Sosa Massaro, AgustínEspinoza, D. NicolasFrydman, MarceloBarredo, SilviaCuervo, Sergio2019-09-122019-09-122017-110895-9811http://ri.itba.edu.ar/handle/123456789/1747"Accurate geomechanical evaluation of oil and gas reservoir rocks is important to provide design parameters for drilling, completion and predict production rates. In particular, shale reservoir rocks are geologically complex and heterogeneous. Wells need to be hydraulically fractured for stimulation and, in complex tectonic environments, it is to consider that rock fabric and in situ stress, strongly influence fracture propagation geometry. This article presents a combined wellbore-laboratory characterization of the geomechanical properties of a well in El Trapial/Curamched Field, over the Vaca Muerta Formation, located in the Neuquen Basin in Argentina. The study shows the results of triaxial tests with acoustic measurements in rock plugs from outcrops and field cores, and corresponding dynamic to static correlations considering various elastic models. The models, with increasing complexity, include the Isotropic Elastic Model (IEM), the Anisotropic Elastic Model (AEM) and the Detailed Anisotropic Elastic Model (DAEM). Each model shows advantages over the others. An IEM offers a quick overview, being easy to run without much detailed data for heterogeneous and anisotropic rocks. The DAEM requires significant amounts of data, time and a multidisciplinary team to arrive to a detailed model. Finally, an AEM suits well to an anisotropic and realistic rock without the need of massive amounts of data."enFRACTURAMECANICA DE ROCASANISOTROPIARESERVORIOSAnalyzing a suitable elastic geomechanical model for Vaca Muerta FormationArtículos de Publicaciones Periódicas