symmetric matrix Q̃xpk

the result is skew-symmetric, then the third term of
(32) has the form X∗SX = 0, where S is skew-
symmetric and that the fourth and sixth terms are equal
and opposite and cancel each other, (32) simplifies to

V̇ (c)=
∑

k={c,s}

(−2 ˜̂q∗
pk

|qp0k
|Kdw

˜̂qpk
− ˜̂q∗

dk
|qp0k

|Kdw
˜̂qdk

)≤0

(33)

rendering the system stable.

Similar to the quaternion definition in the previous
section, dual quaternions add complexity to the system
by resulting in a 16-variable description. Additionally,
specification and monitoring is less transparent due
to the increased abstraction of the parameterization.
Nonetheless, an additional conversion of variables to
an operator-friendly representation for monitoring is
possible. On the positive side, the compact definition
makes for an elegant solution and the controller oper-
ating in the dual quaternion formation space produces
well-behaved motions as described in Section 3.1.

4 Results

Simulations in the MATLAB environment using a
common trajectory are used to illustrate the function-
ality of each proposed architecture and to compare
the behavior in each case. Then, a high-fidelity simu-
lation of a formation of commercially-available IRIS
quadrotors from 3D Robotics in the ROS/Gazebo
environment is used to obtain results in a more realis-
tic scenario.



Fig. 12 Parameter tracking
results using the dual
quaternion definition
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des.

meas.

4.1 Simulations in the MATLAB Environment

The commanded trajectory is a rising spiral, with the
formation’s centroid following a circle in the xy plane
and a linear trajectory in z. At t = 10s, the forma-
tion performs a 2π rotation in yaw, at t = 25s, a 2π

rotation in pitch, and at t = 40s, the φ1 and φ2 angles
rotate 2π . Simultaneously, the formation follows a

linear variation in the inter-robot distance dc. Of par-
ticular interest is the value of γc (formation pitch) in
the range [0, 2π ], where the existence of singularities
becomes apparent.

First, the standard cluster space controller is used
to track the proposed trajectory. The results are shown
in Fig. 9. When the γc reference signal reaches π/2,
the system hits a singular pose and is unable to track

Table 1 Controller
parameter values for test
cases of Section 4.1

Method Gains

Cluster Space KCS = diag(1; 1; 1; 10; 10; 5; 5; 10)

Robot Space KRS = diag(1.5; 1.5; 1.5; 6; 6; 1.5; 1.5; 1.5)

Quat. Kx = diag(2; 2; 2), kd = 20, Kw = diag(20; 20; 20)

Dual Quat. Kdw = diag(15; 15; 15)



Fig. 13 Error of formation
parameters for the test
trajectory using the
different proposed methods
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the reference any further. At this point, the state of
βc is undetermined and therefore can not be con-
trolled, rendering the system unstable. Furthermore,
given Eqs. (7, 8) the same behavior is observed for the
φi parameters.

Figure 10 shows the cluster space trajectories as
tracked by the robot space controller presented in
Section 3.1. The tracking is stable, and there are no
singular poses, but the cluster variables fail to recover
the true state of the system due to representation ambi-
guities. In particular, when |γc| > π/2, the kinematic
transforms interpret this pose as βc = ±π and |γc| <

π/2. A similar effect is seen in the φi parameters. This
discrepancy only affects the monitoring task as the
robot-space controller is relying on actual robot poses,
and the trajectories can be tracked successfully at all
times.

Next, the quaternion definition of Section 3.2
is used to track the proposed trajectory. The ref-
erences are previously converted to the equivalent

Fig. 14 ROS/Gazebo Simulator graphical interface showing
two 3D Robotics Iris multicopters



Table 2 Controller
parameter values for test
cases of Section 4.2

Method Gains

Cluster Space KCS = diag(0.06; 0.06; 0.03; 0.02; 0.02; 0.03; 0.03; 0.03)

Robot Space KRS = diag(0.06; 0.06; 0.03; 0.02; 0.02; 0.03; 0.03; 0.03)

Quat. Kx = diag(0.7; 0.7; 0.7), kd = 0.4, Kw = diag(1; 1; 1)

Dual Quat. Kdw = diag(0.5; 0.5; 0.5)

quaternion reference trajectories. Figure 11 shows
reference and measured signals for each of the 16
variables as defined in Eqs. (9–13). The robots suc-
cessfully track the desired trajectories.
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Fig. 15 Trajectory tracking results using the cluster space
baseline definition in the ROS/Gazebo Simulator

Finally, the trajectory is tracked by a system imple-
menting the dual quaternion cluster definition of
Section 3.3. Again, appropriate trajectories are gen-
erated to produce the same experiment. Results for
each of the 16 variables are shown in Fig. 12, where
all trajectories are tracked and no singularities are
present.

The simulations consider 4-DOF holonomic kine-
matic models of the robots. The parameters of the
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Fig. 16 Trajectory tracking results using the robot space defi-
nition in the ROS/Gazebo Simulator



controllers implemented in the simulations are shown
in Table 1. All controller are proportional and the gains
were empirically tuned.

In order to compare these results, tracking errors
are presented in Fig. 13. To make the comparison
useful, variables in the different spaces were trans-
formed to the equivalent values in CS, and errors
(ec = cmeas − cdes) are shown for the position and
shape parameters. All values converge to zero with a
steady state error corresponding to the lack of integral
compensation of the controllers. Moreover, a signif-
icant error can be seen in the RS controller as the
formation performs the pitch and yaw maneuvers.
Such errors could be reduced with appropriate further
tunning of the controller. The error in the CS imple-
mentation described in Section 2 is readily noticeable,
where at around t = 25s, the pitch maneuver hits a
singular pose, and the error grows significantly as the
controller cannot track the reference.
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Fig. 17 Trajectory tracking results using the quaternion defini-
tion in the ROS/Gazebo Simulator

4.2 Simulations in the ROS/Gazebo Environment

To demonstrate functionality in a more realistic envi-
ronment, a simulator in the Robot Operating System
(ROS) and Gazebo environment was used. ROS is
an open-source de facto standard in robotics research
and facilitates fast development and testing [26] of
robotic systems. Two IRIS multicopters from 3D-
Robotics were modeled with a Gazebo Simulator
plug-in developed by the Autonomous System Lab of
ETH Zurich University (Fig. 14). Each multicopter
runs a Linux port of the PX4 autopilot firmware [27]
with a MAVROS interface. This architecture allows a
seamless transition of the proposed algorithms from
the simulator to the actual hardware.

The trajectory presented is a linear motion in the
y direction at constant altitude and a robot separation
of 1m, with a 2π rotation of the formation around
the y axis between times t = 20s and t = 60s,
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Fig. 18 Trajectory tracking results using the dual quaternion
definition in the ROS/Gazebo Simulator



Fig. 19 Time lapse of the
controller implementing the
cluster space baseline
definition in the
ROS/Gazebo Simulator

producing a helical motion. Controllers with gains
shown in Table 2 for each proposed formation con-
trol method are implemented and results are shown
in Figs. (15–18). Similarly to the previous results of
Section 4.1, the cluster space baseline fails to fol-
low the reference trajectory when the singularity is
reached at around t = 30s (Fig. 15). The robot-space
controller of Fig. 16 shows that the trajectory is cor-
rectly followed, but the method fails to recover the
real state of the formation from the measurements due
to representation ambiguities. Finally, the quaternion
and dual quaternion representations (Figs. 17 and 18)
are able to follow the references correctly and the for-
mation state is adequately recovered from the sensor
information.

Figure 19 shows a time-lapse of the simulator
graphical interface for the cluster space baseline con-
troller where the helical motion cannot be achieved as
the cluster hits the singularity at γc = π/2. Figure 20
shows the resulting trajectory of the singularity-free

controllers where the full motion is successfully
achieved.

5 Discussion

A comparison between the two main proposed meth-
ods in this article, quaternion- and dual quaternion-
based formation control, can also be made from a
qualitative perspective, focusing on the characteris-
tics of such definitions. From a task specification
and operator interface point of view, the quaternion-
based approach is more intuitive, as shape variables
such as formation size are defined as simple scalars.
Although somewhat more obscure, the representation
given by the dual quaternion method is more compact
and elegant from a mathematical point of view. From a
computational complexity perspective, the number of
variables to track is similar –16 variables for the two
4-DOF system in the examples– and both require the

Fig. 20 Time lapse of the
controller implementing the
robot space definition in the
ROS/Gazebo Simulator



inverse of the Cluster Jacobian matrix to implement
the control loop. In terms of tracking accuracy, there
are no significant differences in the control architec-
ture itself, and control performance will depend on the
controller implemented in any particular case.

This article is focused on the implementation of
formation control methods for the case of a group
of two robots. Nevertheless, these approaches can be
extended to formations of more robots. In particu-
lar, when extending the quaternion-based approach to
a larger group, xc ∈ R3 can still be the centroid
of the robots’ positions. An additional quaternion qci

should be added for each additional robot in the for-
mation, and the number of scalar shape parameters (as
in the case of the proposed formation size dc) should
be increased to fully specify the formation. Similarly,
in the case of the dual-quaternion approach, a dual
quaternion q̂c would represent the position and orien-
tation of the formation and additional dual quaternions
would be included to represent the formation shape.
It should be noted that the inclusion of each addi-
tional dual quaternion would result in a system where
another 8 parameters must be tracked, as each dual
quaternion is a 8-parameter expression. This may add
to the computational complexity of the resulting sys-
tem and therefore its scalability to a system with a
large number of robots should be properly addressed.

6 Conclusions

Three solutions were presented to address the singu-
larity problem when a minimal state representation
is used in the cluster space control framework. First,
a robot space controller that effectively creates robot
space trajectories to be tracked by the controller pro-
vides a simple implementation for singularity-free
control but lacks the ‘well-behaved’ motions natu-
rally expected for the formation as it is unable to
preserve the formation shape when following step
inputs. Then, a singularity-free unit quaternion defi-
nition is proposed, adding redundancy to the system
while keeping the abstraction concept of representing
the formation through position, orientation and shape
variables. Finally, the singularity issue is resolved
proposing a dual quaternion definition that uses a
redundant and compact description of the system at
the expense of a more obscure representation. This
representation introduces the novel concept of using

dual quaternions to represent formation attributes such
as shape, together with position and orientation. Sim-
ulation results using MATLAB as well as models of
the IRIS multicopters in the ROS/Gazebo open-source
environment indicate the feasibility of the proposed
solutions and show their differences and limitations.
Future work will include extensions of the proposed
methods to formations with more robots where addi-
tional shape parameters will be necessary to describe
more complex group structures, as well as experimen-
tal verification employing a multi-UAV testbed.
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