Gambini, JulianaRey, AndreaDelrieux, Claudio2022-11-042022-11-042021-102683-8990https://ri.itba.edu.ar/handle/123456789/3970"Las imágenes SAR (Sythetic Aperture Radar) y PolSAR (Polarimetric Synthetic Aperture Radar) cumplen un rol fundamental en el monitoreo ambiental y observación terrestre debido a que proveen información que las imágenes ópticas no proporcionan. Sin embargo, estas imágenes están contaminadas con un ruido inherente al méetodo de captura llamado ruido speckle que dificulta su análisis e interpretación automática. Los modelos avanzados de segmentación de imágenes SAR están dedicados a resolver las dificultades que este ruido provoca. En este sentido, resulta de suma importancia el estudio de parámetros que describan las características estructurales de textura de imagen en presencia de ruido speckle y permitan su interpretación automática. En este trabajo, se propone un nuevo modelo de clasificación de imágenes SAR basado en el cálculo de descriptores de textura locales, formando un vector característico, el cual involucra estimaciones de parámetros de una distribución de probabilidad, estimaciones de la dimensión fractal y entropía de Tsallis. Luego, el etiquetado de cada pixel se realiza utilizando el método de clasificación supervisada SVM (Support Vector Machine). Se analizan los resultados de aplicar el algoritmo propuesto en imágenes SAR sintéticas, simples y con valores extremos agregados, los cuales resultan altamente prometedores para aplicarse en imágenes reales."eshttp://creativecommons.org/licenses/by-nc-sa/X.0/PROCESAMIENTO DE IMAGENESENTROPIAClasificación de Imágenes SAR utilizando descriptores de texturaPonencias en Congresos