Rodríguez Varela, Juan PabloGonzáles Rodríguez, Rubén DaríoBrottier, IgnacioFiorellino, DelfinaPruden, ValentinaVidal, Rosario2023-12-152023-12-152023https://ri.itba.edu.ar/handle/123456789/4242Marcelo Marcone se dedica a administrar 4 propiedades en el barrio de Belgrano en Buenos Aires a través de la plataforma de Airbnb. Si bien su negocio es rentable, actualmente tiene la dificultad de definir precios óptimos para sus propiedades: si fija precios demasiado altos, es posible que no se atraigan suficientes huéspedes y pierda oportunidades de ingresos mientras que si fija precios demasiado bajos, puede terminar perdiendo la oportunidad de obtener más dinero por los alquileres. Hasta el día de hoy, Marcelo define precios en base a su experiencia personal como anfitrión, habiendo observado a lo largo de los años qué precios funcionan para cada uno de sus alojamientos en cada periodo del año. Debido a esto, Marcelo tiene el objetivo de mejorar su negocio fijando precios óptimos para sus departamentos tomando decisiones con más fundamento que su experiencia; quiere fijar precios en función de la demanda de la competencia, que a su vez se ve afectada por eventos que tienen lugar en el barrio o en la ciudad (por ejemplo, maratones o conciertos) en fechas particulares. En este contexto, el objetivo del proyecto es brindarle a Marcelo una herramienta para que logre posicionarse de la mejor manera posible en un mercado altamente competitivo como Airbnb, ayudando a definir precios óptimos para el alquiler de sus propiedades. Mediante la clusterización de las barrios y el análisis de la demanda, se desarrollará un modelo de predicción de cantidad de días de ocupación en una semana determinada en función de diferentes parámetros, como: precios promedio por noche, huéspedes, tipo de estadía, rating promedio entre otros. Este modelo a su vez considerará la demanda de alquileres a lo largo del año. De esta manera Marcelo podrá encontrar el equilibrio entre precios competitivos y rentables.esAIRBNBRENTABILIDADGANANCIAALQUILERESPRECIOSModelo de optimización de precios para anfitriones de AirbnbProyecto final de Grado