
� ���� � �

� 	 
 	 �� 	 �
 
 ��� � � � ��� � �
 � � �� � 
 � 	 �� �
 
 	 �� � �� � �� � �
� �� � 
 �� ��
 � � ��
 
 	 �� � �	 � �	 � � �
 � 
 � 
 
 	 � � �� 
 	 �� �


 � � �� � � � 	 �� � 	 � 
 	 �� � ��� �� � ��� � 	 �
 �� � �� � � � �

�� � � �� � 	 � � � 
 �
 �� � �� 
 � � 
 � � � 


� � � � 
 � 
 � � �� � � � 
 � � �� � � � ��� � � 
 � �


� 
 � � �
 � � �� � � � �������� ���!"�#"!$

%�� &��
 ��� � � � � � 	 "' ' � �(��) � (� � � (� � ' � � � � �� ' � � (� � � ( *#+$'  � ! +

http://ri.itba.edu.ar/handle/20.500.14769/1536


DEPARTAMENTO DE INVESTIGACIÓN Y DOCTORADO

MODELADO ESTADÍSTICO Y

CUANTIFICACIÓN DE SEÑALES

DE EEG:
Aplicación a la caracterización y detección

de inicio en crisis epilépticas

AUTOR: Mag. Ing. AntonioQuintero-Rincón

DIRECTOR: Dr. MarceloRisk

CO-DIRECTOR: Dr. Hadj Batatia

TESIS PRESENTADA PARA OPTAR AL TÍTULO DE

DOCTOR EN INGENIERÍA

Jurado

Dr. Carlos H.Muravchik Dr. Pablo I.Fierens Dr. AlejandroBlenkmann

CIUDAD AUTÓNOMA DE BUENOS AIRES

Abril 2019

http://www.itba.edu.ar


ii

Mag. Ing. AntonioQuintero-Rincón : MODELADO ESTADÍSTICO Y CUANTIFICACIÓN DE

SEÑALES DE EEG:.Tesis presentada como requisito parcial para acceder al grado deDOCTOR

EN INGENIERÍA del Instituto Tecnológico de Buenos Aires.

Copyright c
 2019 by Instituto Tecnológico de Buenos Aires



DEPARTAMENTO DE INVESTIGACIÓN Y DOCTORADO

STATISTICAL MODELING AND

QUANTIFICATION OF EEG

SIGNALS:
Application to the characterization and

onset detection in epileptic seizures

AUTHOR: Mag. Ing. AntonioQuintero-Rincón

ADVISOR: Dr. MarceloRisk

CO-ADVISOR: Dr. Hadj Batatia

A THESIS SUBMITTED AS A REQUIREMENT FOR THE DEGREE OF

DOCTOR EN INGENIERÍA

Thesis committee

Dr. Carlos H.Muravchik Dr. Pablo I.Fierens Dr. AlejandroBlenkmann

CIUDAD AUTÓNOMA DE BUENOS AIRES

April 2019

http://www.itba.edu.ar


ii

Mag. Ing. AntonioQuintero-Rincón : STATISTICAL MODELING AND QUANTIFICATION

OF EEG SIGNALS:.A thesis submitted in partial ful�llment of the requirements for the degree of

DOCTOR EN INGENIERÍA of Instituto Tecnológico de Buenos Aires.

Copyright c
 2019 by Instituto Tecnológico de Buenos Aires



This work is dedicated to my family, my wifeAngye Carolina Garzón Narváez,

my fatherErnesto Quinteroand my motherMaria Luisa Rincón!

�It is not whether to be or not to be but to know how to be!�

..::..



iv



Acknowledgements

Thanks to: Hadj Batatia from University of Toulouse,Marcelo Pereyrafrom Heriot-Watt Uni-

versity, Jorge Prendesfrom Mathworks andRoxana Saint-Nommy friends and partners for all

the good times we shared;Carlos D'Giano, Gabriela Ugarnesand Valeria Muro from FLENI for

all teachings;Jean Yves Tourneretfrom University of Toulouse andJose Carlos Bermudesfrom

Federal University of Santa Catarina for their recommendations andMarcelo Riskfrom ITBA for

all the support throughout the process.



vi



Resumen

Identi�car la actividad cerebral epiléptica utilizando señales de electroencefalografía (EEG) en

tiempo real es un problema difícil. Los métodos modernos de detección basados en técnicas

avanzadas de aprendizaje automático, son efectivos pero requieren grandes conjuntos de datos de

entrenamiento y son difíciles de implementar en sistemas de monitoreo en tiempo real, debido a

su costo computacional relativamente alto. Esta tesis se centra en dos problemas centrales vincu-

lados a la caracterización de las crisis epilépticas con señales de EEG. El primero se relaciona con

la detección de inicio y el otro se re�ere al reconocimiento de patrones epileptiformes. Usando

el nuevo método de caracterización presentado en el capítulo 2, ambos problemas pueden imple-

mentarse en tiempo real y lograr un alto rendimiento de detección. En general, esta tesis permitió

aportar cinco nuevas contribuciones para tratar los problemas desa�antes de la epilepsia. Estas

contribuciones se resumen a continuación y se relacionan con sus correspondientes referencias a

nuestras publicaciones.

En el capítulo 2, se presenta la principal contribución de esta tesis: un nuevo método de

caracterización de las crisis epilépticas en señales de EEG, basado en modelos estadísticos. El

enfoque propuesto tiene varias ventajas interesantes. En primer lugar, permite la detección del

inicio de la crisis en los diferentes ritmos cerebrales de forma independiente. En segundo lugar,

el modelo propuesto se basa únicamente en 2 parámetros, lo que hace que su cálculo sea factible

en tiempo real. En tercer lugar, permite el desarrollo de métodos de clasi�cación automática, los

cuales pueden ser entrenados con conjuntos de datos razonablemente pequeños. Estas propiedades

se demuestran a través de los métodos desarrollados en los capítulos que componen esta tesis. El

método de caracterización propuesto se desarrolla en tres etapas. Primero, las señales de EEG

se separan en cinco ritmos cerebrales diferentes mediante el uso de un banco de �ltros usando

la transformadawavelet. Cada señal de cada ritmo cerebral, se representa mediante un modelo

estadístico Gaussiano generalizado, que mapea los datos del EEG en un espacio de baja dimensión

de dos parámetros: escala y forma [1]. Finalmente, las pruebas estadísticas están diseñadas para

demostrar que estos parámetros caracterizan correctamente las crisis epilépticas. Además, en el

capítulo 2, se desarrolla nuestra segunda contribución, un desarrollo analítico de la divergencia

de Kullback-Leibler para medir la discrepancia entre las distribuciones estadísticas de crisis y no-

crisis en las señales epilépticas [2]. El Capítulo 3, presenta la tercera contribución que consiste

en un nuevo algoritmo para detectar en señales EEG, el inicio de las crisis epilépticas junto con

la estimación de su propagación. Se muestra que el parámetro deescalaestá estrechamente
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relacionado con la variabilidad de la actividad cerebral y, por lo tanto, es un buen descriptor para

realizar la detección y seguimiento de las crisis [3]. Basado en el modelo estadístico desarrollado

en el capítulo 2, el capítulo 4 presenta la cuarta contribución, la cual consiste en desarrollar y

comparar cuatro enfoques de claci�cación con alta sensibilidad y especi�cidad. Este enfoque está

basado en un modelo para detectar si las señales exhiben actividad cerebral normal o anormal en

cada ritmo cerebral. Primero, se propone un clasi�cador de análisis discriminante lineal que se

basa en estadística univariada de los datos del EEG [4, 5]. En segundo lugar, se generaliza este

enfoque desarrollando un clasi�cador Bayesiano multivariado [6]. En tercer lugar, un clasi�cador

de ensamble de conjuntos basado en la entropía de la distribución Gaussiana generalizada [7].

Finalmente, se desarrolla un método de clasi�cación de regresión logística basado en el mayor

exponente de Lyapunov del análisis de componentes independientes (ICA) de cada ritmo cerebral

[8]. Este último método se usa como referencia, ya que proporciona un excelente rendimiento pero

con costos computacionales signi�cativos. La quinta contribución, en el capítulo 5, está relacionada

con en el reconocimiento de patrones epileptiformes con el propósito de detectar descargas espiga-

onda (SWD) en señales EEG de larga-duración. Se desarrollan y se comparan tres métodos: un

clasi�cador de vecinos más cercanos (kNN) basado en las distribuciones Gaussiana generalizada y

t-location-scale [9, 10], y un clasi�cador de árbol de decisión basado en la correlación cruzada [11].

Se demostró que estos métodos logran una precisión muy alta en la detección del patrón SWD.



Abstract

Identifying epileptic brain activity using electroencephalography signals (EEG) in real-time is a

di�cult problem. Modern detection methods based on advanced machine learning techniques are

e�ective but require large training datasets, and are di�cult to implement in real-time monitoring

systems because of their relatively high computational cost. This thesis focuses on two central

problems linked to the characterization of epileptic seizures with EEG signals. The �rst one is

related to onset detection and the other one is about epileptiform pattern recognition. Using the

new characterization method presented in chapter 2, both can be implemented in real-time and

achieve a high detection performance. In general, this thesis brings �ve new contributions to deal

with challenging epilepsy problems. These contributions are summarized next, with references to

our related publications.

Chapter 2 presents the main contribution of this thesis: a new statistical model-based characte-

rization method of epileptic seizures in EEG signals. The proposed approach has several interesting

advantages. First, it allows the detection of seizure onset in the di�erent brain rhythms, indepen-

dently. Second, the proposed model relies on 2 parameters only, making its computation feasible

in real-time. Third, it allows developing automatic classi�cation methods trainable with reaso-

nably small datasets. These properties are demonstrated through the methods developed in the

subsequent chapters of this thesis. The proposed characterization method proceeds through three

stages. First, EEG signals are separated into �ve di�erent brain rhythms by using a wavelet �lter

bank. Each brain rhythm signal is then represented using a generalized Gaussian statistical model

that maps the EEG data to a low-dimensional space of two parameters: scale and shape [1]. Fi-

nally, statistical tests are designed to show that these parameters characterize correctly epileptic

seizures. In addition, chapter 2 develops our second contribution which is an analytical development

of Kullback-Leibler divergence to measure the discrepancy between the statistical distributions of

seizure and non-seizure epileptic signals [2], con�rming the ability of our model to characterize

seizures. Chapter 3 presents the third contribution consisting in a new algorithm for epilepsy seizure

onset detection and spread estimation from EEG signals, where thescaleparameter is shown to

be closely related to the variability of the brain activity and makes, therefore, a good descriptor

for performing seizure onset detection and tracking [3]. Based on the statistical model developed

in chapter 2, chapter 4 presents our fourth contribution. This consists of the development and

comparison of four model-based classi�cation approaches to detect whether the signals exhibit

normal or abnormal brain activity in each brain rhythm, with high sensitivity and speci�city. First,

we propose a linear discriminant analysis classi�er which relies on univariate statistics of the EEG
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data [4, 5]. Second, we generalize this approach by developing a multivariate Bayesian classi�er

[6]. Third, an ensemble bagging classi�er based on the entropy of the generalized Gaussian distri-

bution [7]. Finally, we develop a logistic regression classi�er method based on the largest Lyapunov

exponent from the independent component analysis of each brain rhythm [8]. The latest method

is used as a reference since it provides excellent performance but with signi�cant computational

costs. The �fth contribution, in chapter 5, is related to epileptiform pattern recognition with the

purpose of detecting spike-and-wave discharges (SWD) in EEG long-time signals. Three methods

are developed and compared:k-nearest neighbors classi�er based on the generalized Gaussian and

t-location-scale distributions [9, 10], and a decision tree method based on the cross-correlation

[11]. We show that these methods achieve very high accuracy in detecting SWD pattern.
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Chapter 1

EEG and Epilepsy

1.1 Introduction

Electroencephalography (EEG) is a non-invasive and widely available biomedical modality that is

used to diagnose epilepsy and plan treatment. Neurologists trained in EEG are able to determine a

correct diagnostics of epilepsy. They identify visually its onset and presence through the analysis of

characteristic waveforms, known as spikes, associated with epileptic seizures, which include: mode

of onset and termination, clinical manifestations, and abnormally enhanced synchrony. A spike is

characterized by short bursts of high amplitude, synchronized and multi-phasic activity, in which

polarity changes occur in di�erent times, which manifest themselves at or around the epileptic

focus and stand out from the background EEG. The spikes are associated with seizures through

di�erent brain areas and to the relationship with the brain rhythms. These waveforms are usually

depicted according to their morphology (e.g. amplitude, duration, sharpness, and emergence from

the background) to provide more insight into the epilepsy phenomena behind EEG measurements.

This �rst chapter discusses the medical aspects of seizures, classi�cation and onset detection in

epilepsy, as well as brain rhythms.

1.2 Electroencephalography

The German psychiatrist Hans Berger made the �rst recording of the electric �eld of the human

brain in 1924 [15]. This recording orelectroencephalogramcan measure brain activity in two

ways: noninvasively through the scalp with an amplitude of approximately 100� V or invasively

on the surface of the brain with an amplitude of 1 to 2 mV. EEG is the result of the sum of

the action potentials derived from the mixture of streams generated by extracellular populations

of neurons. Therefore, EEG depends basically on the cytoarchitecture of neuronal populations,

their connectivity and the geometry of their extracellular �elds. The main physical sources of

the potential scalp are the pyramidal cells of the cortical layers III and V [16]. This modality,

improved over a century still remains the most widely used method in neurological and psychological

laboratories.
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EEG is used primarily for three types of studies [17]:

1. Brain activity.

2. Event-Related Potentials (ERP), which are EEG components that emerge in response to

a stimulus (e.g. electric, auditory, visual). Such signals are usually below the noise level,

therefore not easily distinguished, and require the use of stimuli and signal time averaging

to improve the SNR.

3. Bioelectric events produced by single neurons. The behavior of a single neuron can be

examined using microelectrodes that traverse the speci�c cells of interest. The study of a

single cell or cell networks allows the construction of models that re�ect the actual properties

of the tissue.

The standardized international 10-20 system is generally used to record the EEG activity. This

system has 21 electrodes located symmetrically on the surface of the scalp; these positions are

computed as percentages of standard distances, the resulting records are comparable between

di�erent patients, see Figure 1.1. EEG electrode positions are determined as follows: the reference

points are the nasion, which is the delve at the top of the nose, at the level of the eyes; and the

inion, which is the bony lump at the base of the skull on the midline at the back of the head. From

these points and once the central point (Cz) is localized, the skull perimeters are measured in the

transverse and median planes. Electrode locations are determined by dividing these perimeters

into 10% and 20% intervals, see Figure 1.1 and Figure 3.1. Additionally, the EEG measurement

provides temporal and spatial information about the synchronous �ring of many neurons inside

the brain with a dominant frequency according to the brain rhythms (see section 1.3), namely

delta (� ) with (f � 4 Hz), theta (� ) with (4 Hz � f � 7 Hz), alpha (� ) with (8 Hz � f � 12

Hz), beta (� ) with (13 Hz � f � 29 Hz) and gamma (
 ) with (30 Hz � f), see Table 1.1 for

more details. EEG measurement can use anunipolar electrodes con�guration, where the potential

of each electrode is compared either to a neutral electrode or to the average of all electrodes;

or bipolar electrodes con�guration, where the potential di�erence between a pair of electrodes

spatially close is measured [17].

In EEG, an artifact is de�ned as an electrical potential that has originated outside of the

brain; there are two basic artifact types, 1) physiological artifacts generated from the electrical

activity associated with the normal functioning of the body of the patient (e.g. movement and

blinking of the eyes, respiration, chewing, bruxism, swallowing, tongue movement, skin potentials,

body tremor, cardiac activity, muscle activity, sweat glands, pulse in the tissues, and arti�cial

cardiac pacemaker); 2) Non-physiological artifacts generated by electromagnetic �elds outside the

body or by technical problems (e.g. poor signal characteristics given by bad signal recording,

line frequency 50/60 Hz, electrodes, the di�erent types of medical equipment, cell phones, lights,

and the environmental movement). Figure 1.2 shows some examples of artifacts, for more details

see [18]. Noises are as important as artifacts. Acquiring EEG signal properly means mainly

safety, biosignal measurement with higher signal to noise ratio (SNR) and no data loss, as much

as possible. The system electronics include the circuitry and printed circuit board design, the
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Figure 1.1: 10-20 system: electrode placement method, the electrodes positions have a
nomenclature according to the di�erent functional regions of the cortex (temporal lobe,
parietal lobe, occipital lobe, frontal lobe), which are responsible for motor control, cognitive
and memory functions. A = Ear lobe, C = central, P = parietal, F = frontal, Fp = frontal
polar, O = occipital. Both parts of the �gure show the standard bipolar electrodes method
between the front (F) and back (B) of the head and between the left (L) and right (R)

hemispheres respectively

�ltering stages, electronic ampli�er's noise control, correct signal conversion, data storing, contact

resistance skin-electrodes, and background noise [19, 20, 21].

1.3 Brain rhythms

EEG is the predominant modality to study abnormal cerebral activity due to its low cost, small

space requirements, very-high time resolution, medium space resolution and its tolerance to subject

movement [22, 23]. EEG enables us to glimpse the generalized activity of the cerebral cortex. Brain

activity produces a range of electrical or brain rhythms, which closely correlate with particular

states of behavior or pathology. They help diagnose certain neurological conditions, especially the

seizures of epilepsy. Brain rhythms play an important role in spike timing and brain communication.

Di�erent brain regions, see Figure (3.1), produce distinctly di�erent brain rhythm frequencies that

are thought to re�ect unique forms of processing important for the localization, parceling, and

routing of information within and between regions [24].

The amplitude of the EEG signal strongly depends on how synchronous is the activity of the

underlying neurons. When a group of cells is excited simultaneously, the tiny signals sum up to

generate one larger surface signal. However, when each cell receives the same amount of excitation

but the excitations are spread out in time, the summed signals are meager and irregular and can

be a pathological discharge pattern generated in the basal ganglia [24]. Notice that in this case,

the number of activated cells and the total amount of excitation may not have changed, only the

timing of the activity. If a synchronous excitation of this group of cells is repeated, again and

again, the resulting EEG will consist of large-brain rhythmic that represent the normal activity of

the brain [25], Table 1.1 summarizes the brain rhythms.
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A recent study that compares the spectral power in the di�erent brain rhythms across 10 mental

health disorders such as depression, bipolar disorder, addiction, autism, ADHD, anxiety, panic disor-

der, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD) and schizophre-

nia; suggest that it is necessary to have caution with any interpretation of results from studies

that consider only one disorder in isolation [26]. Extrapolating this to epilepsy disease is impor-

tant, due to the considerable variability in the studies, reports based on a subset of studies or the

highly inconsistent between experts makes it di�cult to normalize all the di�erences found in the

researches.

Figure 1.2: Examples of di�erent artifacts: bruxism, tongue, arms and legs movement, exhi-
bit a similar alteration in all channels while swallowing and cell phone have a high pronounced
peak; lamp artifact present spikes that can be confused with epilepsy abnormal waveform by

an inexpert eye. The examples shown correspond to one-second segments in duration.

1.4 Epilepsy

The term epilepsy derives from the Greek termepilambaneinwhich means to seize, and it denotes

the predisposition to have recurrent, unprovoked seizures. Seizures can be symptomatic; that is,

result from speci�c precipitants such as fever, strokes, metabolic disturbances (e.g. hypoglycemia,

drug abuse/withdrawal), trauma, infections in the central nervous system, and acute head injury.

In epilepsy, however, seizures are unprovoked and expected to be recurrent [27]. Appropriate

diagnosis and treatment of epilepsy is a main public health issue. According to the World Health

Organization [28], there are more than 50 million people worldwide that su�er from some form of

epilepsy, nearly 80% of them are in developing regions, where it is believed that 3 out of 4 people

with these conditions do not get appropriate diagnostic and treatment.
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Brain
Rhythm

Frequency
in Hz

Amplitude
in � V

Region Cognitive activity Epileptic Clinical Association

Delta (� ) < 4 20-200 Frontal,
Temporal,
Occipital

Deep sleep, waking state, normal in infants,
sleeping adults.

Intermittent or non-rhythmic slow wave.
Newborn seizures.
Delta brush: beta-delta complexes and ripples of
prematurity.
Semirhythmic hallmarks of slow wave sleep.
Sharply-contoured slow waves.
Hypersynchrony.
Intermittent rhythmic activity.
Focal spiking.
Chaotic bursts.

Theta (� ) 4-7 20-100 Temporal,
Occipital

It is more common in children and young adults
than in older adults, locomotion, sensory infor-
mation, consciousness slips towards drowsiness,
unconscious material, creative inspiration, deep
meditation, maturational and emotional studies,
sleeping adults, drowsiness, spatial memory pro-
cesses.

Newborn seizures.
Triphasic waves.
Burst with a morphology very similar to ictal pat-
terns.
Rhythmic vertex.
Semirhythmic hallmarks of the onset of drowsiness.
Sleep-related hypersynchronies.
Sharply-contoured slow waves.
Sharp temporal discharges.
Theta pointu alternant: Neonatal alternating sharp
theta.
Abnormal in the adult during wakefulness.

Alpha (� ) 8-12 20-60 Occipital When there is no attention, mental fatigue, cog-
nitive disorders, awake but relaxed, attenuation
as an indicator of visual activity during dream-
ing, semantic memory processes, to any type of
task, during visually presented stimulations.

A slow decrease in frequency with an increase in am-
plitude..
Loss of reactivity to eye-opening or to mental aler-
ting.
Desynchronization when moving a body part.
Intrude into a deep sleep or attention dramatically.
An absence of the posterior rhythm.

Beta (� ) 13-29 2-30 Frontal,
Central,
Parietal

Active thinking, active attention, focus on the
outside world or solving concrete problems, is
found in normal adults, panic state, rises im-
mediately after the task, sensory-motor area,
drowsiness, light sleep, REM sleep, a relatively
sudden, di�use increase in activity can mark on-
set of early drowsiness

Increase or decrease in waves activity.
Triphasic waves.
A smaller magnitude and delayed in motor move-
ments.
High voltage or plentiful activity.
Asymmetry.

Gamma (
 ) 30 < 5-10 Frontal,
Central

Childhood, memory tasks, awakening, REM
sleep, working, right and left index �nger move-
ment, right toes and the rather broad and bilat-
eral area for tongue movement.

Highest levels of cerebral blood �ow.
Asynchrony bursts

Table 1.1: Brain rhythms

The International League Against Epilepsy (ILAE) [29] de�nes�epileptic seizure as a transient

occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity

in the brain�. The elements de�ning an epileptic seizure include its mode of onset and termination,

its clinical manifestations, and its abnormal enhanced synchrony [30]. Physical manifestations of

epilepsy result mainly from the synchronous and excessive discharge of electricity by a group of

neurons behaving abnormally in the cerebral cortex. Epileptic seizures usually have a sudden onset,

they spread within seconds and, in most cases, are brief. The precise manifestation of a seizure

depends on the location in the brain where it originates (onset detection) and on how far and

fast it spreads. The correct identi�cation of this location and spread information is key to proper

treatment. Therefore, an epilepsy syndrome consists of a combination of clinical, seizure and

EEG characteristics that make up a distinct entity. The diagnosis of epilepsy has implications for

outcome and management, however, diagnosis of a particular syndrome does not imply a single

cause, it has multiple etiologies [27].

The electroencephalogram (EEG) is the premier diagnostic tool for epilepsy and provides a

key element for the classi�cation and detection of epileptic seizures. The information about the

morphology and dynamics of EEG signals can be used to accurately identify seizure onset and



6 Chapter 1. EEG and Epilepsy

quantify the severity and dynamical progression of seizure activity. A neurologist can discriminate

normal from abnormal signals. A normal signal includes the general signal in the cortex, the typical

brain rhythms and the varying degrees of thalamocortical interdependence while an abnormal signal

includes burst suppression and seizures.

Epileptic attacks have two clinical manifestations of abnormal activity.Ictal or activity recorded

during an epileptic seizure, andInterictal or abnormal signals recorded between epileptic seizures.

Where the impaired consciousness plays an important role, which is de�ned as the inability to

respond normally to exogenous stimuli by virtue of altered awareness and/or responsiveness [31].

In epilepsy context, normal activity includes physiological artifacts and di�erent sleep potentials

e.g. vertex waves,K -complexes, positive occipital sharp transients of sleep and benign waveform

transients of sleep; while abnormal activity refers to interictal waveform potential, according to

morphological characteristics. Interictal discharges are good epilepsy indicators and depending on

EEG recordings duration and the inclusion of di�erent states of vigilance; they can be shown in up

to 90% of patients [32], see Table 1.2.

More common morphological waveforms are spike-wave and sharp-wave, see Figure 1.3; a spike-

wave may last 20-70 ms and a sharp-wave may last 70-200 ms although not as sharply contoured

as a spike; spike-wave complex is a spike followed by a slow-wave. If they occur at rates below 3

Hz then they are called spike-and-slow-wave complexes. Polyspikes have multiple spike complexes

where several spikes occur in sequence, e.g. polyspike-and-slow-wave is a polyspike followed by a

slow-wave, see Figure 1.4.

Background activity describes the context in which the spike occurs; it is used to normalize

the spike parameters to account for varying electrical output from di�erent patients and determine

whether the spike is more than a random variation of the underlying rhythmic activity [33].

1.5 Seizure classi�cation

Seizure classi�cation is composed of four families: 1) Partial or Focal Seizures, which originate from

a localized cortical area and represent 60% of epilepsy cases; 2) Generalized Seizures, which are

characterized by initial synchronous discharges over both hemispheres and represent 40 % of cases

(see Tables 1.3 and 1.4 for more details); 3) Unclassi�ed Epileptic Seizures; and 4) Addendum,

prolonged or repetitive seizures [31, 34]; see Table 1.1 for a relationship with the di�erent brain

rhythms. For a better compression of Table 1.4, the following de�nitions are introduced according

to [35]

Absence seizures : They cause lapses in awareness, sometimes with staring. They are a type of

generalized onset seizures, meaning they begin in both sides of the brain at the same time.

An older term is petit mal seizures. They begin and end abruptly, lasting only a few seconds.

Atypical absences : They are a type of absence seizure that is atypical. This means it's di�erent,

unusual, or not typical compared to typical absence seizures, which were previously called

petit mal seizures. They are a type of generalized onset seizure. When a single atypical

absence seizure ends, the person usually is awake and continues doing whatever they were
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doing before the seizure. No �rst aid is needed during a single seizure. Sometimes a person

may have more than one atypical absence at a time or have groups of seizures.

Clonic seizures : "Clonus" means fast sti�ening and relaxing of a muscle that happens repeatedly.

In other words, it is repeated jerking. The movements cannot be stopped by restraining or

repositioning the arms or legs. Clonic seizures are rare and most commonly occur in babies.

Most often, clonic movements are seen as part of a tonic-clonic seizure.

Tonic seizures : Muscle "tone" is the muscle's normal tension at rest. In a tonic seizure, the

tone is greatly increased: the body, arms, or legs become suddenly sti� or tense.

Myoclonic seizures : are brief shock-like jerks of a muscle or group of muscles. "Myo" means

muscle. They occur in a variety of epilepsy syndromes that have di�erent characteristics.

During a myoclonic seizure, the person is usually awake and able to think clearly.

Tonic-clonic seizure : They usually begins on both sides of the brain, but can start in one side

and spread to the whole brain. A person loses consciousness, muscles sti�en, and jerking

movements are seen. These types of seizures usually last 1 to 3 minutes and take longer for

a person to recover.

Atonic seizure : In this seizure, a person suddenly loses muscle tone. Their head or body may

go limp and they may fall. They are also known as drop attacks.

Figure 1.3: Di�erent interictal abnormal activity: a) spike waveforms using a monopolar
con�guration whose reference is the average of all channels (Avg). b) sharp-wave using
bipolar con�guration, note the phase reversal in FP1-FT7, FT7-F7 channels vs. FT9-T3,
T3-T5 channels, this indicating that channel F7 is a seizure candidate; c) spike-and-wave
using monopolar con�guration whose reference are A1 or A2 channels, the spike-and-wave

waveform is present in almost all channels.
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Figure 1.4: Di�erent ictal abnormal activity: polyspike, polyspike wave and polyspike,
respectively.

Clinical Recorded Onset EEG waveform Behavioral Disturbance

Ictal. During
an
epileptic
seizure.

Match. Spikes, spike trains,
isolated spikes,
sharp-waves,
spike-wave complexes,
sharp-wave complexes

a) Bilateral involvement with
impaired consciousness and ab-
normal EEG.
b) Unilateral involvement with
clear consciousness where the
EEG can be normal.

Interictal. Between
epileptic
seizure.

It can
match
or
not.

Polyspike and
polyspike waves.

a) Inadequate psychological
adaptation; neurological, cog-
nitive and intellectual de�cits.
b) Aberrant personality traits.
A�ective disorders.
c) Psychoses.
d) Memory.
e) Depression.

Table 1.2: Abnormal activity and associated EEG morphologic waveforms



1.6. Seizure onset detection 9

1.6 Seizure onset detection

Ictal discharges are clinical signs used to detect the onset seizure from the epileptogenic zone in

the brain cortex. Seizure Onset Detection (SOD) helps physicians to improve therapy with drug

treatment, diagnostic and alert procedures; while in biomedical technology, the goal is intended

to recognize the start of a seizure, with the shortest possible delay and with the highest possible

accuracy. SOD recordings may be: intracranial or extracranial. In intracranial recordings, for

seizure identi�cation and retrospective analysis of seizures, often in the context of presurgical

evaluations, it can be relatively straightforward to detect onset with reasonable sensitivity and

speci�city since events often last over a minute [36]. In extracranial recordings to distinguish

between primary and secondary irritative areas may be di�cult. The primary irritative area is the

ictal zone when the focal seizure starting and the second irritative area is related to his spread. This

is because an ictal discharge can spread very fast to the normal anatomical connections between

cortical areas, through the commissural �bers or via subcortical structures. Finally, this may lead

to the widespread or bilateral occurrence of interictal discharges [37].

Clinical Impaired
Consciousness

EEG Seizure Onset Interictal
Expression

Simple
partial
seizure.

Not. Local contralateral dis-
charge starting over
the corresponding area
of cortical representa-
tion.

Lateral but
not always
recorded on
the scalp.

Local
contralateral
discharge.

Complex
partial
seizure.

Yes. Unilateral or frequently
bilateral discharge, dif-
fuse or focal in tempo-
ral.

Fronto-
temporal.

Unilateral
or bilateral,
generally
asyn-
chronous
focus.

Partial
seizures
evolving to
secondarily
generalized
seizures.

Yes. Above discharges be-
come secondarily and
rapidly generalized.

Focal,
lateral.

Focal
discharge.

Table 1.3: Classi�cation of simple partial seizures

In a medical context, neurologists use EEG to determine the type of seizure the person may

have had and if there are any detectable abnormalities in the person's brain rhythm waves. This

analysis of waveform features permits to localize and quantify the epileptogenic zone. In the context

of epilepsy surgery, the precise identi�cation of the epileptogenic zone is crucial. The seizure

onset zone is the area of the cortex from which clinical seizures generate. There is currently no

diagnostic modality that can be used to directly measure the entire epileptogenic zone. The precise

localization of the epileptiform discharges is essential to the localization of the epileptogenic zone,
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Clinical EEG Seizure Abnormal
Activity

EEG Waveforms Interictal
Expression

Absence
seizures, It
is the most
typical.

Regular and symmetric
between 2 Hz and 4 Hz.

Bilateral, regular
and symmetric.

Spike-wave, slow-
wave complexes,
multiple spike-wave
and slow-wave com-
plexes.

In background acti-
vity usually normal,
although paroxysmal
activity may occur.

Atypical
absence.

EEG more heterogeneous;
may include fast activity or
other paroxysmal activity.

Bilateral, irregular
and asymmetric.

In background usually
abnormal; paroxysmal
activity.

Regular, spike-wave,
irregular spike, slow-
wave complexes, and
slower generalized
spike-wave.

Myoclonic
seizures,
Myoclonic
jerks.
(single or
multiple).

Polyspike and wave, or
sometimes spike and wave or
sharp and slow waves.

Bilateral. Polyspike,
sharp-wave.

Same as ictal.

Clonic
seizures.

Fast activity of 10 Hz or
more.

Focal
contralateral.

Slow-waves,
occasional spikes and
wave patterns.

Spike and spike-
waves, polyspike and
wave discharges.

Tonic
seizures.

Low voltage fast activity or
a fast rhythm of 9 Hz - 10
Hz or more decreasing in fre-
quency and increasing in am-
plitude.

Sometimes
asymmetric.

Sharp and slow-waves.More or less rhythmic
discharges of sharp
and slow waves. The
background is often
abnormal for age.

Tonic-clonic
seizures.

Rhythm at 10 Hz or more,
decreasing in frequency and
increasing in amplitude du-
ring tonic phase, interrupted
by slow waves during clonic
phase.

Bilateral. Polyspike. Polyspike and waves,
spike and wave, or,
sometimes, sharp
waves and slow-wave
discharges.

Atonic
seizures.

Flattening or low-voltage
fast activity.

Bilateral. Polyspikes and slow-
waves.

Polyspikes and slow-
waves.

Table 1.4: Classi�cation of generalized seizures

particularly in patients considered for resective epilepsy surgery [38]. The multifaceted aspects of

these discharges can be explored in vivo by electroencephalographic recordings [39].

The seizure onset is assessed visually and de�ned as an unequivocal and sustained rhythmic

change from the background activity in the EEG accompanied by subsequent clinically typical

seizure activity, and clearly distinguished from background EEG and interictal activity. When this

information cannot be properly identi�ed from the scalp EEG the intracranial monitoring with grids

or depth electrodes are indicated. The EEG seizure-onset patterns may exhibit:

1. A low-voltage fast activity that produces an attenuation of background activity.

2. Low-frequency high-amplitude periodic spikes, high-voltage spiking at 0.5-2 Hz.

3. Sharp activity, low to medium-voltage sharply-contoured rhythmic activity most commonly

in the alpha/theta range.

4. Spike and wave activity occurring at a frequency of 2-4 Hz.
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5. A burst of high amplitude polyspikes.

6. Burst suppression, brief bursts of medium- to high-voltage repetitive spikes alternating with

brief periods of voltage attenuation

7. Delta brush, rhythmic delta waves at 1-2 Hz, with superimposed brief bursts of 20-30 Hz

activity overriding each delta wave [40].

Seizure onset detection was �rst investigated in the seventies by Viglione et al. [41] and Liss et

al. [42], and with later contributions by Ktonas et al. [43], Gotman et al. [44] and Iasemidis et al.

[45, 46]. Moreover, di�erent works studied linear and nonlinear prediction techniques to separate

transients from background activity. For example, �lter techniques [47], power spectrum techniques

[48], cross-correlation techniques [49], principal or independent component analysis techniques [50,

51] have been investigated. Other examples include techniques based on wavelet representations

[52], state space reconstruction [53], correlation measures [54], signal dimension [55], density and

correlation integrals [56, 57], mutual prediction [58], Lyapunov exponents [59, 8], synchronization

[60], similarity measures [61], recurrence quanti�cation measures [62], and nonlinear predictability

[63]. We refer the reader to [64] for a comprehensive treatment of measurement, models, detection

and prediction techniques. Other important surveys of the literature in this topic can be found in

[65, 52, 66, 67, 68, 33, 69, 70, 71, 72]. See Section 4.2 for an extension of this state-of-art.

Moreover, modern SOD methods can be grouped into the following categories: 1)Template

matching: These are techniques based on �nding events that match previously selected spikes; the

detection is made whenever the cross correlation of the EEG with a template exceeds a threshold

[73]; 2) Parametric methods: These techniques are based on traditional signal processing and

consider that a seizure has occurred when the di�erence between the EEG signal and a predicted

value (based on the assumption that the background is stationary) exceeds a threshold [74]; 3)

Mimetic methods: these techniques seek to mimic the human expert (i.e. neurophysiologist) and

operate by monitoring the value of parameters computed from each wave and applying thresholds

[75, 76, 77]; 4)Morphologic analysis: these techniques are based on the characterization of the

waveforms with respect to sharpness, amplitude, duration, convexity, frequency bands or time-

frequency representations of spikes [75, 78]; 5)Syntactic methods: these techniques are based

on the detection of the presence of structural features [79]; 6)Neural networks: this approach

adopts a machine learning perspective to learn transients related to epileptic seizures [80, 81]; 7)

Expert systems: this approach detects seizures by mimicking an expert's knowledge and reasoning

process [82]; 8)Data mining techniques: this approach also adopts a machine learning perspective

to train a classi�er [71, 83, 84]; 9)Clustering techniques: detection is based on hierarchical

agglomerative processes and self-organizing maps [47, 72]; 10)Knowledge-based rules: similar to

expert systems, these techniques seek to incorporate knowledge from neurophysiologists through

spatial and temporal rules [85, 67, 85].



12 Chapter 1. EEG and Epilepsy

1.7 Conclusions

This chapter presented the medical context of this thesis by de�ning electroencephalography, brain

rhythms, epilepsy, and seizure activity. These topics are important for developing biomedical

solutions, especially for detecting epileptic seizure activity in EEG signals in real-time. In order

to quantify and characterize such brain disorders, this thesis adopts a statistical modeling and

mathematics computation approach. The following chapter develops this approach and derives

quantitative characterization indicators.



Chapter 2

Statistical-Model-based EEG signal

characterization

2.1 Introduction

In chapter 1, EEG, brain rhythms, epilepsy, and seizure activity were explained in the medical

context. In this chapter, a statistical model is established for EEG data, in order to characterize

the epileptic seizure activity within each brain rhythm.

In the �rst part, the method of decomposing EEG data into di�erent brain rhythms using

wavelets �lter banks is presented. Next, di�erent statistical models are studied and compared in

order to choose the best model that �ts the brain rhythms. The generalized Gaussian distribution

(GGD) is shown to give the best goodness-of-�t. This constitutes the main contribution of this

thesis, which shows that the GGD statistical model represents correctly the epileptic seizure activity

in EEG signals. This model permits the characterization and quanti�cation of EEG signals using

its scale and shape parameters. In addition, this proposed model-based characterization allows a

considerable dimensional reduction and makes possible developing fast classi�cation algorithms with

low complexity. In the second part, the Kullback-Leibler divergence (KLD) is used to measure the

discrepancy between probability density functions (PDF), in order to detect changes betweenseizure

and non-seizure. Our second methodological contribution consists in the analytical development

of the KLD between two generalized Gaussian distributions.

2.2 Data set

In order to establish the best statistical model for epileptic EEG, we studied the Children's Hos-

pital Boston database [86], previously considered in [37]. This dataset which consists of 36 EEG

recordings from pediatric subjects with intractable seizures. In this thesis, we used 54 events of

18 recordings from 9 di�erent subjects. The events include 18seizuresand 36non-seizures(18

before and 18 after the seizure).

The signals were acquired with a23-channel array operating at a256 Hz sampling rate. The

neurologist annotated each signal to indicate the beginning and end of the seizure epochs, which

we use as ground truth. Moreover, for eachseizureepoch, the neurologist also selected two

adjacentnon-seizuresignal segments of the same length to represent challenging or control of the
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non-pathological brain activity. The length of all seizures used are summarized in Table 2.1.

No distinction was considered regarding the types of seizure onsets; the data contains focal,

lateral, and generalized seizure onsets. Furthermore, the recordings were made in a routine clinical

environment, thereforenon-seizureactivity and artifacts such as head/body movement, chewing,

blinking, early stages of sleep, and electrode pops/movement are present in the data, see Figure

1.2 in Section 1.2.

Processing duration in msec

Epoch Seizure Duration Segments Delta Theta Alpha Beta Gamma

01 04 1m30sec 181 7 6 7 7 8
02 05 1m41sec 203 7 7 7 8 9
03 10 1m04sec 129 7 7 7 7 9
04 11 1m07sec 137 7 6 7 7 8
05 12 2m00sec 241 7 7 7 8 8
06 13 1m57sec 235 7 7 7 8 9
07 17 1m26sec 173 7 7 7 8 8
08 18 2m23sec 287 7 7 7 8 9
09 19 3m09sec 321 7 6 6 7 8
10 20 3m46sec 343 7 6 6 7 8
11 21 5m38sec 529 7 6 7 7 8
12 22 1m04sec 129 7 6 7 7 8
13 23 1m03sec 125 7 9 9 7 13
14 26 1m05sec 131 7 9 10 11 35
15 27 1m02sec 117 7 7 7 7 9
16 28 1m16sec 153 7 7 7 8 9
17 29 1m29sec 179 7 6 7 7 8
18 30 0m32sec 65 7 7 7 7 8

Table 2.1: Length of the18 seizures used in this study and the corresponding number of
overlapping 1-second segments using a rectangular sliding window of 2 seconds. An o�set has
been used for each epoch to avoid leading and trailing signals that were noisy. Consequently,

the number of windows is irregular between epochs.

2.3 Data organization

Let X 2 RM � N denote the matrix gatheringM EEG signalsxm 2 R1� N measured simultaneously

on di�erent channels and atN discrete time instants. We use the representation [22],

X = K J + � (2.1)

whereX are the EEG signals,J 2 Rns � N is a matrix representing the sources,K 2 RM � ns is the

so-called lead �eld or gain matrix,ns is the number of sources, and� is additive noise.
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The original signalX is split into a set of overlapping 1-second segments using a rectangular

sliding window of 2 seconds so that

X (i ) = 
 (i )X (2.2)


 (i ) =
h
0L� iL ; I L� L ; 0L� N� iL � L

i

where0N� M 2 RN� M is the null matrix,I N� N 2 RN� N is the identity matrix andL is the number

of measurement obtained in 2 seconds.

2.4 Wavelets and Filter banks

Wavelets are localized waves that, instead of oscillating forever, drop to zero. They come from

the iteration of �lters with scaling [87, 88]. They are obtained from a single prototype �mother�

wavelet (t ) by rescaling and shifting, i.e.,

 a;b(t ) =
1

p
a

 
�

t � b
a

�
(2.3)

wherea is the scaling parameter andb is the shifting parameter. The wavelet transform is given

by

Wf (a; b) =
Z 1

�1
x(t ) a;b(t )dt (2.4)

The discrete wavelet transform (DWT) transforms a discrete time signal to a discrete wavelet

representation. It converts an input seriesx = [ x0; : : : ; xL� 1]T of length L, into one high-pass

(h) wavelet coe�cient series and one low-pass (l ) wavelet coe�cient series, each one of lengthL2 ,

given by

hj =
K � 1X

k=0

x2j � k sk ; lj =
K � 1X

k=0

x2j � k tk 8 0 � j <
L
2

(2.5)

wheres = [ s0; : : : ; sK � 1]T and t = [ t0; : : : ; tK � 1]T are called the wavelet �lters. Recalling that

X (i ) represents a multichannel signal where each column contains a di�erent channel and each

row represents the temporal evolution of the EEG signal.

The discretized wavelet for the DWT takes the following form

Wd (a; b) =
1X

�1

x(n)
1

p
aj

 a;b

�
n � b

aj

�
(2.6)

In the discrete wavelet transform, the scale parameter is always discretized to integer powers of2,

2j with j = 1 ; 2; 3; � � � ; so that the number of voices per octave is always 1.
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The CWT and DWT di�er in how they discretize the scale parameter. The CWT typically uses

exponential scales with a base smaller than2 (e.g. 21=12), while the DWT always uses exponential

scales with the base equal to2. The scales are powers of2. Therefore, the physical interpretation

of scales for both the CWT and DWT requires the inclusion of the signal's sampling interval if it

is not equal to one [89].

2.4.1 Multilevel 1D wavelet decomposition

The multilevel 1D wavelet transform decomposes the matrixX (i ) using eq. (2.5) into two compo-

nent matrices, namelyL (i )
j , H (i )

j , where (L) corresponds to applying a low-pass frequency operation

to the temporal component (rows) ofX (i ) and (H) refers to the high-pass �lter applied to the

channel component (columns) ofX (i ) ; each one according the scalej . The lowest frequency

sub-bandL(i )
j is the approximation (A) coe�cients andH(i )

j is the detail (D) coe�cients of the

original signalX (i ) . This process is repeated recursively replacing the input signalX (i ) with the

last approximation seriesL (i )
j until the desired number of scalesj = [1 ; 2; : : : ; J]T is obtained.

2.4.2 Multilevel 2D wavelet decomposition

The multilevel 2D wavelet transform decomposes the matrixX (i ) using eq. (2.5) into four com-

ponent matrices, namelyLL (i )
j , LH (i )

j , HL (i )
j and HH (i )

j , where the �rst letter corresponds to

applying a low-pass (L) or high-pass (H) frequency operation to the temporal component (rows)

of X (i ) and the second letter refers to the �lter applied to the channel component (columns) of

X (i ) , each one according to the scalej . The lowest frequency sub-bandLL (i )
j is the approxi-

mation coe�cients of the original signalX (i ) . The remaining three frequency sub-bands are the

detail parts of the signal and give the vertical high (LH (i )
j ), horizontal high (HL (i )

j ) and diagonal

high (HH (i )
j ) coe�cients. This process is repeated recursively replacing the input signalX (i ) with

the last approximation seriesLL (i )
j until the desired number of scalesj = [1 ; 2; : : : ; J]T is obtained.

2.4.3 Extraction of brain rhythms

The coe�cients X (i ) associated with all wavelet scales for a 2-second segment with overlapping

1 second, are represented using a Daubechies wavelet �lter bank with 6 scales of order 4 (Db4),

see Figure 2.1, to obtain a time-frequency decomposition [90]. The purpose of this decomposition

is to evaluate the energy distribution throughout the neurological frequency spectrum or brain

rhythms, namely thedelta (� ), theta (� ), alpha (� ), beta (� ) and gamma (
 ) bands [91, 92].

Db4 o�ers the number of vanishing moments that allow representing the signal with su�cient

smoothness. Performing wavelet decomposition �ts naturally the dyadic structure of the neu-

rological spectral bands, and provides a computationally e�cient �ltering algorithm that can be

implemented straightforwardly on real-time signal processing hardware.
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Figure 2.1: db4 wavelet waveform, we can see the similarity with a seizure waveforms in
Figures 1.3 and 1.4.

Let C(i )
j denote the coe�cients corresponding to the di�erent sub-bands, namely approxi-

mation (A) and detail (D) coe�cients for the multilevel 1D wavelet decomposition (Section 2.4.1)

or horizontal (H), vertical (V), diagonal (D) and approximation (A) for the multilevel 2D wavelet

decomposition (Section 2.4.2).

Let � (i ) denote the vector of parameters estimated from the di�erent brain rhythms (
; �; �; �; � ,

see Table 2.2):

� (i ) =
�
� (i )

3 ; � (i )
4 ; � (i )

5 ; � (i )
6 ; � T

L (i )
6

� T

=
h
� (i )


 ; � (i )
� ; � (i )

� ; � (i )
� ; � (i )

�

i T
: (2.7)

For the multilevel 1D wavelet decomposition (Section 2.4.1) we obtain a 5-dimensional vector

� (i ) and the components:

� (i )
j =

�
� T

L (i )
j

; � T
H (i )

j

�
: (2.8)

For the multilevel 2D wavelet decomposition (Section 2.4.2) we obtain a 13-dimensional vector

� (i ) and the components:

� (i )
j =

�
� T

LH (i )
j

; � T
HL (i )

j

; � T
HH (i )

j

�
: (2.9)

Table 2.2 presents frequencies corresponding to di�erent levels of decomposition for the Daubechies

wavelets of order 4 with a sampling frequency of 256 Hz, where A and D refer to Approximation and

details respectively for Section 2.4.1 or where H, V and D refer to horizontal, vertical and diagonal

details respectively for Section 2.4.2 and the number is the scale. The rest of approximations and

details are discarded because they are outside of the brain rhythms. Note that in high-frequency

oscillations (HFOs) the gamma band is extended to the 80�500 Hz frequency range, which provides
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to the neurophysiologist new information about the extent of the epileptogenic tissue in addition

to ictal and interictal lower frequency events[93].

Decomposed Signal Frequency range (Hz) Brain Rhythms

D3 - H3 - V3 32-64 Gamma (
 )
D4 - H4 - V4 16-32 Beta (� )
D5 - H5 - V5 8-16 Alpha (� )
D6 - H6 - V6 4-8 Theta (� )

A6 0-4 Delta (� )

Table 2.2: Frequencies of the di�erent scales of the multilevel 2D wavelet decomposition.

2.5 Statistical models

In this thesis, we are interested in the characterization of the physical processes underlying the EEG

signals. Deterministic physical models of such processes are di�cult to establish as epileptic seizure

have usually sudden onsets, spread in a matter of seconds, and are in most cases very brief. Also,

they are contaminated with noise that intrinsically follows a stochastic process model. In addition,

such physical model should also take into account the complexity related to the location of the

seizure source and the temporal and spatial scope of its spread. Therefore, we resort to statistical

modeling to capture the characteristics of the electrical processes underlying EEG signals. Our

aim is to establish quantitative indicators based on a statistical model to characterize EEG signals.

The objective is to develop a machine learning algorithm that uses such indicators as features to

detect epileptic seizures.

A statistical model is a probability distribution constructed to enable inferences to be drawn

through histogram or decisions made from data [94]. A histogram can be interpreted through a

parametric statistical distribution, where the probability density function (PDF) is denoted

p
�
C(i )

j ; � (i )
j

�
(2.10)

wherej refers to each brain rhythm,i is related to the window segment,C(i )
j are the coe�cients

corresponding to the di�erent brain rhythms, and� (i )
j is a set of model parameters associated with

the wavelet coe�cients of each brain rhythm. Statistical parameters are a quantity that indexes a

family of probability distributions [95], see Table 2.3 for some statistical parameters examples.

Parameter Logistic t-location-scale Alpha-stable Cauchy GGD

Location � � � x0 �
Scale � � 
 
 �
Shape � �

Skewness �
Stability �

Table 2.3: Statistical parameters of each distribution under consideration.
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For the EEG signalX with long segmentL from modelp
�
C(i )

j ; � (i )
j

�
, the maximum likelihood

estimation consists in maximizing

1
L

log
�
c; � (i )

j

�
=

1
L

LX

i =1

log p
�
c(i ) ; � (i )

j

�
(2.11)

giving the estimate

�̂
C(i )

j
= argmax

�
�

C
(i )
j

� T
log p (c; � ) : (2.12)

2.5.1 Generalized Gaussian distribution

The univariate generalized Gaussian distribution (GGD) is a �exible statistical model for one-

dimensional signals [96] that has found numerous applications in science and engineering [97, 98,

99, 100]. Since the series has zero-mean because it was subtracted (detrending), then there aren't

non-zero coe�cients for the lower frequency resolution band [101], it can be safely assumed that

they can be represented by a zero-mean distribution. Consequently, the distribution of the wavelet

coe�cients C(i )
j can be represented by using a zero-mean GGD statistical model [102, 103] with

probability density function (PDF) given by

fGGD(x; �; � ) =
�

2� �( � � 1)
exp

�
�

�
�
�
�
x
�

�
�
�
�

� �
(2.13)

where� 2 R+ is a scale parameter and� 2 R+ is a parameter that controls the shape of the

density tail and� ( �) is the Gamma function. Note that the GGD parametric distribution family

includes many popular distributions that are commonly used in biomedical signal processing. For

example, setting� = 1 leads to a Laplacian or double-exponential distribution,� = 2 leads to

Gaussian or normal distribution, and� ! 1 leads to a uniform distribution.

From eq. (2.13) and eq. (2.12), the statistical properties of the wavelet coe�cientsC(i )
j can be

summarized by parameter-vector�
C(i )

j
:

�̂
C(i )

j
=

h
� (i )

j ; � (i )
j

i T
= arg max

[�;� ]T
fGGD(C(i )

j ; �; � ): (2.14)

2.5.2 Logistic distribution

The logistic distribution models a continuous random variable whose probability density is the

logistic function. It is very popular in di�erent areas, such as biology, epidemiology, sociology

and energy [104, 105] . This parametric distribution has two parameters estimated by maximum
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likelihood [106], and the probability density function (PDF)

fLD (x; �; � ) =
exp

�
� x� �

�

�

�
�

1 + exp
�
� x� �

�

� 2
� (2.15)

where� 2 R is a location parameter and� > 0 2 R is a scale parameter. From eq. (2.15) and

eq. (2.12), the statistical properties of the wavelet coe�cientsC(i )
j can be summarized by the

parameter-vector�
C(i )

j

�̂
C(i )

j
=

h
� (i )

j ; � (i )
j

i T
= argmax

[�;� ]T
fLD (C(i )

j ; �; � ): (2.16)

2.5.3 t-location-scale distribution

The t-location-scale distribution, is heavy-tailed and has been extensively used in many di�erent

areas [107, 108]. This parametric distribution has 3 parameters estimated by maximum likelihood

[109], and the probability density function (PDF)

fT LSD (x; �; �; � ) =
�( � +1

2 )
�

p
�� �( �

2 )

"
� + ( x� �

� )2

�

#� � +1
2

(2.17)

where�1 < � < 1 is the location parameter,� > 0 is the scale parameter and� > 0 is the

shape parameter, see Section 5.6. From eq. (2.17) and eq. (2.12), the statistical properties of

the wavelet coe�cientsC(i )
j can be summarized by the parameter-vector�

C(i )
j

�̂
C(i )

j
=

h
� (i )

j ; � (i )
j � (i )

j

i T
= argmax

[�;�;� ]T
fT LSD (C(i )

j ; �; �; � ): (2.18)

2.5.4 Alpha-stable Distribution

The alpha-stable distribution, is heavy-tailed and has found several applications in economics and

physics as models of rare, but extreme events, such as earthquakes or stock market crashes [110].

In engineering and mathematics, it has also have a variety of applications [111, 112, 113, 114, 115].

This parametric distribution has 4 parameters estimated by maximum likelihood [116, 117, 118],

and the probability density function (PDF)

fASD (x; �; �; 
; � ) (2.19)

where� = 2 is a Gaussian characteristic exponent parameter that describes the tail of the distri-

bution, � 2 [� 1; 1] is a skewness parameter, with a right-skewed distribution for� > 0 and the

left-skewed for� < 0; 
 > 0 is a scale parameter and� 2 R is the location parameter.



2.6. Goodness-of-�t test 21

From eq. (2.19) and eq. (2.12), the statistical properties of the wavelet coe�cientsC(i )
j can

be summarized in a formal sense by the parameter-vector�
C(i )

j

�̂
C(i )

j
=

h
� (i )

j ; � (i )
j ; 
 (i )

j ; � (i )
j

i T
= argmax

[�;�;
;� ]T
fASD (C(i )

j ; �; �; 
; � ): (2.20)

2.5.5 Cauchy distribution

The Cauchy distribution has no mean, variance or higher moments de�ned. Mode and media are

both equal tox0 [119, 120]. Some applications in engineering and mathematics can be found in

[121, 122, 123]. This parametric distribution has two parameters estimated by maximum likelihood

[124], and the probability density function (PDF)

fCD(x; x0; 
 ) =
1

�
 [1 + ( x� x0

 )2]

(2.21)

wherex0 2 R is a location parameter and
 > 0 2 R is a scale parameter. From eq. (2.21) and

eq. (2.12), the statistical properties of the wavelet coe�cientsC(i )
j can be summarized by the

parameter-vector�
C(i )

j

�̂
C(i )

j
=

h
x0

(i )
j ; 
 (i )

j

i T
= argmax

[x0;
 ]T
fCD(C(i )

j ; x0; 
 ): (2.22)

2.6 Goodness-of-�t test

2.6.1 Distribution-�tting

For each statistical distribution, the parameters�
C(i )

j
(see Table 2.3) of the corresponding proba-

bility density function (PDF) were estimated in order to de�ne which is the best model for our

data set. This decision is determined visually through the histogram according to the presence or

absence of symmetry of the data set with respect to the mean value.

Figures 2.2 to 2.6 depict the �t of the di�erent statistical models to wavelet coe�cients for

each brain rhythm. This information is relevant to neurologists and allows discriminating clinical

events of di�erent nature, see Section 1.3. We notice that the generalized Gaussian distribution

(GGD) gives the best �t among all the statistical distributions, for all brain rhythms by using all

signals from the Children's Hospital Boston database. Both visual inspection of curve �tting and

Q-Q plot analysis con�rm this good-�t.
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Figure 2.2: Example of good �t of generalized Gaussian distribution (GGD) statistical model
for the Delta Band; we can observe the di�erent data distribution-�tting and how the GGD

is the best data-�t among all distributions considered.
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Figure 2.3: Example of good �t of generalized Gaussian distribution (GGD) statistical model
for the Theta Band; we can observe the di�erent data distribution-�tting and how the GGD

is the best data-�t among all distributions considered.
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Figure 2.4: Example of good �t of generalized Gaussian distribution (GGD) statistical model
for the Alpha Band; we can observe the di�erent data distribution-�tting and how the GGD

is the best data-�t among all distributions considered.
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Figure 2.5: Example of good �t of generalized Gaussian distribution (GGD) statistical model
for the Beta Band; we can observe the di�erent data distribution-�tting and how the GGD

is the best data-�t among all distributions considered.
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Figure 2.6: Example of good �t of generalized Gaussian distribution (GGD) statistical model
for the Gamma Band; we can observe the di�erent data distribution-�tting and how the GGD

is the best data-�t among all distributions considered.

2.6.2 Kolmogorov-Smirnov (KS)

Kolmogorov-Smirnov[125, 126] is a nonparametric test, used to decide if a sample comes from

a population with a speci�c distribution or between two empirical (cumulative) distributions. It is

de�ned by

H0 = The data come from a speci�ed distribution

H1 = The data don't come from a speci�ed distribution

KS = max
x

�
�
�F �

X (i ) � FX (i )

�
�
� (2.23)

whereF is the empirical distribution andF � is the speci�ed cumulative distribution. The hypothesis

regarding the distributional form is rejected if the signi�cantp-value is greater than0:05.

2.6.3 Cramer-von Mises criterion (CvM)

Cramer-von Mises(CvM) is a criterion used for judging the goodness of �t of a cumulative

distribution function compared to a given empirical distribution function or for comparing two

empirical distributions [127, 128]. It is de�ned by

H0 = The data come from a speci�ed distribution

H1 = The data don't come from a speci�ed distribution

CvM =
Z + 1

1

�
�
�F �

X (i ) � FX (i )

�
�
�
2

dF(X (i ) ) (2.24)
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whereF is the empirical distribution andF � is the speci�ed cumulative distribution. The hypothesis

regarding the distributional form is rejected if the signi�cantp-value is greater than0:05.

2.6.4 Goodness-of-�t test results

For comparison, we computed the goodness-of-�t score for the following statistical models that

are also commonly used to model wavelet coe�cients: logistic, t-location-scale distribution, and

alpha-stable. Moreover, we computed the scores for each spectral band and by separating the data

into seizuresand non-seizuregroups for each brain rhythms. The resulting scores are summarized

in Tables 2.4 and 2.5 below, which report respectively the mean and standard deviation of the

Kolmogorov-Smirnov (KS) and the Cramer-von-Mises (CvM) scores. Observe that the generalized

Gaussian distribution clearly provides the best model-�t-to-data.

KS Means GGD Logistic t-location-scale Alpha-stable

delta Non-Seizure 0.002 0.007 0.007 0.007
Seizure 0.002 0.004 0.004 0.004

theta Non-Seizure 0.008 0.037 0.042 0.042
Seizure 0.005 0.018 0.021 0.021

alpha Non-Seizure 0.005 0.045 0.051 0.051
Seizure 0.003 0.021 0.024 0.024

beta Non-Seizure 0.002 0.024 0.027 0.027
Seizure 0.001 0.011 0.012 0.012

gamma Non-Seizure 0.003 0.022 0.027 0.027
Seizure 0.001 0.010 0.012 0.012

CvM Means GGD Logistic t-location-scale Alpha-stable

delta Non-Seizure < 0.001 < 0.001 < 0.001 < 0.001
Seizure 0.004 0.007 0.006 0.006

theta Non-Seizure < 0.001 0.013 0.016 0.016
Seizure 0.001 0.006 0.008 0.008

alpha Non-Seizure < 0.001 0.021 0.027 0.027
Seizure < 0.001 0.005 0.006 0.006

beta Non-Seizure < 0.001 0.009 0.012 0.012
Seizure 0.001 0.005 0.006 0.006

gamma Non-Seizure < 0.001 0.010 0.016 0.016
Seizure < 0.001 0.002 0.003 0.003

Table 2.4: Means of the Kolmogorov-Smirnov (KS) and the Cramer-von-Mises criterion
(CvM) scores obtained for GGD pdfs estimated with all EEG segments of 54 events used, 18
seizuresand 36non-seizures. The GGD shows the lowest scores with respect to the other

distributions considered.
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KS st. deviations GGD Logistic t-location-scale Alpha-stable

delta Non-Seizure 0.001 < 0.001 < 0.001 < 0.001
Seizure 0.024 0.032 0.031 0.031

theta Non-Seizure < 0.001 0.002 0.002 0.002
Seizure 0.014 0.022 0.023 0.023

alpha Non-Seizure < 0.001 0.005 0.005 0.005
Seizure 0.008 0.007 0.007 0.007

beta Non-Seizure < 0.001 0.004 0.004 0.004
Seizure 0.008 0.014 0.016 0.016

gamma Non-Seizure 0.001 0.004 0.005 0.005
Seizure 0.002 0.003 0.003 0.003

CvM st. deviations GGD Logistic t-location-scale Alpha-stable

delta Non-Seizure 0.001 < 0.001 < 0.001 < 0.001
Seizure 0.178 0.290 0.258 0.258

theta Non-Seizure 0.001 0.004 0.003 0.003
Seizure 0.013 0.064 0.078 0.078

alpha Non-Seizure < 0.001 0.007 0.008 0.008
Seizure 0.005 0.016 0.015 0.015

beta Non-Seizure < 0.001 0.006 0.007 0.007
Seizure 0.028 0.145 0.174 0.174

gamma Non-Seizure < 0.001 0.007 0.011 0.011
Seizure 0.001 0.004 0.005 0.005

Table 2.5: Standard deviations of the Kolmogorov-Smirnov (KS) and the Cramer-von-Mises
criterion (CvM) scores obtained for GGD pdfs estimated with all EEG segments of 54 events
used, 18seizuresand 36non-seizures. The GGD shows the lowest scores with respect to the

other distributions considered.

2.7 Generalized Gaussian best distribution-�tting

In Section 2.6 di�erent statistical models were compared for their ability to model wavelet coe�-

cients, namely the generalized Gaussian, logistic, t-location-scale, alpha-stable and Cauchy. Based

on the visual comparison, it was determined that the generalized Gaussian is the best distribution.

Precisely, each scale of the wavelet decomposition is represented by the statistical parameters�

and � of the generalized Gaussian distribution. The proposed parameter-vector�
C(i )

j
is obtained

by collecting the parameters associated with all wavelet scales for a2-second segment with over-

lapping 1 second in all brain rhythms. This vector of parameters is adopted as a quantitative

descriptor of the EEG signals. It acts as a strong reduction of the dimension ofX (eq. (2.1)).

Therefore an epileptic signal can be modeled by the probability density function (PDF) of the

generalized Gaussian distribution represented by its parameter-vector given by
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�
C(i )

j
=

h
� (i )

j ; � (i )
j

i T
= argmax

[�;� ]T
fGGD(C(i )

j ; �; � ) =

"

�
C(i )

j

 ; �

C(i )
j

� ; �
C(i )

j
� ; �

C(i )
j

� ; � T
�

#T

: (2.25)

2.8 Characterization with the generalized Gaussian distribution

parameters

2.8.1 Estimation of � and �

The electrical brain signal analysis is mostly qualitative according to the level of expertise of the

physician. The development of new quantitative methods that can characterize the dynamical

changes of the electrical activity is crucial for restricting the subjectivity in the study in epileptic

seizures. In section (2.6), the goodness-of-�t test showed that the� and � parameters are good

descriptors capable to quantify the variation of the EEG signal in both time and frequency. We

adopt a pseudo-likelihood approach [129, 130, 131] and construct a log-likelihood function under

the next assumption: by ignoring dependency, we get a realistic approximation of the distribution

of the wavelet coe�cients. However, this approximation signi�cantly simpli�es that estimation of

the parameters of the model and generally produces accurate estimation results.

The log-likelihood of the samplec having independent component can be expressed as:

L(c; �; � ) = log
LY

i =1

fGGD(c(i ) ; �; � ) (2.26)

where� and � are parameters to be estimated. Maximizing this log-likelihood requires solving the

following equations:

@L(c; �; � )
@�

= �
L
�

+
LX

i =1

�
�
�
�c(i )

�
�
�
�

� � �

�
= 0 (2.27)

@L(c; �; � )
@�

=
L
�

+
L ( 1

� )
� 2 �

LX

i =1

0

@

�
�
�c(i )

�
�
�

�

1

A

�

log

0

@

�
�
�c(i )

�
�
�

�

1

A = 0 (2.28)

where = � 0(z)
�( z) is the digamma function. Fixing� > 0 in (2.27), the estimation of the scale�

parameter has a unique, real an positive solution:

� =

 
�
L

LX

i =1

�
�
�c(i )

�
�
�
�
! 1

�

: (2.29)

Substituting this into (2.28), the estimation of the shape� parameter is given by

g(� ) = 1 +
 ( 1

� )
�

�

P L
i=1

�
�
�c(i )

�
�
�
�

log
�
�
�c(i )

�
�
�

P L
i=1

�
�c(i )

�
� �

+
log

�
�
L

P L
i=1

�
�
�c(i )

�
�
�
� �

�
= 0 (2.30)
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Finally using a Newton-Raphson iterative procedure [102], we compute the new guess for the

root of g(� ), � k+1 , based on the previous one,� k , using

� k+1 = � k �
g(� k )
g0(� k )

: (2.31)

where

g0(� ) = �
 ( 1

� )
� 2 �

 0( 1
� )2

� 3 +
1
� 2 �

P L
i=1

�
�
�c(i )

�
�
�
� �

log
�
�
�c(i )

�
�
�
� 2

P L
i=1

�
�c(i )

�
� �

+

� P L
i=1

�
�
�c(i )

�
�
�
�

log
�
�
�c(i )

�
�
�
� 2

� P L
i=1

�
�c(i )

�
� �

� 2 +

P L
i=1

�
�
�c(i )

�
�
�
�

log
�
�
�c(i )

�
�
�

�
P L

i=1
�
�c(i )

�
� �

�
log

�
�
L

P L
i=1

�
�
�c(i )

�
�
�
� �

� 2 (2.32)

where 0 is the �rst poligamma or trigamma function. Note the fact thatg(� ) and g0(� ) share

many common terms which can be used for saving computation at each iteration step in (2.31).

For a GGD, it can be shown that the ratio of mean absolute value of the standard deviation is a

steadily increasing function of the� :

F(� ) =
�( 2

� )
q

�( 1
� )�( 3

� )
: (2.33)

The initial guess� 0 of the maximum log-likelihood estimator is given by

� 0 = F � 1

0

@
1
L

P L
i=1 jc(i ) j

q
1
L

P L
i=1 (c(i ) )2

1

A : (2.34)

Given a value for� , it is possible to estimate� by �nding the minimum of

argmin
[� ]

LX

i =1

�
�
�C(i ) � �

�
�
�
�

: (2.35)

2.8.2 Model based characterization

In order to use the parameters� and� as features to classifyseizureandnon-seizureEEG segments,

we �rst propose to assess their ability to separate such signals, in each brain rhythm, see section

2.4.3. We consider a dataset composed ofn1 non-seizureevents andn2 seizureevents of EEG

segments.
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Let 2.36 and 2.37 the set of parameters estimated fromnon-seizure(N) and seizure(S) events

respectively for a given brain rhythmj , which are the scale and shape parameters of the GGD

associated with the wavelet coe�cients from seizure events

�
� (N)

j ; � (N)
j

�
=

�n
� (N)

1;j ; : : : ; � (N)
n1;j

o
;
n

� (N)
1;j ; : : : ; � (N)

n1;j

o�
(2.36)

�
� (S)

j ; � (S)
j

�
=

�n
� (S)

1;j ; : : : ; � (S)
n2;j

o
;
n

� (S)
1;j ; : : : ; � (S)

n2;j

o�
: (2.37)

It is assumed that these four parameters are independent and follow normal distributions. This

assumption is because our parameters are estimated by using maximum likelihood estimation

(MLE). MLE has two properties: consistency and asymptotic normality. That means that when

we repeat MLE, the estimated values follow asymptotically a Gaussian distribution [132, 133], see

for example the Gaussian �tting in the histograms from Figures 2.2 to 2.6.

� (N)
j � N

�
� (N)

� j ; � (N)
� j

�
(2.38)

� (S)
j � N

�
� (S)

� j ; � (S)
� j

�
(2.39)

� (N)
j � N

�
� (N)

� j ; � (N)
� j

�
(2.40)

� (S)
j � N

�
� (S)

� j ; � (S)
� j

�
: (2.41)

A univariate T-test [134] was designed to compare the means� (N)
� and � (S)

�

H
(� j )
0 : � (N)

� j = � (S)
� j (2.42)

H
(� j )
1 : � (N)

� j 6= � (S)
� j : (2.43)

The variances of the distributions (2.38)-(2.41) are not equal and unknown. Consequently, we

designed the test as follows:

Let �� (N)
j and �� (S)

j denote the empirical conditional means of� (N)
j and� (S)

j , andD� j = �� (N)
j � �� (S)

j

their di�erence. Denoting ass2
� (N )

j

ands2
� (S)

j

the unbiased estimators of the variances in each group

of events, i.e.seizureand non-seizure, the standard deviation ofD� j can be estimated as

�̂ D � j
=

vu
u
t

s2
� (N )

j

n1
+

s2
� (S)

j

n2
: (2.44)

The statistics of the T-test associated with (2.42) and (2.43) is then

T
(� j )
� =

�� (N)
j � �� (S)

js
s2

�
(N )
j
n1

+
s2

�
(S)
j

n2

; (2.45)
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which is distributed according to a Student's t-distribution with� degrees of freedom,

� =

0

@
s2

�
(N )
j
n1

+
s2

�
(S)
j

n2

1

A

2

s4

�
(N )
j

n2
1(n1� 1)

+
s4

�
(S)
j

n2
2(n2� 1)

: (2.46)

The hypothesisH
(� j )
0 is rejected if

�
�
�T

(� j )
�

�
�
� > T t and we chose a probability of false alarmt = 0 :05.

To assess the statistical signi�cance, the p-value of each test has been calculated. Table 2.6 shows

the decision rules that were applied.

p-value Observed di�erence

> 0:10 not signi�cant
� 0:10 marginally signi�cant
� 0:05 signi�cant
� 0:01 highly signi�cant

Table 2.6: Decision rules to asses the statistical signi�cance of the di�erence of means of
the GGD parameters for seizure and non-seizure signals.

A similar test has also been designed to compare� (N)
� j and � (S)

� j for each brain rhythmj . A bi-

variate T-test has also been designed for the pair(� j ; � j ). Its results were not signi�cant, therefore

it is not reported here.

In addition, to further support the statistical signi�cance given by the p-value, we calculated

the Bayes factor indicator following the method proposed by [135]. This method establishes a

correspondence between frequency signi�cance tests, such as the ones designed here, with Bayesian

tests. As a result, it allows one to equate the size of the classical hypothesis tests with evidence

thresholds in Bayesian tests. Following this work (and assuming equal variances), we calculated

the Bayes factor (BF) that provides the same evidence as the p-values given by our tests

BF =

0

B
@

� + T
(� j )
�

� +
�
T

(� j )
� �

p
(�
 � )

� 2

1

C
A

(n1+ n2)=2

(2.47)

where the hypothesisH0 is rejected whent >
p

�
 � with 
 � = 
 2=(n1+ n2� 1) � 1 and 
 =

((T
(� j )
t )2=� � 1)(n1+ n2)=2.

These statistical tests were implemented with the parameters obtained from all events in all

epochs according to section 2.2, withn1 = 36 non-seizureevents andn2 = 18 seizureevents.

Table 2.7 shows the T-scores, and their associated p-values and Bayes factors. The corresponding

thresholds are shown. We observe that the t-scores (T � �
� ) are all greater than the threshold (Tt ).

The corresponding p-values (p) are all lower than0:01. The equivalent Bayes factors (BF) are

also all greater than the threshold (BFt ). The H �
0 hypothesis is therefore rejected for all bands,

with high statistical signi�cance according to the decision rules presented in Table 2.6. The scale
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parameter� is a good marker to distinguishseizureand non-seizureEEG events. Contrarily, t-

scores for� are lower than the threshold, except for the Delta band. The associated p-values are

higher than0:1. The Bayes factors are lower than the thresholds. Consequently,H �
0 hypothesis is

accepted implying thatbeta band cannot discriminateseizureandnon-seizureEEG events. Based

on these results, it becomes credible to classify EEG into two classesseizureandnon-seizurebased

on the scale parameter� of the GGD associated with their wavelet coe�cients in each brain

rhythm.

Delta Band Theta Band Alpha Band Beta Band Gamma Band

GGD Parameter � � � � � � � � � �

T� 6.15 3.19 5.86 0.17 6.47 0.50 7.08 0.48 6.40 0.91
Tt 2.09 2.01 2.09 2.03 2.09 2.01 2.07 2.03 2.08 2.01
p < 0.001 < 0.001 < 0.001 0.90 < 0.001 0.62 < 0.001 0.63 < 0.001 0.37

BF > 1000 98.31 > 1000 0.03 > 1000 0.30 > 1000 0.08 > 1000 0.64
BFt 3.63 2.12 3.70 2.45 3.79 2.09 3.39 2.46 3.51 2.17

Table 2.7: Results of the t-tests to assess the ability of� and � to discriminate separately
seizureand non-seizureEEG. TheH �

0 hypothesis is rejected for all rhythms, with highly
statistical signi�cant (p < 0:01). These scores are supported by very high Bayes factors.
Contrarily, H �

0 is accepted for all rhythms, except Delta band. The associated p-values are
largely greater than0:1 with Bayes factors lower than the evidence threshold. We conclude
that the scale parameter� is a marker to discriminateseizureand non-seizureevents with a
high statistical signi�cance. The shape parameter� is not a marker to discriminateseizure

and non-seizureevents.

2.9 Kullback-Leibler divergence (KLD)

The Kullback-Leibler divergence (KLD) or relative entropy [136] is used to measure the discrepancy

or similarity between probability density functions (PDF) [137, 138, 139, 140]. Speci�cally, we

used KLD between the PDFs of the generalized Gaussian distribution for EEG signals in order to

discriminateseizurefrom non-seizure. See [141, 142, 143] for some works on this topic in epilepsy

and [144, 145, 146] for some applications in EEG Signals.

Let p and q two PDFs, then a Kullback-Leibler Divergence (KLD) is given by

DKL (pjjq) =
Z 1

�1
log

�
px (x)
qx (x)

�
px (x)dx (2.48)

= �
Z 1

�1
log(qx (x))px (x)dx +

Z 1

�1
log(px (x))px (x)dx (2.49)

(2.50)

Notice that in generalDKL (pjjq) 6= DKL (qjjp), and thatDKL (p; q) = 0 if and only ifp = q [138].

Rewriting (2.13), the probability density function of GGD is given by

p(x; �; � ) =
1

2� �[1 + � � 1]
exp

�
�

�
�
�
�
x
�

�
�
�
�

� �
: (2.51)
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The divergence between two generalized Gaussian models with parameters (� 1,� 1,� 1) and (� 2,� 2,� 2)

using eq. (2.51) subject to the constraint� 1 = � 2 = 0 (since our wavelet coe�cients have zero-

mean) given by

KLD pdf (pjjq) =
Z 1

�1
p(x; � 1; � 1) log
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In our study, we estimated the parameters (�; � ) for each 1-second segment of the EEG signal.

The estimated GGD distributions for all segments were compared using the KLD metric (eq.

(2.52)) according to the following rules:

1. Between the PDFsp(i ) of the sliding window and the PDF of the annotated seizure onsetq

KLD pdf (p(i ) jjqonset) = 
 (i )KLD pdf (pjjq)

2. Between adjacent PDFs coupled with a 7-order one-dimensional median �lter [147]

KLD pdf (p(i ) jjq(i +1) ) = 
 (i )F(i )KLD pdf (pjjq)

with

F(i ) = medianF i l ter(KLD pdf (p(i ) jjq(i ) ))

See eq. (2.2) for more details about the sliding window.

2.9.1 A visual EEG epilepsy detection experience

A good performance of KLD method via visual inspection by an experienced neurologist from

FLENI was obtained in 8 signals studied from the database described in Section 2.2. We use an

example to show the proposed method. Figures 2.7 and 2.8 depicts the di�erent brain rhythms:

delta, theta, alpha, betaand gamma, where theseizureis 40 seconds of duration. We can see

an increase in the activity between 2 minutes and 2.4 minutes in all brain rhythms. In Figure 2.7

one can notice that the signal shows aseizureonset starting at minute two. We can see clearly

the discrepancy betweenseizureor non-seizurein epileptic signals; while in Figure 2.8 theseizure
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onset is detected clearly given by the highest peak which emerges from the background of EEG

showing a discrepancy betweenseizureor non-seizure. Once theseizure�nished, there are several

medical pathological factors that cause the signal to take time to stabilize. This explains why

the seizuredoes not have an instantaneous change after 2 minutes 40 seconds. Nevertheless, the

discrepancy is very clear after the seizure.
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Figure 2.7: KLD between the PDFs of the sliding window and the PDF of theseizureonset
of the epileptic signal, showing a clear discrepancy betweenseizureor non-seizure. In this

example, theseizureonset begins at minute 2, and its duration is 40 seconds.
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Figure 2.8: KLD between adjacent PDFs coupled with a 7-order one-dimensional median
�lter, showing clearly the discrepancy given by the highest peak which emerges from the
background of EEG. In this example, theseizureonset begins at minute 2, and its duration

is 40 seconds.

2.10 Conclusions

Seizure activity characterization requires an e�cient and accurate statistical modeling. In this

chapter, the general framework to achieve good epileptic seizure activity detection and quanti�ca-

tion in EEG signals was presented. We have compared di�erent statistical models and discussed

the best distribution-�tting of the brain rhythms (or wavelet coe�cients). The generalized Gaus-

sian statistical model whose parameters can be found by maximum-likelihood estimation was the

best distribution. Each brain rhythm is then mapped to a low-dimensional manifold by this model,

which can be implemented in real time and makes possible developing classi�cation algorithms

with low complexity. Additionally, an analytical Kullback-Leibler divergence (KLD) was developed

for the generalized Gaussian in order to detect epileptic seizures. A study that will be developed

deeper in future work.



Chapter 3

Seizure onset detection and temporal

spread estimation

3.1 Introduction

In chapter 2, we have established a generalized Gaussian statistical model for EEG data and

derived the characterization of epileptic EEG signals using the parameters of this model. Precisely,

we have shown that the scale and shape parameters of the Gaussian distribution are relevant

features to classify EEG signals and detect epileptic seizures. This chapter starts from the fact

that a seizure onset is a sudden change in the spectral energy distribution, which exhibit in a set of

EEG channels. Such seizure progresses and spreads throughout the brain, while its characteristics

evolve. We propose the idea that the scale parameter (which depends on the shape parameter) is

characteristic of the variability of brain activity. Consequently, we develop a new algorithm that

shows that the scale parameter is a descriptor that allows seizure onset detection and his spread

across di�erent brain rhythms in both focal and generalized seizures in epileptic EEG signals.

3.2 Scale parameter sigma ( � )

Based on the brain rhythm decomposition of EEG signals using multilevel 1D wavelets (see sections

2.4.1 and 1.3) and the associated GGD parameters,� and� (see eq. (2.13) and eq. (2.25)), a new

algorithm for seizure onset detection and temporal spread estimation was developed. The purpose

of this algorithm is to show thatthe scale parameter� (which depends on the shape parameter)

is closely related to the variability of the brain activity and is, therefore, a good descriptor for

performing seizure onset detection (SOD). Each signal in each channel were edited to have an

epoch with the following characteristics: 2 minutes before the seizure, seizure at minute 2 and 2

minutes after the seizure. For each epoch, we know where the seizure begins (see section 2.2)

and can calculate the time delay for the onset based on a thresholding approach (see section

1.6). Table 3.1 reports the minimum value, maximum value and mean of� parameter for all EEG

signals in 36non-seizureevents and 18seizureevents, which allow using a threshold approach

[78]. Precisely, based on the� mean for each brain rhythm, it is possible to di�erentiate between

epileptic events, see Table 3.2.
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� min max mean

Non-Seizure 1375.45 474942.97 69221.84

Seizure 4383.92 1476232.96 331300.79

Table 3.1: Minimum value, maximum value and mean of� parameter for all signals in
36 non-seizure events and 18 seizure events. The mean value allows using a thresholding

approach with the scale parameter.

� Non-Seizure Seizure

Bands min max mean min max mean

Delta 935.85 381863.65 58908.66 2579.55 1264885.38 279701.55
Theta 12.56 3774.65 359.08 10.26 11187.93 1834.65
Alpha 50.95 5216.49 544.67 92.77 17783.92 2890.21
Beta 198.17 42831.14 5253.32 583.46 100595.75 25139.34

Gamma 177.91 41257.05 4156.10 1117.88 81779.97 21735.05

Table 3.2: Minimum value, maximum value and mean of� parameter for each brain rhythm
in 36 non-seizure events and 36 seizure events. The mean value allows using a thresholding

approach with the scale parameter.

The proposed algorithm requires solving basically three problems. The �rst problem is related

to the seizure onset detection, where the scale parameter helps to detect a sudden change in the

EEG signal by using the statistical-threshold crossing of the mean of� , see Table 3.2. The second

problem is the moment estimation in which this sudden change begins. This estimation is given by

the time delay between the annotated seizure onset detection and the statistical-threshold crossing,

given by the mean of� . Finally, the combination of di�erent time delays in each brain rhythm is

given for each brain area according to the type of seizure, such as focal or generalized. Therefore,

the onset time delay between the annotated seizure onset data and the detection was estimated

using the mean of� for non-seizuresand seizuresevents. Once onset delay estimation has been

performed for each brain rhythm and each channel, we collect this information o�-line in a table,

such as Table 3.3. This table allows identifying channels with low delay and thus understanding

how the seizure originated and propagated temporarily. The most common electrode to all channels

in the brain area is the best possible candidate.

For illustration, we will focus on one example with a generalized seizure. But in general,

no distinction was considered regarding the types of seizure such as focal or generalized because

the goal is to show the possibilities of the analysis of our algorithm through the scale parameter

(which depends on the shape parameter). See the example in Table 3.3, where channels 13 (Fp2-

F8), 14 (F8-T8), 15 (T8-P8), 21 (FT9-Ft10) and 23 (T8-P8) have a delay in all brain rhythms,

therefore they are the candidate-electrodes. Note that these electrodes correspond to the right

temporal brain area, see Figure 3.1. FT9 or FT10 have the least delay, but T8 is the most common

electrode to all according to the clinical observations, therefore it is considered the best candidate.

It is interesting to notice that for the observed activation region, the candidate channels involved

belong all to the same region. This provides hints on the temporal spread. Figure 3.1 and Figures
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3.5 to 3.7 show a correlation between the di�erent brain areas and the electrode positions. Note

that, despite the fact that channel 1 has a previous detection to any of the indicated channels, it

was discarded by the neurologist because this brain area doesn't have a generalized seizure through

all the brain bands. But it opens interesting research questions to explore deeper. They are related

to the analysis of the frequency bands detected before the onset seizure, and which channels are

active despite not participating directly in the detection of the seizure onset, see for example the

negative value� 0:099 in channel 1 for delta band in Table 3.3.

Channel Number Channel Name Delta Theta Alpha Beta Gamma

1 FP1-F7 -0.099 0.001 0.002 0.130 0.131
2 F7-T7 - 0.069 0.234 0.131 0.058
3 T7-P7 - 0.037 0.215 0.369 0.371
4 P7-O1 - - - 0.224 0.162
5 FP1-F3 - 0.037 0.011 0.133 0.133
6 F3-C3 - - - 0.221 0.132
7 C3-P3 - - - 0.378 0.140
8 P3-O1 - - - 0.584 0.552
9 FP2-F4 0.083 0.060 0.037 0.212 0.098
10 F4-C4 - 0.001 - 0.125 0.110
11 C4-P4 - 0.018 0.029 - 0.103
12 P4-O2 - 0.035 - - -
13 FP2-F8 0.105 0.012 0.025 0.021 0.101
14 F8-T8 0.073 0.087 0.134 0.097 0.100
15 T8-P8 0.081 0.018 0.013 0.099 0.103
16 P8-O2 - 0.036 0.016 0.258 0.086
17 FZ-CZ - - - 0.034 0.141
18 CZ-PZ - - - - -
19 P7-T7 0.086 0.085 0.040 2.360 0.350
20 T7-FT9 - 0.069 - 0.372 0.377
21 FT9-FT10 0.005 0.001 0.016 0.098 0.117
22 FT10-T8 0.075 0.066 0.010 0.102 0.101
23 T8-P8 0.065 0.032 0.015 0.098 0.117

Table 3.3: Onset delay (in seconds) by frequency bands, the symbol (-) means that there
is no clear di�erence at the beginning of the onset. In this example, according to the data,
channels (21) FT9-FT10, (23) T8-P8, (13) FP2-F8, (14) F8-T8 and (15) T8-P8 are the best
candidates by brain area for SOD because it has minor delays; in this case T8 is common
to all channels in this brain area, therefore is the best option for being the onset and other

channels form the spread.

In the next sections, we are going to introduce the proposed algorithm (Section 3.3), which

was applied to 8 real EEG signals from 8 patients su�ering from epileptic seizures. By using one

example with generalized seizure, the performance of the algorithm is demonstrated across all brain
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rhythms, namely the delta, theta, alpha, beta, and gamma bands, (Section 3.4). Next, a validation

stage is used by using the Brainstorm software with the purpose of validating the qualitative results

made by visual inspection by the neurologist from FLENI (See Section 3.5).

3.3 Algorithm

The proposed algorithm can be summarized as follows:
Data: EEG raw

Result: Temporal spread estimation

for each brain rhythmdo

1. Estimate the GGD parameters� and � , see eq. (2.25);

2. Use the scale parameter� to calculate the time delays of each SOD for each channel

and each brain rhythms;

3. Create a table with the information and calculate each delay for each channel;

4. Organize the table ascendantly;

5. Calculate the Seizure Onset Detection (SOD) candidate channels for the di�erent

brain areas namely Frontal, Parietal, Temporal and Occipital, see Figure 3.1;

The candidates for the onset are the channels that are common to all other channels by

brain rhythm in a determined brain area; and the other channels are the possible

temporal spread accompanying the seizures.
end

Algorithm 1: Temporal spread estimation algorithm

Figure 3.1: Areas of the brain of the Cerebral Cortex (Lateral view) can be correlated with
the electrodes positions, which have a nomenclature according to the lobules, namely (T)

temporal lobe, (P) parietal lobe, (O) occipital lobe and (F) frontal lobe.



3.4. Experimental Results 39

Figure 3.1 shows the four lobe divisions of the cerebral cortex. These areas can be correlated

with the electrode positions whose nomenclature is directly related, (F) of Frontal Lobule, (P) of

Parietal Lobule, (T) of Temporal Lobule and (O) Occipital Lobule, see Figure 1.1.

3.4 Experimental Results

The performance of the proposed algorithm for seizure temporal spread estimation was assessed

using 8 signals from the Children's Hospital Boston database described in Section 2.2, and com-

pared with results obtained by qualitative visual inspection by an experimented neurologist from

FLENI, who relied on EEG and MRI data, see Figure 3.8. In the next sections, we present the

seizure detection at minute 2 and estimated spread across the cerebral cortex for each rhythm

brain in one example with a generalized seizure.

3.4.1 General Spread

The channels with the smaller delay in the right temporal brain area are (21) FT9-FT10, (23)

T8-P8, (13) FP2-F8, (15) T8-P8, (22) FT10-T8, (14) F8-T8, (9) FP2-FP4, (19) P7-T7. This

distribution suggests that T8 can be the onset of the seizure. Figure 3.2 reports the spread across

the cerebral cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas, with a small share

in the (C) Central area. This result suggests a simple seizure across the right hemisphere of the

cerebral cortex.

3.4.2 Delta Band Spread

The delta band sequence corresponding to low delays is: (10) F4-C4, (21) FT9-FT10, (11) C4-P4,

(23) T8-P8, (14) F8-T8, (22) FT10-T8, (15) T8-P8, (9) FP2-F4, (19) P7-T7, (1) FP1-F7, (13)

FP2-F8. Figure 3.3 reports the spread across the cerebral cortex namely: (F) Frontal and (T)

Temporal and (C) Central areas. This result suggests a delta activity across the right hemisphere

and isolated activity in the left hemisphere of the cerebral cortex.

3.4.3 Theta Band Spread

The theta band sequence corresponding to low delays is: (1) FP1-F7, (21) FT9-FT10, (13) FP2-

F8, (15) T8-P8, (11) C4-P4, (23) T8-P8, (16) P8-O2, (3) T7-P7, (5) FP1-F3, (9) FP2-F4, (22)

FT10-T8, (2) F7-T7, (20) T7-FT9, (19) P7-T7, (14) F8-T8. Figure 3.4 reports the spread across

the cerebral cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas, with a small share in

the (C) Central area. This result suggests theta activity on temporal area across both hemispheres

of the cerebral cortex.
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(a) Channel 23: T8-P8
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(b) Channel 13: Fp2-F8
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(c) Channel 15: T8-P8
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(d) Channel 22: FT10-T8
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(e) Channel 14: F8-T8 (f) General spread

Figure 3.2: General Spread: EEG electrodes array, suggests that the seizure starts in channel
T8 and then the spread across the channels F8-T8-P8, F4-C4-P4. Amplitude (y-axis) in mV

and time (x-axis) in min.

3.4.4 Alpha Band Spread

The alpha band sequence corresponding to low delays is: (1) FP1-F7, (22) FT10-T8, (5) FP1-F3,

(15) T8-P8, (23) T8-P8, (16) P8-O2, (21) FT9-FT10, (13) FP2-F8, (12) P4-O2, (9) FP2-F4,

(19) P7-T7, (14) F8-T8, (3) T7-P7, (2) F7-T7. Figure 3.5 reports the spread across the cerebral

cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas. This result suggests alpha

activity spread across both hemispheres of the cerebral cortex, predominating the right side.
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3.4.5 Beta Band Spread

The beta band sequence corresponding to low delays is: (13) FP2-F8, (17) FZ-CZ, (14) F8-T8,

(21) FT9-FT10, (23) T8-P8, (15) T8-P8, (22) FT10-T8, (10) F4-C4, (1) FP1-F7, (2) F7-T7,

(5) FP1-F3, (9) FP2-F4, (6) F3-C3,(4) P7-O1, (16) P8-O2, (3) T7-P7, (20) T7-FT9, (7) C3-

P3, (8) P3-O1, 19 P7-T7. Figure 3.6 reports the spread across the cerebral cortex namely: (F)

Frontal, (T) Temporal and (P) Parietal areas. This result suggests beta activity spread across both

hemispheres of the cerebral cortex.

3.4.6 Gamma Band Spread

The delta gamma sequence corresponding to low delays is: (2) F7-T7, (16) P8-O2, (9) FP2-F4,

(14) F8-T8, (13) FP2-F8, (22) FT10-T8, (11) C4-P4, (15) T8-P8, (10) F4-C4, (21) FT9-FT10,

(23) T8-P8, (1) FP1-F7, (6) F3-C3, (5) FP1-F3, (7) C3-P3, (17) FZ-CZ, (4) P7-O1, (19) P7-T7,

(3) T7-P7, 20 T7-FT9, (8) P3-O1. Figure (3.7) reports the spread across the cerebral cortex

namely: (F) Frontal, (T) Temporal and (P) Parietal areas. This result suggests gamma activity

spread across both hemispheres of the cerebral cortex.

3.5 Validation

In Section 3.4, we applied our algorithm described in Section 3.3 and we predicted the seizure

onset with its temporal spread in each channel of each epileptic signal. For the validation pro-

cess, we use Brainstorm software (this is a collaborative, open-source application dedicated to

MEG/EEG/sEEG/ECoG data analysis, such as visualization, processing and advanced source mo-

deling [148]) in two stages: MRI image and EEG raw signals. For each MRI of each subject, we

used the default surfaces of Brainstorm, which allow calculating the coordinate system to create

a realistic head model. The underlying method consists in exploiting anatomy and surfaces (in-

formation on head tissues and sensor characteristics) extracted from the image, see Section A.3.2

from appendix A. This MRI is coupled with each EEG signal for each subject in order to project

the electrical activity in the image, see Figure 3.8. Each �nal image was validated by qualitative

visual inspection by an experimented neurologist from FLENI relying on EEG and MRI data.

In other words, it is necessary to estimate the brain sources which produced the data, according

to the head and information of the sensor array by solving the inverse problem. We used standard-

ized low-resolution brain electromagnetic tomography (sLORETA) algorithm, see Section A.6.5,

which assumes that all possible locations of the sources are simultaneous, see Section A.5.2 from

appendix A.



42 Chapter 3. Seizure onset detection and temporal spread estimation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

D
el

ta

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

T
et

ha

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

A
lp

ha

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

B
et

a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

G
am

m
a

(a) Channel 10: F4-C4
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(b) Channel 21:FT9-FT10
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(c) Channel 11: C4-P4
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(d) Channel 23: T8-P8
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(e) Channel 14: F8-T8
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(f) Channel 22: FT10-T8
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(g) Channel 15: T8-P8 (h) Delta spread

Figure 3.3: Delta Band Spread: EEG electrodes array, suggests delta activity spread across
the right hemisphere and isolated activity in the left hemisphere. Amplitude (y-axis) in mV

and time (x-axis) in min.
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(g) Channel 3: T7-P7 (h) Theta spread

Figure 3.4: Theta Band Spread: EEG electrodes array, suggests theta activity spread across
both hemispheres on temporal area of the cerebral cortex. Amplitude (y-axis) in mV and

time (x-axis) in min.
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(g) Channel 13: FP2-F8 (h) Alpha spread

Figure 3.5: Alpha Bands Spread: EEG electrodes array, suggests alpha activity spread across
both hemispheres of the cerebral cortex, predominating the right side. Amplitude (y-axis) in

mV and time (x-axis) in min.
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(e) Channel 23: T8-P8
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(g) Channel 22: FT10-T8 (h) Beta spread

Figure 3.6: Beta Band Spread: EEG electrodes array, suggests beta activity spread across
both hemispheres of the cerebral cortex. Amplitude (y-axis) in mV and time (x-axis) in min.
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(g) Channel 11: C4-P4 (h) Gamma spread

Figure 3.7: Gamma Band Spread: EEG electrodes array, suggests gamma activity spread
across both hemispheres of the cerebral cortex. Amplitude (y-axis) in mV and time (x-axis)

in min.
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The observation model of EEG signals� is given by the equation:

� = K J + � (3.1)

whereJ is a matrix representing the sources,K is the so-called lead �eld or gain matrix, and�

is additive noise. EstimatingJ requires solving the inverse problem (3.6). It has been shown that

this can be done by minimizing the following regularized criteria:

F� (J) = kKJ � � k2
2 + � kJkp (3.2)

where� is the regularization parameter`p-norm in the interval1 � `p � 2 and 1 � p � 2, see

(A.8).

sLORETA (see Section A.6.5 from appendix A) uses the Tikhonov regularization (p = 2 ) [149]

and solves the resulting cost function

min
h
k� � KJ k2

2 + � kJk2
2

i
(3.3)

A possible solution to this inverse problem can be expressed as

j i = K T
i [K i K T

i + � i I ]� 1� = R i J (3.4)

wherej i indicates the possible source candidate at voxeli andR i is the resolution matrix given by

R i = K T
i [K i K T

i + � i I ]� 1: (3.5)

The observation model of EEG signals� is given by the equation:

� = K J + � (3.6)

whereJ is a matrix representing the sources,K is the so-called lead �eld or gain matrix, and�

is additive noise. EstimatingJ requires solving the inverse problem (3.6). It has been shown that

this can be done by minimizing the following regularized criteria:

F� (J) = kKJ � � k2
2 + � kJkp (3.7)

where� is the regularization parameter`p-norm in the interval1 � `p � 2 and 1 � p � 2, see

(A.8). sLORETA (see Section A.6.5 from appendix A) uses the Tikhonov regularization (p = 2 )

[149] and solves the resulting cost function

min
h
k� � KJ k2

2 + � kJk2
2

i
(3.8)

A possible solution to this inverse problem can be expressed as

j i = K T
i [K i K T

i + � i I ]� 1� = R i J (3.9)
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wherej i indicates the possible source candidate at voxeli andR i is the resolution matrix given by

R i = K T
i [K i K T

i + � i I ]� 1: (3.10)

See section A.6.5 from appendix A for more details about this algorithm. For illustration Figure

3.8 shows the EEG and MRI image for one subject using sLORETA. This information allows the

reconstruction of a model of the brain and the determination of the location where the seizure

originated, as well as its temporal spread throughout the brain. This information is compared with

the spread sequence estimated by our algorithm from EEG data.

Figure 3.8: For illustration, the �gure shows the EEG of a patient (left) with his correspon-
ding MRI (right top). A reconstruction of the brain is shown with the corresponding seizure
spread (right bottom). On the right of each image, there is a color map which indicates the

intensity of each activation source.

3.6 Conclusions

The proposed algorithm is useful for onset detection and temporal spread estimation. Performing

the analysis at the level of the brain activity rhythm bands can improve the identi�cation of the

area of the brain a�ected, as seen in the interesting correlation with Table 1.1. This preliminary

study shows a plausible path for seizure onset detection and its spread in both focal and generalized

seizures in epileptic EEG signals. Therefore, a strong quantitative validation with control of false

positive rates in future work is necessary, in order to implement the algorithm in automatic real

processing systems.



Chapter 4

Model-based classi�cation for seizure onset

detection

4.1 Introduction

EEG signal classi�ers play a particularly important role in EEG signal processing. Classi�cation is

based on features extracted from single channels, multiple channels or a combination of these. In

this chapter, we study four di�erent classi�ers: linear discriminant, multivariate Bayesian, ensemble

bagging and logistic regression into the broad framework of machine learning. They are trained

o�-line for each brain rhythm. Each classi�er runs in real time to detect seizure onsets from EEG

recordings as follows:

Classi�er Wavelet
Decomposition

Features Epochs from the
database

Linear discriminant 1D � , � , � 39

Bayesian 2D � , � 36

Ensemble bagging 1D � , � , � 105

Logistic Regression 1D � , & 36

Table 4.1: Classi�cation methods developed independently for each brain rhythm. The scale
(� ) and shape (� ) correspond to the generalized Gaussian distribution parameters,� is the
variance,� is the entropy from the generalized Gaussian,� are the largest Lyapunov exponents
from the Analysis of Independent Components (ICA), and&are the� -scaling between their

� standard deviation.

Note that, in this chapter, we use di�erent epochs from the database because all studies

correspond to di�erent stages of the research, see Table 4.1. Linear discriminant and multiva-

riate Bayesian classi�ers are based on multilevel 1D and 2D wavelet decomposition respectively.

They both use the parameters of the generalized Gaussian distribution of the wavelet coe�cients,

independently for each brain rhythm. The ensemble bagging classi�er uses the entropy of the

generalized Gaussian distribution associated with the multilevel 1D wavelet coe�cients. While

the logistic regression classi�er is applied to Lyapunov exponents and their scaling given by its�

standard deviation, from Independent Component Analysis (ICA) of multilevel 1D wavelet decom-

position, independently for each brain rhythm. The four classi�ers are tested and compared using

a challenging pediatric dataset containing both epileptic events and normal brain function signals,
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see Section 2.2. The high performance in terms of classi�cation sensitivity and speci�city permits

to discriminate betweenseizureand non-seizurein EEG signals.

In this chapter, we are going to concentrate on the linear discriminant classi�er because this

method has three main strengths: it has low computational cost making it suitable for real-time

implementation in EEG devices; it performs detection separately for each brain rhythm, following

the current medical practices; and it can be trained using reasonably small datasets, which is key

in clinical problems where there is limited annotated data available. This is in sharp contrast with

modern approaches based on machine learning techniques, which achieve very high sensitivity and

speci�city but require large training sets with expert annotations that may not be available.

4.2 Seizure onset detection (SOD) classi�ers

Epileptic seizure detection methods based on EEG signals stem from the observation that EEG

signal descriptors allow discriminating normal from abnormal brain activity. This practice originated

half a century ago with works by Viglione et al. [41], Liss et al. [42], Ktonas et al. [43] and Gotman

et al. [44]; and continued with Iasemidis et al. [45, 46] mainly in the medical literature and by using

analog EEG devices, see Section 1.6 for more details. Later, the adoption of digital signal processing

in EEG systems stimulated the development of pattern recognition methods to detect and analyze

abnormal brain activity automatically. The main practical advantage of EEG technology is its

economic accessibility. This has signi�cantly contributed to the wide adoption of EEG in developing

countries, whereas other more advanced modalities, such as magnetoencephalography (MEG), are

expensive and have not been widely adopted.

There is currently a wide range of EEG signal processing methods to detect brain seizures

accurately. Most methods use classi�cation techniques from the supervised machine learning

literature, such as support vector machines [150, 151] and discriminant analysis [12], and di�er

mainly in terms of their feature extraction methods and the features classi�cation approaches.

Many methods use time-frequency descriptors, either explicitly (e.g., short-term Fourier or wavelet

representations) [37, 152, 153, 154, 151, 155], empirical mode decomposition [156, 157, 158],

implicitly by learning neural networks [14, 159] or by using component analysis or common spatial

patterns (see for example [13, 160, 161]). Some also use statistical descriptors such as signal

entropy [162, 163, 164, 154, 151, 165] or fractal dimension [166, 167].

The main approaches from the state of the art are summarised in Table 4.2, together with their

detection performance on a test dataset. Observe that most modern methods perform remarkably

well and achieve true positive rates (TPR) or sensitivities of the order of95%� 99%, and true

negative rates or speci�cities of the order of85% � 95%, depending on the speci�c method

and dataset considered. This good performance is achieved by using advanced signal processing

techniques that are generally very computationally intensive. As a result, state-of-the-art detection

methods cannot be incorporated into EEG devices to perform detection in real time. For example,

the method [13] uses common spatial patterns that require estimating covariance matrices and

performing singular value decompositions at each detection step. This limitation is motivating the

development of detection methods that use cloud computing technology to perform detection on a
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high-performance computing server that is accessed remotely (see for example [161]). This strategy

is potentially very interesting in some settings, but it would be di�cult to implement in developing

countries where many hospitals still have limited Internet access and poor IT infrastructure.

Another limitation of state-of-the-art methods is that they pull information from all spectral

bands to improve detection performance [13]. While bene�cial in terms of classi�cation accuracy,

this can be problematic in many clinical applications where the current practice is to detect seizures

independently in each physiological spectral band orbrain rhythm (these bands are speci�ed in

Section 2.4). Finally, state-of-the-art methods also rely increasingly on large training datasets,

which is a drawback in clinical applications where there is limited annotated data available. Also,

many existing methods use feature-based classi�cation techniques, with a signi�cant number of

features in order to handle the inherent variability of such features.

This chapter seeks to address these limitations of the existing methods by developing an

automatic EEG detection technique that has a low computational cost, that performs detection

independently in each brain rhythm following current clinical practice, and that can be trained

with reasonably small datasets, with a detection performance that is similar to that of state-

of-the-art algorithms. In contrast to existing methods, the proposed method adopts a model-

based classi�cation approach. Model-based classi�cation has been used in various applications

[168, 169, 170]. The idea is to capture the statistical properties of the signal using the parameters

of a probabilistic model, see Section 2.5.1. This approach is interesting compared to feature-based

classi�cation, especially when features are numerous or exhibit large variability. It can be viewed

as an interesting dimensionality reduction technique facing the curse of dimensionality and leading

to low computational cost classi�cation, see Section 2.7. Despite its interest, this approach has

not been widely investigated in EEG signal processing. Precisely, the linear classi�cation method

(explained later) is driven by a parametric statistical model that captures the statistical properties

of the signals and their evolution in time, with the model parameters acting as classi�cation

features, see Section 2.8.2. This approach is an interesting alternative to the non-parametric

features (e.g., signal power spectrum, variance, entropy, etc.) commonly used in the literature

because the parametric structure of the model acts as a dimensionality reduction mechanism that

regularizes the classi�cation problem and consequently improves the stability and robustness of the

classi�cation while reducing signi�cantly computational cost. Despite its advantages, to the best

of our knowledge, this promising approach has not been investigated for EEG signal classi�cation.

Note however that statistical approaches have been successfully applied to other challenging EEG

processing problems (see for example [171, 172]).
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Classi�cation method Features Test data Performance Ref.

Learning vector quantization Signal entropy from wavelet coe�cients 400 epochs from 5 normal subjects and 5
epileptic patients

TPR:98% [154]

Support Vector Machine Matching pursuit algorithm 133 EEG from Rigshospitalet University Hos-
pital database (Copenhagen, Denmark)

TPR:78%,
TNR:84%

[150]

Support Vector Machine Spectral and entropy analysis 3 datasets from EEG University Hospital
Bonn database

TPR:90% [151]

Fuzzy classi�cation Amplitude, frequency and entropy descrip-
tors

56 iEEG from 20 patients from University of
Freiburg database

TPR:95:8%,
TNR:74%

[173]

Hidden Markov Model Segmentation of topographic maps of time
varying spectral

10 EEG patients from EPILEPSIAE [174] TPR:94:59%,
TNR:92:22%

[155]

Support Vector Machine Third-order tensor discriminant analysis:
spectral, spatial, and temporal domains

36 EEG patients fromChildren's Hospital
Boston database

TPR:98%,
TNR:94%

[12]

K-means clustering Spatiotemporal analysis as morphological �l-
ter

10 EEG patients from University of Florida
Hospital database

TPR:87:4% [175]

Support Vector Machine Fractional linear prediction 100 single channel EEG segments from The
Bern-Barcelona EEG database

TPR:96%,
TNR:95%

[176]

Least Squares Support Vector
Machine

Phase space representation 100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:96%

[177]

Support Vector Machine Empirical mode decomposition 51 EEG segments from 17 patients from Uni-
versity of Freiburg (Germany)

TPR:98:6%,
TNR:88:6%

[178]

1-Nearest Neighbor 1D-local binary patterns from bank of Gabor
�lters

100 ECoG segments from University Hospital
Bonn database

TPR:98:33% [179]

Support Vector Machine Common spatial Pattern (is a method that
uses a linear transform to project multichan-
nel EEG data into a low-dimensional spatial-
subspace projection)

36 EEG patients from Children's Hospital
Boston database

TPR:100% [13]

Relevance Vector Machine Multifractal 21 EEG patients from the Epilepsy Center of
the University Hospital of Freiburg

TPR:92:94%,
TNR:97:47%

[180]

Regression neural network Statistical descriptors of dual-tree complex
wavelet transform coe�cients

100 segments from University of Bonn
database and 21 patients from Sir Ganga
Ram Hospital (New Delhi)

TPR:92%,
TNR:98%

[159]

K-Nearest Neighbor, linear
discriminant analysis, naive
Bayesian, logistic regression
and Support Vector Machine

Time, frequency, time-frequency and nonlin-
ear features

100 segments from University Hospital Bonn
database

TPR:99:25% [181]

1-Nearest Neighbor Regularization, learning rate and momentum
from a convolutional neural network

5 patients from the EEG University Hospital
Bonn

TPR:95%,
TNR:88:67%

[160]

Random Forest, C4.5, Func-
tional tree, Bayesian-network,
Naive-Bayes and K-nearest
neighbours

Mean of joint instantaneous amplitude,
Mean and variance of monotonic absolute
change from empirical wavelet transform

36 EEG patients fromChildren's Hospital
Boston database

TPR:97:91%,
TNR:99:57%

[182]

Support Vector Machine Pyramid of di�erence of Gaussian �ltered
signals and local binary patterns

100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:100%

[183]

Support Vector Machine Random subspace ensemble method and In-
�nite Independent Component Analysis

208 ECoG from University of Pennsylvania
and the Mayo Clinic

TPR:98%,
TNR:96%

[161]

Least-Square Support Vector
Machine

Time-frequency representation based on the
improved eigenvalue decomposition of Han-
kel matrix and Hilbert transform

100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:100%

[184]

Table 4.2: State-of-the-art methods to perform seizure detection automatically in EEG
signals, summarized in terms of the classi�cation techniques and features used and their
reported performance on a test dataset. The performance metrics are the True Positives

Rate or Sensitivity (TPR), the True Negative Rate or Speci�city (TNR).
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4.3 Cross-validation and leave-one-out cross-validation

In many biomedical applications the supply of data for training and testing can be limited, so if

we want to build good models, we must use as much of the available data as possible for training.

However, if the validation set is small, it will give a relatively noisy estimate of predictive perfor-

mance. One solution to this dilemma is to usecross-validation[185], which is a model validation

technique for evaluating how the results of a statistical analysis algorithm can be generalized to

an independent data set. Applications of this method in epilepsy date back to the 70s [73] with

template matching, see [3] for more details.

Cross-validationis a model validation technique to evaluate how the results of a statistical

analysis algorithm can be generalized to an independent data set. This is done by partitioning a

dataset and using a subset to train the algorithm and the remaining data for testing. Each round

of cross-validation involves randomly partitioning the original dataset into a training set and a

testing set. The training set is then used to train a supervised learning algorithm and the testing

set is used to evaluate its performance. This process is repeated several times and the average

cross-validation error is used as a performance indicator.

In leave-one-out cross-validationtechnique, the data partitions use the k-fold approach where

k is equal to the total number of observations in the data [186, 187]. Leave-one-out cross-

validation technique has numerous applications in science, engineering and EEG signal processing

[188, 189, 190, 191, 192].

4.4 Methodology

The general methodology used in this chapter is presented in the following subsections.

4.4.1 Problem statement

Let X 2 RM � N denote a time-discretized EEG signal recorded by an array composed ofM

channels over a period ofT seconds, and using a sampling period ofT=N seconds. Each row of

X is associated with one channel of the array and contains all the sampling points corresponding

to the EEG signal recorded by that channel, whereas each column is associated with a sampling

point and contains the vector signal acquired by the full array at that time instant. Moreover, to

analyse the di�erent frequency components of� (i ) , we denote by� (i )
� , � (i )

� , � (i )
� , � (i )

� , and � (i )

 the

spectral components related to the� (0-4 Hz), � (4-8 Hz), � (8-16 Hz), � (16-32 Hz), and 


(32-64 Hz) frequency bands. As mentioned previously, each of these bands is related to di�erent

neurological functions and is therefore associated with speci�c neurological disorders, see Section

1.3 for more details.

This thesis considers the problem of detecting epileptic seizure activity in EEG signals in

real-time and identifying the frequency bands where the seizure occurs. Formally, for any time

instant n 2 f 1; Ng, de�ne band-speci�c binary labels! � (n), ! � (n), ! � (n), ! � (n), and ! 
 (n)

that take value1 to indicate the presence of an epileptic seizure at their spectral band, and0
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to indicate normal activity. Given some expert annotated training dataf X (i )
0 gI 0

i =1 and f X (i )
1 gI 1

i =1

corresponding to short EEG recordings of healthy and epileptic seizure activity, we consider the

supervised classi�cation problem of estimating the values of! � (n), ! � (n), ! � (n), ! � (n), and

! 
 (n) in real-time asX is acquired by the EEG array. This is motivated by our interest in clinical

applications where this information is required in real-time, we focus therefore on classi�ers that

have low computational complexity.

4.4.2 Proposed method

The proposed method has a pipeline structure composed of the following three steps: a �lter bank

that separatesX into its X � , X � , X � , X � , andX 
 spectral components, followed by a statistical

dimensionality reduction step that maps these components into a low-dimensional representation

where pathological brain activity is easily detected, and �nally a classi�cation step based on a

thresholding approach.

4.4.3 Spectral decomposition by wavelet �lter bank

We use a Dauchebies (Db4) wavelet �lter bank to separateX into the �ve spectral components

X � , X � , X � , X � , and X 
 . Because our data is acquired at a256 Hz sampling rate, in our

experiments we use a wavelet �lter through tree-based topology, with six scales. The upper �ve

scales match with the spectral bands of interest (the remaining scale related to the64-128 Hz

band has very poor signal-to-noise ratio and is discarded, see Section 2.4.3). The output of this

stage are5 sets of wavelet coe�cients� � , � � , � � , � � , � 
 (please note that this approach can be

straightforwardly generalized to higher sampling rates by using or discarding any additional bands),

see Section 2.4 for more details.

4.4.4 Statistical model of the spectral components

Designing a classi�er to detect pathological brain activity directly from the EEG signals (or their

wavelet representation) is very challenging due to the high-dimensionality of the data, and because

it would require a large training set and a complex classi�cation methodology. To detect abnormal

brain activity with limited annotated training data, particularly in the context of classi�ers with low

computational complexity suitable for real-time implementations, it is necessary to map the EEG

data to a meaningful compact representation that highlights the information able to discriminate

normal and abnormal activities. A successful representation should also provide the low-dimensional

structure and favorable regularity properties that enable a simple classi�cation scheme, such as

threshold-based methods.

Here we construct this representation by using a parametric statistical model to summarize the

empirical distribution of the wavelet coe�cients associated with each spectral band. Precisely, a

sliding window approach was adopted and �t a parametric statistical model to the wavelet coe�-

cients associated with the last2 seconds ofX . Because the signals considered in the experiments

are acquired withM = 23 channel array, the2-second window corresponds respectively to the
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coe�cients of C(i )
� , C(i )

� , C(i )
� , C(i )

� , and C(i )

 . We model each set of wavelet coe�cients with

zero-mean generalized Gaussian distribution (GGD) with density given by

f (x; �; � ) =
�

2� �( � � 1)
exp

�
�

�
�
�
�
x
�

�
�
�
�

� �
(4.1)

where� 2 R+ is a scale parameter,� 2 R+ is a shape parameter that controls the density tail, and

� ( �) is the Gamma function. We estimate the values of� and� for each spectral band by maximum

likelihood estimation, see eq. (2.25), which we solve straightforwardly by using a Newton-Raphson

algorithm, see Sections 2.8 and 2.8.2 for more details. We obtain the parameter-vector�
C(i )

j

�
C(i )

j
=

h
� (i )

j ; � (i )
j

i T
= argmax

[�;� ]T
fGGD(C(i )

j ; �; � ) =

"

�
C(i )

j

 ; �

C(i )
j

� ; �
C(i )

j
� ; �

C(i )
j

� ; � T
�

#T

: (4.2)

4.5 Linear discriminant classi�er

4.5.1 Classi�er parameters

Linear classi�cation parameters for onset detection are summarized in Figure 4.1.

X

Slice Signal

X (i )

1D wavelet

decomposition

C(i )
j =

h
X (i )

� ; X (i )
� ; X (i )

� ; X (i )
� ; X (i )




i

Dimensional Reduction:

Generalized Gaussian distribution� , �

coupled with variance�

�
C(i )

j
= [ � (n); � (n); � (n)]

Linear classi�er

Seizure or Non-Seizure

! (i )

Figure 4.1: Algorithm used in linear classi�er.



56 Chapter 4. Model-based classi�cation for seizure onset detection

4.5.2 SOD by linear discriminant analysis classi�cation

Consider the classi�cation into two possible classes:! s for seizureand ! ns for non-seizure. For a

feature vector�
C(i )

j
belonging either to the class! s or to the class! ns, we assume that�

C(i )
j

has

a normal distribution with mean value� s (or � ns) and covariance matrix� s = � ns, then

p
�

�
C(i )

j

�
�
�
�! s

�
=

1
q

(2� )k j� sj
exp

"

�
1
2

�
�

C(i )
j

� � s

� T

� � 1
s

�
�

C(i )
j

� � s

� #

(4.3)

p
�

�
C(i )

j

�
�
�
�! ns

�
=

1
q

(2� )k j� nsj
exp

"

�
1
2

�
�

C(i )
j

� � ns

� T

� � 1
ns

�
�

C(i )
j

� � ns

� #

(4.4)

wherek is the dimension of the vector�
C(i )

j
and p(�) is the density conditioned by an event.

For linear discriminant analysis, we estimate the mean (� s or � ns) and the covariance (� s or

� ns) of each class from observations.

The linear discriminant for these classi�cation problem is given by

ln
p

�
�

C(i )
j

�
�
�
�! s

�

p
�

�
C(i )

j

�
�
�
�! ns

� = ( �
C(i )

j
� � s)T � � 1

s (�
C(i )

j
� � s) + ln

�
� � s

�
�

� (�
C(i )

j
� � ns)

T � � 1
ns (�

C(i )
j

� � ns) � ln
�
� � ns

�
�: (4.5)

Following the methodology used in Section 4.4, the proposed seizure detection pipeline is a

classi�er that labels the statistical parameters associated with each spectral band asseizureor

non-seizure. Precisely, �ve independent two-parameter classi�ers are used in parallel to classify the

pairs[� � (n); � � (n)], [� � (n); � � (n)], [� � (n); � � (n)], [� � (n); � � (n)], and [� 
 (n); � 
 (n)] generated by

the statistical dimensionality reduction step. This allows to simultaneously identify seizure activity

and the spectral bands where it occurs. For simplicity, a linear classi�er derived from a linear

discriminant analysis is used. Just, a supervised approach was adopted where each classi�er is

band-speci�c and has been trained by performing a linear discriminant analysis on expert annotated

data. The discriminant analysis perform on an augmented vector[�; �; � ] 2 R3, where � =

� 2�(3 =� )=�(1 =� ) is the variance parameter. Including� in the discriminant analysis embeds

(�; � ) in a non-linear manifold intoR3 where a better linear classi�cation is possible (note that�

available for free as a by-product of the Newton-Raphson method that estimates� and � , hence

this augmentation does not introduce any additional computational cost). The resulting linear

classi�ers are speci�ed by three parameters(a; b; c) de�ning a plane that splitsR3 in two regions

related to seizureand non-seizureevents, and which essentially operate as a three-dimensional

threshold for the triplets�; �; � . Lastly, similarly to the choice of the statistical model, it is

possible to consider more advanced classi�cations schemes. However, such classi�ers also involve

more parameters and hence are more prone to over-�tting and more computationally expensive.
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4.5.3 Experimental results

For the experiments, we used data from the Children's Hospital Boston database, see section 2.2.

From this database, we used13 seizure signals orepochsselected by an experienced neurologist,

see Table 2.1. These correspond to13 seizure events from9 di�erent subjects and are between

1 and 5 minutes long (the other data exhibited strong artifacts related to muscle activity and

were discarded as a consequence). The resulting dataset consisted therefore of39 signal segments

related to 13 seizuresand 26 non-seizuresignals, and of variable length in the range of1 to 5

minutes.

To illustrate the capacity of the statistical parameters� and � to discriminateseizureevents

and non-seizuresignals, Figure 4.2 shows scatter plots for each spectral band constructed using

the signals in the database and the expert annotations (non-seizuresignals are represented using

blue circles andseizuresignals using red crosses). Observe that this representation provides a

very good linear discrimination of theseizureand non-seizuregroups. In particular, one notices

that the scale parameter� is particularly useful for discrimination, see also discrimination tests in

subsection 2.8.2.

(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure 4.2: Scatter plots for the statistical parameters� and � for seizuresignals (red
crosses) andnon-seizuresignals (blue circles) for each spectral band, showing the good

discrimination properties of the proposed representation.
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Moreover, to assess the performance of the proposed methodology, we adopted a supervised

testing approach by using the39 signal segments described above to train and test the method.

Because the dataset is relatively small we used an exhaustive cross-validation technique based on a

leave-one-out approach. Precisely, at each iteration of the cross-validation process, we trained the

5 classi�ers (each de�ned by3 parameters) with data from13 seizuresignals and26 non-seizure

signals, and then assessed classi�cation performance on the remaining3 signals (these are1 seizure

and 2 non-seizuresignals). In each iteration of the cross-validation process, the classi�cation per-

formance was assessed by splitting the test signals into sequences of2 seconds and classifying each

sequence individually; these results were then used to assess classi�cation performance. Precisely,

we measure the method's true positive rate (TPR) orsensitivity, false positive rate (FPR), true

negative rate (TRN) orspeci�city, and overall accuracy (ACC), expressed as the rate of good cla-

ssi�cation. For each �gure of merit, we report the mean value and the standard deviation. These

results are reported in Table 4.3 below. Average latency (time delay) is also reported between

the annotated seizure onset and the detection by the method in Table 4.4. Classi�cation accu-

racy and latency were compared with the state-of-the-art methods [12, 13, 14], which also report

classi�cation performance and latency for the Children's Hospital Boston database. We empha-

size again that these state-of-the-art methods are signi�cantly more computationally expensive

than the proposed method. For example, [12] uses a third-order tensor discriminant analysis, [14]

a stack of neural networks combined with a logistic classi�er, and [13] computes singular value

decompositions of covariance matrices at each detection step. Neither of these methods can be

implemented in real-time in a standard EEG system as a consequence.

Observe from Table 4.3 that, despite the computational simplicity, the proposed method

achieves an excellent sensitivity of the order of97%� 99% for all spectral bands. This is close

to the state-of-the-art performances of98%� 100% reported in [12, 13, 14] for this dataset.

Moreover, the speci�city of the proposed method is approximately90%. This is slightly bellowed

the 94% speci�city of [12] (the works [13, 14] do not report speci�city). However, notice that to

achieve this higher speci�city, the method [12] pulls together all spectral bands, and as a result,

it does not discriminate between seizures in di�erent bands. Our method performs classi�cation

independently on each band because this is useful in clinical practice, at the expense of a slightly

lower speci�city.

Furthermore, observe from Table 4.4 that the method proposed in this thesis achieves an

average latency of approximately4 seconds for all spectral bands, outperforming the state-of-the-

art methods [12, 14] and close to the fastest available method [13]. Ii is important to emphasize at

this point that all the latency values reported in the literature measure the delay of the detection

algorithm o�ine, without taking into account any overhead related to the methods' computing

times. Therefore, the fact that di�erent methods achieve similar latency does not indicate that

they have similar computational complexity.
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Finally, note that computing times are not reported for these experiments for two reasons. First,

because these proof-of-concept tests were conducted in MATLAB, and processing each2-second

EEG signal window required less than50 milliseconds. Second, because we do not have access

to the implementations of [12], [13] and [14], and therefore the comparisons would not be fair.

However, as explained previously, these methods clearly have a signi�cantly higher computational

complexity because of the sophisticated mathematical operations involved (e.g., third-order tensor

discriminant analysis, singular value decompositions of covariance matrices, stacked neural net-

works, etc.). A real-time implementation of the proposed method is currently under development.

Metric Delta Band (� ) Theta Band (� ) Alpha Band (� ) Beta Band (� ) Gamma Band (
 )

TPR 0.97 � 0.06 0.99 � 0.01 0.99 � 0.02 0.97 � 0.05 0.99 � 0.01

TNR 0.92 � 0.07 0.79 � 0.23 0.91 � 0.08 0.90 � 0.10 0.91 � 0.08

FPR 0.08 � 0.07 0.21 � 0.23 0.09 � 0.08 0.10 � 0.10 0.09 � 0.08

ACC 0.95 � 0.17 0.92 � 0.29 0.96 � 0.11 0.94 � 0.22 0.97 � 0.11

Table 4.3: Seizure detection performance by using linear discriminant analysis classi�cation
for each brain rhythm and for 39 events (13seizureand 26non-seizure) of the Children's
Hospital Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR =
True Negative Rate or Speci�city; FPR = False positive Rate; ACC = Accuracy; and [�

standard deviation].

Proposed state-of-the-art

Delta band (� ) Theta band (� ) Alpha band (� ) Beta band (� ) Gamma band (
 ) [12] [13] [14]
4:3 3:9 4:1 4:0 4:1 4:5 3:4 7:2

Table 4.4: Average latency between seizure onset and detection (in seconds), for the pro-
posed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].

4.5.4 Pearson's product moment correlation

Pearson's product moment correlation coe�cient is a measure of the strength of a linear association

between two variables or classes,non-seizureand seizurein our case. Consider the classi�cation

into two possible classes:! s for seizureand ! ns for non-seizurefrom linear discriminant from

(4.5), then the linear association from the Pearson product-moment correlation coe�cientr is

expressed as

r =
P

(! s � ! s)( ! ns � ! ns)q P
(! s � ! s)2 P

(! ns � ! ns)2
(4.6)

where! s and ! ns are the means of each class, andr can take a range of values from +1 to -1. A

value of 0 indicates that there is no association between the two variables. A value greater than

0 indicates a positive association; that is, as the value of one variable increases, so does the value

of the other variable. A value less than 0 indicates a negative association; that is, as the value of

one variable increases, the value of the other variable decreases.
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The Pearson's correlation coe�cient of the two classes (! s for seizureand! ns for non-seizure)

for each brain rhythm are reported in Table 4.5, wherep-value is the signi�cance level of the T-test

[134]. This shows that for bandsdelta, theta, alphaand beta the correlation for! ns is high with

r near to one,p-values< 0:001, and a good con�dence interval; while for! s the bands are not

correlated withr near to zero. These results suggest that our model based on generalized Gaussian

distribution coupled with the linear discriminant classi�er can be de�ned by scale value between

[� 1; 1] to discriminate betweenseizureand non-seizureevents.

Bands r p-value IC95%

Delta ! ns 0.88 < 0.001 0.70 0.95
Delta ! s 0.39 0.11 -0.01 0.72

Theta ! ns 0.81 < 0.001 0.55 0.92
Theta ! s 0.51 0.03 0.06 0.79
Alpha ! ns 0.80 < 0.001 0.53 0.92
Alpha ! s 0.45 0.06 -0.02 0.76
Beta ! ns 0.72 < 0.001 0.38 0.89
Beta ! s 0.15 0.56 -0.34 0.58

Gamma! ns 0.58 0.01 0.15 0.82
Gamma! s -0.11 0.66 -0.55 0.38

Table 4.5: Pearson's product moment correlation coe�cient comparison between! s for
seizureand ! ns for non-seizureevents, over the proposed epilepsy classi�cation model for
each brain rhythm; wherer = 1 is total positive correlation,r = 0 is no correlation,r = � 1
is total negative correlation andIC95% is the 95 percent con�dence interval. The model
presents high correlation for all brain rhythms, except for gamma band innon-seizureevents.
This suggests that Pearson's product moment correlation coe�cient can be used to estimate

changes betweenseizureand non-seizureevents.

4.6 Multivariate Bayesian Classi�er

Methods to analyze epileptic seizure signals can be classi�ed into univariate or multivariate approa-

ches. Univariate approaches analyze the state of a single brain region, while multivariate approaches

analyze. many regions simultaneously as well as their interactions [193]. In this classi�er, we ex-

tend the approach used in the previous Section 4.5 by using a multilevel 2D wavelet representation

coupled with a Bayesian classi�cation scheme [194, 195, 196, 197] to operate with multivariate

EEG signals so as to analyze several brain regions simultaneously.

4.6.1 Classi�er parameters

Multivariate Bayesian classi�cation for onset detection is summarized in Figure 4.3. It is very

similar to linear classi�er parameters from subsection 4.5.1. The more important di�erence is the

use of multilevel 2D wavelet decomposition in order to analyze the EEG, see subsection 2.4.2

of Section 2.4. The feature vector associated with each time segment is classi�ed by using a

Bayesian classi�er asseizureor non-seizure. Here we use a multivariate Gaussian classi�er [101]
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which provides a robust second-order approximation with a more general Bayesian classi�cation

method [198, 199] which has the important advantage of requiring little training data.

X

Slice Signal

X (i )

2D wavelet
decomposition

C(i )
H;j ,C

(i )
V;j,C

(i )
D;j

Dimensional Reduction:
Generalized Gaussian distribution� , �

� (i )
H;j ,�

(i )
V;j,�

(i )
D;j

Bayesian classi�er
Seizure or Non-Seizure

! (i )

Figure 4.3: Algorithm used in Bayesian classi�er. The coe�cients vectorC(i )
j and the vector

of parameters estimated� (i )
j , from di�erent brain rhythms are composed by the detailsH,

V, and D, which refer to horizontal, vertical and diagonal respectively, see Section 2.4.

4.6.2 SOD by Bayesian Classi�er

Consider a classi�cation intoJ possible classes! 1; : : : ; ! J . For a feature vector� (i ) belonging to

the class! j , we assume that� (i ) has a multivariate normal distribution with mean value� j and

covariance matrix� j , so that

p
�
� (i )

�
�
�! j

�
=

exp
h

� 1
2(� (i ) � � j )

T � � 1
j (� (i ) � � j )

i

(2� )K=2j� j j1=2
(4.7)

wherep(�) is the probability of a particular event, andK is the size of the vector� (i ) .

The Bayes decision rule states that the estimated class!̂ (i ) corresponding to� (i ) is

!̂ (i ) = arg max
j

p
�
� (i )

�
�
�! j

�
p(! j ) (4.8)
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or equivalently using the logarithmic likelihood we obtain the equivalent rule

gj

�
� (i )

�
= log p

�
� (i )

�
�
�! j

�
+ log p(! j ) (4.9)

!̂ (i ) = arg max
j

gj

�
� (i )

�
(4.10)

wheregj (�) is the so called discriminant function.

From (4.7) and (4.9) the discriminant functions becomes

gj

�
� (i )

�
= �

1
2

�
� (i ) � � j

� T
� � 1

j

�
� (i ) � � j

�

�
N
2

log(2� ) �
1
2

logj� j j + log p (! j ) : (4.11)

4.6.3 Experimental results

The goal is to use EEG data to train o�-line and subsequently test the capacity of our classi-

�cation scheme to identifyseizureand non-seizuresignals. Table 4.8 reports the performance

of each classi�cation method assessed by using a leave-one-out cross-validation approach to cal-

culate the confusion matrix [185]. These performance matrices are composed of the following

measures that characterize the di�erent aspects of the classi�ers: the sensitivity or true positives

rate (TPR); the false positive rate (FPR); the sensitivity or true negative rate (TNR); and the

overall classi�cation accuracy (ACC), calculated as the total number of correct classi�cations out

of 36 events (18 seizure and 18 non-seizure). Notice that the classi�cation results are performed

and reported separately for each brain rhythm or frequency band because this information is rele-

vant to neurologists and allows discriminating clinical events of di�erent nature. We observe from

tables 4.6 and 4.7 the independent contributions for each 2D wavelet decomposition. The Table

4.6 correspond to the independent contribution between before the seizure and the seizure, where

the best sensitivity or true positives rate (TPR) is for Delta band, Theta horizontal band, Alpha

vertical band, Alpha diagonal band, all Beta bands and all Gamma bands, while the best sensitivity

or true negative rate (TNR) is for Delta band, Beta horizontal band and Gamma horizontal band.

The Table 4.7 correspond to the independent contribution between the seizure and after seizure,

where the best sensitivity or true positives rate (TPR) is for Alpha vertical band, Alpha diagonal

band, Beta horizontal band and Gamma horizontal band, while the best sensitivity or true negative

rate (TNR) is for Theta vertical band, Theta diagonal band, all Alpha bands, all Beta bands and all

Gamma bands. Table 4.8 reports the average of all 2D wavelet decomposition contributions. We

observe that the method detects correctly in terms of overall accuracy (ACC), sensitivity (TPR)

and speci�city (TNR) for most frequency bands. In addition, the average latency (time delay) is

also reported between the annotated seizure onset and the detection by the method in Table 4.9.

Figures 4.4 to 4.8 shows scatter plots of the generalized Gaussian parameters� and� for seizure

events (red stars) andnon-seizureevents (blue squares and black diamonds) observed through the

all frequency bands. We observe that the proposed representation, based on a generalized Gaussian

model for the wavelet coe�cients, leads to a very clear discrimination ofseizureand non-seizure
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Metric � � H � V � D � H � V � D � H � V � D 
 H 
 V 
 D

TPR 0.94 0.78 0.94 0.56 0.67 0.89 1.00 1.00 1.00 1.00 1.00 0.89 0.83

TNR 0.94 0.72 0.72 0.67 0.78 0.67 0.61 0.94 0.56 0.72 0.94 0.67 0.61

FPR 0.06 0.28 0.28 0.33 0.22 0.33 0.39 0.06 0.44 0.28 0.06 0.33 0.39

ACC 0.94 0.75 0.83 0.61 0.72 0.77 0.80 0.97 0.77 0.86 0.97 0.77 0.72

Table 4.6: Seizure detection performance for each independent contribution between be-
fore the seizure and the seizure by using multivariate Bayesian classi�cation for each brain
rhythm and for 36 events (18seizureand 18non-seizure) of the Children's Hospital Boston
database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True Negative Rate
or Speci�city; FPR = False positive Rate; and ACC = Accuracy [� standard deviation].
� : Delta band, � H: Theta horizontal band,� V: Theta vertical band,� D: Theta diagonal
band, � H: Alpha horizontal band,� V: Alpha vertical band,� D: Alpha diagonal band,� H:
Beta horizontal band,� V: Beta vertical band,� D: Beta diagonal band,
 H: Gamma hori-
zontal band,
 V: Gamma vertical band,
 D: Gamma diagonal band. To simplify the visual
interpretation we highlight in red the metric that achieves the highest sensitivity, speci�city,

and overall accuracy for each frequency band

Metric � � H � V � D � H � V � D � H � V � D 
 H 
 V 
 D

TPR 0.72 0.72 0.72 0.78 0.78 0.83 0.83 0.89 0.72 0.67 0.89 0.78 0.67

TNR 0.72 0.72 1.00 1.00 0.72 1.00 1.00 0.94 1.00 1.00 1.00 0.94 0.94

FPR 0.28 0.28 0.00 0.00 0.28 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.06

ACC 0.72 0.72 0.86 0.88 0.75 0.91 0.91 0.91 0.86 0.83 0.94 0.86 0.80

Table 4.7: Seizure detection performance for each independent contribution between the
seizure and after the seizure by using multivariate Bayesian classi�cation for each brain rhythm
and for 36 events (18seizureand 18non-seizure) of the Children's Hospital Boston database,
in terms of: TPR = True Positives Rate or Sensitivity; TNR = True Negative Rate or Speci-
�city; FPR = False positive Rate; and ACC = Accuracy [� standard deviation]. � : Delta
band, � H: Theta horizontal band,� V: Theta vertical band,� D: Theta diagonal band,� H:
Alpha horizontal band,� V: Alpha vertical band,� D: Alpha diagonal band,� H: Beta hori-
zontal band,� V: Beta vertical band,� D: Beta diagonal band,
 H: Gamma horizontal band,

 V: Gamma vertical band,
 D: Gamma diagonal band. To simplify the visual interpretation
we highlight in red the metric that achieves the highest sensitivity, speci�city, and overall

accuracy for each frequency band

events. In particular, notice that by using this representation it is possible to discriminate events

with separating line or hyper-plane, which is essentially what is achieved by using the multivariate

Gaussian classi�er. Remember that, once the seizure �nished, there are several medical pathological

factors that cause the signal to take time to stabilize, see Section 2.9.1. This explains why after

the seizure, the black diamonds, don't have good discrimination with respect to the seizure, see

for example Approximation Delta Band from Figure 4.4 or Horizontal Theta Band from Figure 4.5.
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Metric Delta Band (� ) Theta Band (� ) Alpha Band (� ) Beta Band (� ) Gamma Band (
 )

TPR 0.83 � 0.16 0.75 � 0.12 0.83 � 0.11 0.88 � 0.15 0.84 � 0.11

TNR 0.83 � 0.16 0.81 � 0.15 0.80 � 0.17 0.86 � 0.18 0.85 � 0.17

FPR 0.17 � 0.16 0.19 � 0.15 0.20 � 0.17 0.14 � 0.18 0.15 � 0.17

ACC 0.83 � 0.16 0.77 � 0.10 0.80 � 0.08 0.86 � 0.07 0.83 � 0.10

Table 4.8: Seizure detection performance by using multivariate Bayesian classi�cation for
each brain rhythm and for 36 events (18seizureand 18non-seizure) of the Children's Hospital
Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True
Negative Rate or Speci�city; FPR = False positive Rate; and ACC = Accuracy [� standard

deviation].

Proposed state-of-the-art

Delta band (� ) Theta band (� ) Alpha band (� ) Beta band (� ) Gamma band (
 ) [12] [13] [14]
4:2 4:1 4:2 4:2 4:2 4:5 3:4 7:2

Table 4.9: Average latency between seizure onset and detection (in seconds), for the pro-
posed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].

(a) Aproximation Delta band (b) Aproximation Delta band

Figure 4.4: Scatter plots for the generalized Gaussian parameters� and � for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through theDelta frequency band, showing the good

linear discrimination power of the proposed approach.
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(a) Horizontal Theta band (b) Horizontal Theta band

(c) Vertical Theta band (d) Vertical Theta band

(e) Diagonal Theta band (f) Diagonal Theta band

Figure 4.5: Scatter plots for the generalized Gaussian parameters� and � for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through theTheta frequency band, showing the good

linear discrimination power of the proposed approach.
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(a) Horizontal Alpha Band (b) Horizontal Alpha Band

(c) Vertical Alpha Band (d) Vertical Alpha Band

(e) Diagonal Alpha Band (f) Diagonal Alpha Band

Figure 4.6: Scatter plots for the generalized Gaussian parameters� and � for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through theAlpha frequency band, showing the good

linear discrimination power of the proposed approach.
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(a) Horizontal Beta Band (b) Horizontal Beta Band

(c) Vertical Beta Band (d) Vertical Beta Band

(e) Diagonal Beta Band (f) Diagonal Beta Band

Figure 4.7: Scatter plots for the generalized Gaussian parameters� and � for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through theBeta frequency band, showing the good

linear discrimination power of the proposed approach.
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(a) Horizontal Gamma Band (b) Horizontal Gamma Band

(c) Vertical Gamma Band (d) Vertical Gamma Band

(e) Diagonal Gamma Band (f) Diagonal Gamma Band

Figure 4.8: Scatter plots for the generalized Gaussian parameters� and � for seizure events
(red stars) and non-seizure events (blue squares for before the seizure and black diamonds
for after seizure) observed through theGammafrequency band, showing the good linear

discrimination power of the proposed approach.
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4.7 Ensemble Bagging Classi�er

Ensemble machine learning methods have been developed to enhance the performance of indivi-

dual classi�ers [200]. The underlying principle consists in combining a collection ofweakclassi�ers

through a suitable manner. The more popular combination schemes are arithmetic or geometric

averaging rule, stacking and majority voting rule [201]. Ensemble bagging (stands forBootstrap

Aggregating) relies on bootstrap replicates of the training set [202]. The classi�er outputs are

combined by the plurality vote. This technique allows increasing the size of the training set, de-

creasing the variance, and increasing the accuracy and narrowly tuning the prediction to expected

outcome [200]. Such classi�ers can be optimal in terms of stability and predictive accuracy for

datasets with imbalanced class distributions, unstable models or for data mining [203, 204, 205].

Ensemble bagging is widely used in bioinformatics, particularly in protein prediction [206, 207] and

recently was used in automatic detection of iEEG bad channels [203]. In this section, we study

the Shannon entropy of each brain rhythm, based on the probability density function (PDF) of the

generalized Gaussian distribution (GGD). Brain rhythms are obtained through wavelet decomposi-

tion. An ensemble bagging method is used to classify EEG signals asseizureor non-seizure. The

classi�cation parameters use the entropy and the scale and shape parameters from the GGD. The

motivation relates to the fact that averaging measurements can lead to a more stable and reliable

estimate, as the in�uence of random �uctuations in single measurements is reduced. By building

an ensemble of slightly di�erent models from the same training data, we might be able to similarly

reduce the in�uence of random �uctuations in single models [208]. The random �uctuations in

epilepsy can be modeled according to spontaneous neural or chaotic activity by using the entropy.

The idea is to characterize the dynamic EEG signal by determining the sudden changes in the

epileptic signals [209, 210]. Therefore, the random �uctuations that are typical of the variation

of the uncertainty can be determined when the entropy is used [101]. In this study, we train

decision trees having low bias and high variances to discriminate between seizure and non-seizure

[185, 208]. To accurately predict responses, we combine these tree by an ensemble technique in

order to reduce the variance and maintain the bias interchangeably low.

4.7.1 Classi�er Parameters

Ensemble bagging classi�cation for onset detection is summarized in Figure 4.9. It is very similar

to linear classi�er parameters from subsection 4.5.1, the most important di�erence is the use of

the Shanon entropy" from generalized Gaussian parameters� and � . Rényi entropy [96], for the

PDF from eq. (4.1) is de�ned by

J R(� ) =
1

1 � �
log

� Z
f � (x; �; � )dx

�
(4.12)

where� > 0 and � 6= 1 , then solving the integral of eq. (4.12) for the PDF from eq. (4.1) one

obtains
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Z 1

�1
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(4.13)

Thus, eq. (4.12) takes the expression

J R(� ) =
log�

� (1 � � )
� log

�
�

2� �( � � 1)

�
: (4.14)

Shannon entropy de�ned byE[� logf (X )] is the particular case of eq. (4.14) for� ! 1. Then

limiting in (4.14) and using L'Hopital's rule, one obtains the entropy for the generalized Gaussian

distribution PDF

" = E[� logf (X )] = � � 1 � log
�

�
2� �( � � 1)

�
: (4.15)

4.7.2 SOD by ensemble of bagged decision trees classi�cation

Let M t : ! ! f 0; 1g be the t th weak binary class for the treet = f 1; � � � ; T g, where0 is for

non-seizureevent and1 is for seizureevent; andp = [ �; �; " ] 2 ! the parameters to be classi�ed.

Then to combine the outputsM 1(p); � � � M T (p) into a single tree-class prediction, a weight linear

combination of the outputs of the weak tree-classi�ers, can be used through an ensemble prediction

function M : ! ! f 0; 1g such that

M (p) = sign

 TX

t =1

wt M t (p)

!

(4.16)

wherew1; � � � ; wT is a set of weights of the treet , according to the average vote from all trees in

the ensemble.

Consider a datasetD = f d1; d2; ::; dN g with di = ( pi ; ! (i ) ), where! (i ) is a class label,1 for

seizureand0 for non-seizure. Bagging algorithm returns the ensemble as a set of models by using

decision trees according to each region given by the minimum and maximum values from vector

p. Combining the predictionsT from the di�erent models by average, see algorithm 2. The class

predicted is the class that yields the largest weighted average as

arg max
!

h M (p)i (4.17)
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Figure 4.9: Algorithm used in bagging ensemble classi�er.

Data: data setD; ensemble sizeT ; learning algorithmA

Result: ensemble of models whose predictions are to be combined by averaging.

for t=1 to T do

build a bootstrap sampleDt from D by samplingjDj data points with replacement;

run A on Dt to produce a modelM t ;

end
Algorithm 2: Bagging(D,T ,A ) � train an ensemble of models from bootstrap samples [208].

4.7.3 Experimental results

Figure 4.10 shows the discrimination properties of the proposed vector representationp = [ �; �; " ] 2

R3 from the wavelets coe�cients. We can see the direct relation between� and", both increase as

they grow in their scale of values for theseizureevents (yellow circles) with respect tonon-seizure

events (blue circles). For illustration, Figure 4.11 shows the di�erent ranges in the box plots for

the entropy, clearly discriminating the two classes,seizureor non-seizure. For all brain rhythms,

except for delta band, the maximum and minimum values for each box together with the quartiles

can help to classify based on a thresholding approach.

Table 4.10 reports the mean and standard deviation values for all signals with the proposed

vector representationp = [ �; �; " ] 2 R3, showing a clear di�erence betweenseizureevents and

non-seizureevents. The 95% con�dence interval (IC95%) has di�erent values, which permits to set

a threshold for detecting the seizure, with a proper choice, this can help to determine the duration

and amplitude betweenseizureevents andnon-seizureevents; those are the most important factor

a�ecting the performance of automated detection [211].
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(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure 4.10: Scatter plots from vectorp = [ �; �; " ] observed through all brain rhythms
using 105 events: 35seizures(yellow dots) and 70non-seizures(blue dots). We can see how

the seizureevent concentrates on high values of� and � .

To assess the performance of the proposed methodology, a supervised testing approach was

adopted and used the 105 events described above to train and test the method with an exhaustive

cross-validation technique based on a leave-one-out approach of the vectorp = [ �; �; " ] 2 R3

with 35 ensemble learnings. Table 4.11 reports the rate of correct classi�cation in terms of: TPR

= True Positives Rate orSensitivity; TNR = True Negative Rate orspeci�city; FPR = False

Positive Rate; FNR = False Negative Rate; Error Rate; and ACC = Accuracy (ACC). In addition,

the average latency (time delay) is also reported between the annotated seizure onset and the

detection by the method in Table 4.12.
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(a) Delta Band (b) Theta Band (c) Alpha Band

(d) Beta Band (e) Gamma Band

Figure 4.11: Box plots of Shannon entropy observed through all brain rhythms using 105
events (35seizuresand 70non-seizures). The maximum an minimum values for each box

together with the quartiles can help to classify based on a thresholding approach.

Non-Seizure Seizure

Bands mean std IC95% mean std IC95%

Delta 106.23 75.09 [102.28, 110.17] 202.78 122.53 [193.68, 211.89]
Theta 25.84 19.60 [24.81, 26.87] 85.55 67.49 [80.54, 90.56]
Alpha 22.08 14.15 [21.34,22.83] 75.11 67.32 [70.10, 80.11]
Beta 11.96 6.95 [11.59, 12.32] 37.44 44.05 [34.16, 40.71]

Gamma 6.83 6.21 [6.50, 7.15] 35.01 43.57 [31.78, 37.30]

Table 4.10: Comparison betweenmeans, standard deviationsof the entropy and 95%
con�dence interval (IC95%) of seizure and non-seizure, using 105 events (35 seizures and 70
non-seizures) for each brain rhythm. We can see how one can set a threshold for detecting

the seizure

Metric Delta Band (� ) Theta Band (� ) Alpha Band (� ) Beta Band (� ) Gamma Band (
 )

TPR 0.95 � 0.03 0.97 � 0.03 0.98 � 0.02 0.98 � 0.02 0.99 � 0.01

TNR 0.87 � 0.05 0.94 � 0.05 0.94 � 0.06 0.94 � 0.08 0.95 � 0.07

FPR 0.13 � 0.05 0.06 � 0.05 0.06 � 0.06 0.06 � 0.08 0.05 � 0.07

ACC 0.92 � 0.03 0.96 � 0.02 0.97 � 0.02 0.97 � 0.04 0.97 � 0.04

Table 4.11: Seizure detection performance by using ensemble bagged classi�cation for each
brain rhythm and for 105 events (35seizureand 70non-seizure) of the Children's Hospital
Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True
Negative Rate or Speci�city; FPR = False positive Rate; and ACC = Accuracy [� standard

deviation].

Proposed state-of-the-art

Delta band (� ) Theta band (� ) Alpha band (� ) Beta band (� ) Gamma band (
 ) [12] [13] [14]
4:4 4:2 4:3 4:3 4:2 4:5 3:4 7:2

Table 4.12: Average latency between seizure onset and detection (in seconds), for the
proposed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].
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4.8 Logistic Regression Classi�er

Logistic regression is one of the most common multivariate analysis models used in biomedical

applications for analyzing binary outcome data [185, 212]. The choice of the explicative variables

that should be included in the logistic regression model is based on prior knowledge of epilepsy and

the statistical correlation between the variable and the epileptic event [213, 214], in our case the

correlation between theseizureand the largest Lyapunov exponent. In recent works, the logistic

regression classi�er coupled with Cox regression has been used to construct time to �rst EEG

seizure in neonates subjects [215] or to classi�er the signi�cant non-antiepileptic drug predictors

of psychiatric and behavioral side e�ects rate [216], or to estimate the average recurrence risk of

ictal asystole and its determining factors in people with epilepsy [217].

The EEG signal was decomposed independently for each brain rhythms using ICA to study the

epileptic dynamic features of EEG duringseizure(ictal) and non-seizure(interictal) behavior. The

di�erence between typical ictal and interictal feature values enables us to distinguish between the

two states, which are identi�ed through the largest Lyapunov exponents (LLE). The results allow

us to di�erentiate the distinctive and appreciable changes during epileptic seizures, discriminating

normal from abnormal brain activity.

Independent component analysis (ICA) is a method to �nd underlying sources (or components)

from multivariate or multidimensional statistical data. The main idea of ICA is to �nd a linear

representation of non-Gaussian data in such a way that the components are statistically indepen-

dent. The advantage of identifying these independent features is that, when used in combination

with other methods such as largest Lyapunov exponents (LLE), it makes possible to distinguish

betweenseizureand non-seizureevents in a higher dimensional feature space [32]. ICA has been

successfully used by the scienti�c community and has been applied to numerous signal processing

problems in diverse areas such as biomedicine, bioengineering, communications, �nance, and re-

mote sensing; and keeps evolving [218]. ICA is widely used in EEG data and its applications are very

varied, for example in [219] was demonstrated that ICA can be an e�cient approach to separate

responses related to epilepsy which are commonly obtained through fMRI studies, or in [220] to

select the PROJection onto Independent Components (PROJIC) from EEG data collected during

fMRI acquisitions to detect Inter-ictal epileptiform discharges, or by using a new de�ation ICA

algorithm called penalized semialgebraic unitary de�ation (P-SAUD) in order to remove artifacts

from interictal epileptic spikes [221].

Largest Lyapunov exponents (LLE) is a time-dependent analysis technique that can be used

to infer the properties of a system [222, 223, 224, 225]. In a medical context, they describe the

time interval over which the system's evolution diverges, helping to discriminateseizuresfrom non-

seizuresin epileptic signals [226, 227]. In recent studies, the Lyapunov coe�cients were applied

as a �lter-noise that can be used as an epilepsy detector [228], as features in order to predict

epileptic seizures in synthetic signals [229], coupled with the adaptive Teager energy to seizure

detection in long-term signals with a sensitivity of 91% and a speci�city of 86% [230], or by using

point-process to correlate the heartbeat dynamics with the epileptic signals and SVM classi�er with

an accuracy of 73.91% [231], for EEG patterns classi�cation based on continuous neural networks
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by using a generalization-regularization with an accuracy of 97.2% [232]; as a seizure prediction

in intracraneal signals (iEEG) with a sensitivity of 89.8% and a speci�city of 96.7% [233], or to

detect metabolic encephalopathy by using SVM with a speci�city of 100% and a sensitivity of

95.33% [234].

4.8.1 Classi�er parameters

The process of logistic regression for onset detection is summarized in Figure 4.12.

X

1D wavelet decomposition

C(i )
j =

h
X (i )

� ; X (i )
� ; X (i )

� ; X (i )
� ; X (i )




i

Dimensional Reduction:
Independent component analysis (ICA)

Y = W C(i )
j

Largest Lyapunov
exponents (LLE)

� (i ) = �
�
Y (i )

�

Logistic regression classi�er
Seizure or Non-Seizure

! (i )

Figure 4.12: Algorithm used in logistic regression classi�er.

We start from the parameter-vector

C(i )
j =

h
X (i )

� ; X (i )
� ; X (i )

� ; X (i )
� ; X (i )




i
(4.18)

The Independent component analysis (ICA) is a representation of a signal (the brain rhythm of eq.

(4.18) in this case) through a set of independent constituent components given by the likelihood

p
�
C(i )

j jS
�

=
TY

t =1

p (� t jSt ) (4.19)

wherep
�
C(i )

j jS
�

is the joint probability distribution,p (� t jSt ) are the marginal distributions,

S 2 RT � N are the unknown sources,� t is the observed signal matrix from the wavelet coe�cients

C(i )
j , and T is the number of independent components (see Figure 4.13).

We assume that the source signals arrive at the electrodes at the same time instantaneously,

thus the problem of separating sources corresponding to the independent components for each
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brain rhythm, of eq. (4.18) is given by

� t = Hs t + � (4.20)

whereH is the mixing matrix,s is the source matrix and� is the noise.

The separation is performed by means of a matrixW 2 RT � M , the so called unmixing matrix,

which uses only the information in� t to reconstruct the original source signals (also known as the

independent components) as:

y t = W � t (4.21)

wherey t 2 RT � N , W 2 RT � M and � t 2 RM � N .

Figure 4.13: Example for seven electrodes, namelyX 1; :::; X 7 and four sourcesSt namely
s1; ::; s4, representation of assumption that the source signals arrive at the electrodes at the

same time instantaneously.
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The estimation of the unmixing matrixW in eq. (4.21) is calculated using singular value de-

composition (SVD) through the eigenvalue decomposition of the covariance matrix (prewhitening)

[235, 236, 237, 238, 239] and the JADE algorithm for real-valued signals [240], to �nd the best

estimation of the independent sourcesS through

Y = W C(i )
j (4.22)

The independent sourcesY from equation (4.22) for each brain rhythm is split in sets of

non-overlapping 2 seconds segments using a rectangular sliding window so that

Y (i ) = 
 (i )Y (4.23)

See eq. (2.2) for more details about the sliding window.

4.8.2 Largest Lyapunov exponent (LLE)

The nonlinear prediction technique to separate transients from background activity using Lyapunov

exponents was �rst investigated by Leonidas D. Iasemidis and J. Chris Sackellares in [59] where

the lowest values of Lyapunov exponents occur during theseizure. This gives us an idea of how

much the EEG signal background changes when a small perturbation or change occurred during

the seizureprocess.

The largest Lyapunov exponent is estimated by means of two-time series,Y (i )
1 and Y (i )

2 (we

would like to remind the reader thatY (i ) denotes each segment of the evaluated signal); which

originate from the same system and have similar initial conditions [225], de�ned as a distance

vector

dist(i ) =





 Y (i )

1 � Y (i )
2






 (4.24)

and the Lyapunov exponent

� =
1
i

log
dist(i )
dist(0)

(4.25)

wherei is the sample number anddist(0) is the distance between the initial sample points on the

two trajectories. A trajectory is a path that the variables trace throughout the phase space. Phase

space represents all possible internal states of a system. The divergence value of� magni�es small

changes in a trajectory that grow over time [241], this value shows how an increase in distance

between trajectories that start from similar conditions become increasingly decorrelated, contrary

to convergence. This can be summarized as follows

� If � > 0 then the divergence is exponential.

� If � < 0 then the convergence is exponential.

� If � = 0 then there is no divergence or convergence.
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For each segment of eq. (4.23) and each brain rhythm, of eq. (4.18) a largest Lyapunov

exponent� is estimated using eq. (4.25) according to the divergence or convergence of the con-

sidered value. This allows us to discriminate the divergence or convergence betweenseizureand

non-seizurein epileptic signals. Two positive Lyapunov exponents were estimated. The presence

of a positive exponent is su�cient to detect the seizure [223].

4.8.3 � -Scaling

Each largest Lyapunov exponent value for each brain rhythm is assigned one scale value between

the minimum and the maximum of the standard deviation from LLE, see Table 4.13.

Let `sup = + � std and ` inf = � � std , � min = min(LLE) and � max = max(LLE), then the

scale value is given by

&=
(� � � min)( `sup � ` inf )

� max � � min
+ ` inf (4.26)

The proposed seizure detection is a classi�er by using logistic regression, that labels each

Largest Lyapunov exponents (� ) and their scales (&) associated with each brain rhythm as seizure

or non-seizure. Precisely, �ve independent two-parameter classi�ers are used in parallel to classify

the feature vector pairs� � (n) = [ � � (n); &� (n)], � � (n) = [ � � (n); &� (n)], � � (n) = [ � � (n); &� (n)],

� � (n) = [ � � (n); &� (n)], and � 
 (n) = [ � 
 (n); &
 (n)].

4.8.4 SOD by logistic regression classi�cation

Consider a classi�cation into two possible classes:! s for seizureand ! ns for non-seizure. The

posterior probability of class! s can be written as

p
�
! sjY (i )

�
=

p(Y (i ) j! s)p(! s)

p(Y (i ) j! s)p(! s) + p(Y (i ) ! ns)p(! ns)
(4.27)

=
1

1 + exp(� a)
= � (a) (4.28)

a = ln
p(Y (i ) j! s)p(! s)

p(Y (i ) i j! ns)p(! ns)
(4.29)

where� (:) is the logistic sigmoid function, and the class-conditional densities are assumed Gaussian

[185]. Then the posterior probability of class! s can be written as a logistic sigmoid acting on a

linear function of the feature vector� so that

p(! sj� ) = � (wT � ) (4.30)

p(! nsj� ) = 1 � p(! sj� ) (4.31)

w = � � 1(� 1 � � 2) (4.32)
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assuming that all classes share the same covariance matrix� and � are the means of each class.

For a data set
n

�; ! (i )
o

, where! (i ) 2 f 0; 1g, 1 for class! s and0 for class! ns, and� (n) = � (Y (i ) )

the likelihood can be written

p(! jw) =
NY

i =1

y ! (i )

i f 1 � yi g1� ! (i )
(4.33)

where! = ( ! 1; ! 2; ::; ! N )T and yi = p(! sj� b(n)) . It should be noted that the feature vector

� b(n) is given by each LLE (� ) and their scales (&) of each brain rhythm (b). The methodology

used can be summarized in four basic steps through next algorithm

Data: Epileptic EEG signals
Result: Seizure and Non-Seizure detection
begin

1. Find all independent brain rhythms using univariate wavelet 1D decomposition;
2. Compute the independent features of each brain rhythms using ICA decomposition;
3. Compute LLE for all independent brain rhythms of 2.;
4. Scale each LLE from step 3. between the minimum and the maximum of the
standard deviation;

5. Seizure detection for each pairs [LLE,scale] by using logistic regression;
end

Algorithm 3: Epileptic seizure detection algorithm

4.8.5 Experimental results

Figures 4.14 show how the EEG signal background changes through the six largest Lyapunov

exponents (LLE) from 9 independent components by using ICA. Two LLE before, two LLE during

and two after theseizureICA process . In the delta, theta and alpha brain rhythms the largest

Lyapunov exponent (LLE) presents the lowest value, while in beta and gamma brain rhythms the

opposite happens. This suggests that the algorithm is potentially interesting for epilepsy detection

systems because it permits discriminatingseizurefrom non-seizurein all brain rhythms.

Table 4.13 shows the minimum LLE (� min), maximum LLE (� max) and the standard deviation

from LLE (� std ) through all the data utilized that permits the use of a threshold approach in order

to scale each LLE by using the equation (4.26).

The logistic regression classi�er was trained o�-line with 20 empirical fold cross-validation. In

this experiment, we used two classes:seizureand non-seizurefor each pair[� b; &b] for each brain

rhythm (b). Where 264 events correspond toseizureand 528 events correspond tonon-seizure.

The performance of the logistic regression classi�cation method through these 792 observations

was assessed in terms of overall accuracy classi�cation, and achieves a 100% of sensitivity (True

positive rate) and speci�city (True false rate) for seizure detection in epilepsy signals with time-

delay of 8.9 sec in average for all brain rhythms.

We suggest that these good results in the classi�cation are due to the fact that the LLE coupled

with their scaling can discriminate correctly between seizure and non-seizure in all brain rhythms,
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as shown in the values of the Table 4.13 and the visual observation of the LLE �gures 4.14.

(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure 4.14: Scatter plot for six largest Lyapunov exponents (LLE) forseizure(middle) and
non-seizurebefore an after events observed through the di�erent rhythms bands. Lowest
valued LLE is in theseizureevents for delta, theta, and alpha bands, while highest valued
LLE are in theseizureevents for beta and gamma bands. In this example, the start and end
of the seizure in this EEG signal were labeled by the neurologist using two lines. The �rst

line divides the EEG signal before the seizure and the second line after the seizure.
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Brain rhythm � min � max � std

� Non-Seizure -0.00266 0.00028 0.00074
� Seizure -0.00328 -0.00003 0.00092

� Non-Seizure -0.00249 0.00052 0.00064
� Seizure -0.00368 -0.00002 0.00103

� Non-Seizure -0.00443 0.00117 0.00111
� Seizure -0.00641 0.00027 0.00147

� Non-Seizure -0.00311 0.00177 0.00068
� Seizure -0.00317 0.00346 0.00111


 Non-Seizure -0.00281 0.00364 0.00079

 Seizure -0.00082 0.00768 0.00149

Table 4.13: Minimum, maximum and standard deviation from all LLE for each brain rhythm.

4.9 Conclusions

This chapter presented three new methods to detect epileptic brain activity on-line in EEG signals,

with a focus on applications involving real-time constraints and small training datasets. A particu-

larity of the methods is that detection is performed independently for each brain rhythm, following

the current medical practices. Detection is achieved by �rst separating the EEG signals into the �ve

brain rhythms by using a wavelet decomposition, and then using a generalized Gaussian statistical

model to map signals onto a low-dimensional representation where classi�cation can be performed

e�ciently to discriminating betweenseizureandnon-seizureby linear discriminant analysis, multi-

variate Bayesian classi�er or ensemble bagging classi�er by using decision trees (through all brain

rhythms) using the entropy from the generalized Gaussian statistical model parameters. The fourth

method, using logistic regression of Lyapunov exponents from Independent Component Analysis

(ICA) computed independently in each brain rhythms from wavelet decomposition obtained very

good results, but computationally, it is very expensive to apply it in real time. All classi�ers have

similar latency around 4 seconds, except for the Lyapunov exponents around 9 seconds. The four

methods are potentially useful for di�erentiating betweenseizureor non-seizureevents in epileptic

signals and for onset detection, in terms of high sensitivity, speci�city, and accuracy. Note that, the

model-based classi�cation by using the GGD parameters (scale and shape) permit a correct seizure

onset identi�cation in epileptic EEG signals with an acceptable time delay. The best classi�er,

in general, was the linear discriminant analysis, but the ensemble of bagged decision trees classi-

�er showed the best performance in the speci�city. The multivariate Bayesian was the weakest

classi�er, but it may be possible to improve its performance using a regulation parameter.
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Chapter 5

Spike-and-wave epileptiform pattern

recognition

5.1 Introduction

This chapter presents three novel methods to detect spike-and-wave discharges (SWD) in EEG

signals. The methodology is computationally very e�cient, suitable for real-time automation, and

can be used to perform the spike-and-wave detection online. The database used was created in

Fundación Lucha contra las Enfermedades Neurólogicas Infantiles (FLENI). Method one consist of

SWD detection using the generalized Gaussian distribution; method two consists of SWD detection

using t-location-scale distribution and method three uses cross-correlation. Methods one and two

use k-NN classi�ers while method three uses a decision tree classi�er.

Spike-and-wave discharge waveform has a regular and symmetric morphology. The information

about the morphology and dynamics of EEG signals can be used to accurately identify seizure onset

and quantify the severity and dynamical progression of seizure activity. The most relevant EEG

features employed to classify epileptogenic abnormality can be categorized in terms of spectral

properties, signal morphology and statistical measures [32], see Figure 5.1. In this chapter, we

will focus on signal morphology, speci�cally in spike-and-wave discharge (SWD) pattern in EEG

signals.

5.2 Spike-and-Wave discharge (SWD)

A seizure is characterized by the excessive electrical discharges in neurons and such waveforms

are known as spikes. Neurologists trained in EEG are able to properly determine an epilepsy

diagnosis by analyzing the di�erent types of spikes in the rhythmic activity of the brain. A spike

is characterized by short bursts of high amplitude, synchronized and multi-phasic activity, where

polarity changes occur several times, which manifest themselves at or around the epileptic focus

and stand out from the background EEG.

A spike-and-wave epileptiform is an EEG generalized discharge pattern seen particularly during

absence epilepsy[242], whose clinical importance lies in cognitive and behavioral disturbances

[243]. It is the result of a bilateral synchronous �ring of neurons ranging from the neocortex to

the thalamus, along with the thalamocortical network [244].Absence seizuresare more common
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EEG Extract Signals Physician

Biomedical
Signal

Diagnostic
Normal/Abnormal

Treatments

Features

Spectral Properties

Morphology Statistical Descriptors

Figure 5.1: EEG signals extraction. A physician may determine the patient treatment
according to the EEG waveforms; while in a biomedical signal approach the most relevant
features employed to classify epileptogenic abnormality can be categorized in terms of spectral

properties, signal morphology, and statistical measures.

in children. It causes lapses in awareness, sometimes with staring and it can be so brief they

sometimes are mistaken for daydreaming and may not be detected for months. Children between

the ages of three and seven exhibit continuous spike-and-wave discharges during slow-sleep. This

disorder is found in 0.2%-0.5% of all childhood epilepsy cases. Spike-and-wave activity occupies

about 85% of the non-rapid eye movement sleep [245]. This continuous pattern during sleep,

like other aspects of the spike-and-wave activity, are not completely understood. However, it is

hypothesized that corticothalamic neuronal network involved in oscillating sleep patterns may begin

to function as a pathologic discharging source [246].

Spike-and-wave discharge (SWD) is a generalized EEG discharge pattern whose waveform

has a regular and symmetric morphology. This morphology can be mathematically described

by a Morlet wavelet transform that generates a time-frequency representation of the EEG sig-

nal [247, 248, 249, 250]. Thespike component of a SWD is associated with neuronal �ring,

whereas thewave component is associated with neuronal inhibition or hyperpolarization of neu-

rons [251]. SWD is widely used in mice studies [252, 253, 254, 255], but human testing is limited.

Mice have a predisposition for generalized SWD at 7-12 Hz [256] and typically have spontaneous

absence-seizure-like-events. The presence of an intact cortex, thalamus and their interconnections

is necessary to record them [257, 258].

Existing spike-and-wave discharge detection algorithms can be classi�ed in the following three

categories [259]:

1. Algorithms that use the information extracted from changes in the amplitude (magnitude)

of the EEG signal when SWD occurs.

2. Detection based on monitoring the energy power in the frequency bands which SWD occu-

pies.



5.3. Morlet Wavelet 85

Figure 5.2: Spike-and-wave and Morlet wavelet respectively, Note that the scales are di�e-
rent, but for illustration, we can see the symmetric and regular morphology in both signals.

Figure 5.3: Example of 6 channels of one monopolar EEG raw, we can see di�erent SWD
in all channels.

3. Combination of the �rst two methods together into labeling the SWD activities in the EEG

recordings. The threshold, overlapping window technique and band pass �lter are commonly

used for enhancing the performance of the detection algorithm.

5.3 Morlet Wavelet

The continuous wavelet transform is given by

Wf (t; a; b) =
Z 1

�1
X t  �

a;b(� )d� (5.1)

 �
a;b(� ) =

1
p

a
 

�
� � b

a

�
(5.2)

 (� ) = exp
� � 2

2 cos(5� ) (5.3)

where a is the scaling parameter,b is the shifting parameter, �
a;b(� ) is the mother wavelet

function,  � denotes the complex conjugate operation and (� ) is the analytic expression of the

Morlet wavelet. In order to associate the Morlet wavelet as purely periodic signal of frequencyFc ,
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we use the relationship between scale and frequency

Fa =
Fc

a�
(5.4)

where� is the sampling period,Fc is the center frequency of Morlet wavelet in Hz andFa is the

pseudo-frequency corresponding to the scalea in Hz. The center frequency-based approximation

captures the main wavelet oscillations. Therefore, the center frequency is a convenient and simple

characterization of the dominant frequency of the wavelet [260]. Note that the wavelet scale

is estimated according to the 1-3 Hz restricted narrow frequency of SWD database, introduced

below.

5.4 Database

A database with 780 monopolar 256 Hz signals was created for the o�-line training of the classi�er:

340 spike-and-wave signals and 440 non-spikes-and-wave signals, measured from six patients from

Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI). The spike-and-wave

signals have di�erent times and waveforms but their morphology is preserved, while the non-spike-

and-wave signals have normal waveforms as Figures 5.2 and 5.3. See section 1.5 for more details.

By analyzing each SWD in the frequency domain, it was observed that they are restricted to

a narrow frequency band1 from 3 Hz. Each EEG was acquired with a 22-channel array using the

standard10=20 system through channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,

P3, Pz, P4, T6, O1, O2, Oz, FT10 and FT9. See Figure 3.1 for areas of the brain and Figure 5.4

for electrode positions used.

Figure 5.4: Electrodes position used with this database.

All new segments to analyze contain di�erent spike-and-waves events. Their onset and duration

time has been labeled by an expert neurologist. Here we used the expert annotations to extract a

short epoch from each recording such that it is focused on the spike-and-wave in long-time EEG

signals (the epochs used have a duration of the order of 1 minute).
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It should be noted that, for each new patient to analyze, ten new SWD are selected to be part

of the database. This permits to get patient-speci�c seizure detection.

Table 5.1 summarizes the di�erent methods, features, classi�ers, signals for training and testing

considered in this chapter. The generalized Gaussian distribution uses the feature vector[�; �; ex],

where� is the scale parameter of the generalized Gaussian distribution,� is the variance parameter

from the generalized Gaussian distribution parameters, andex is the median parameter from the

wavelet Morlet coe�cientsC(i ) ; the t-location-scale distribution uses the feature vector[�; �; � ],

which corresponds to the parameters of this distribution, namely location (� ), scale (� ) and shape

(� ); and the cross-correlation measure uses the similarity feature vectorr . Note that, we use

di�erent number of signals from training and test from the database because all studies correspond

to di�erent stages of the research.

Method Features Classi�er Signals for training Signals for testing

Generalized Gaussian distribution
from C(i )

� , � , ex k-NN 340 spike-and-waves and
440 non-spike-and-waves

69

t-location-scale distribution from
X (i )

� , � , � k-NN 96 spike-and-waves and
96 non-spike-and-waves

46

Cross-correlation fromX (i ) r Decision-tress 96 spike-and-waves 46

Table 5.1: Methods, features, classi�ers, signals for training and testing considered in this
chapter. The generalized Gaussian distribution uses the feature vector[�; �; ex], where� is
the scale parameter of the generalized Gaussian distribution,� is the variance parameter
from the generalized Gaussian distribution parameters, andex is the median parameter from
the wavelet Morlet coe�cientsC(i ) ; the t-location-scale distribution uses the feature vector
[�; �; � ], which corresponds to the parameters of this distribution, namely location (� ), scale

(� ) and shape (� ); and the cross-correlation measure uses the similarity feature vectorr .

5.5 Spike-and-wave detection using the generalized Gaussian

distribution

5.5.1 Methodology

In this study, we use the same methodology as in Chapter 4, Section 4.4. We start from the

parameter-vector� C(i ) of the wavelet coe�cientsC(i ) such that

� C(i ) =
h
� (i ) ; � (i )

i T
= argmax

[�;� ]T
fGGD(C(i ) ; �; � ): (5.5)

Note that, the eq. (2.25) was estimated by using the discrete wavelet transform (DWT). In this

Section, we use the continuous wavelet transform (CWT) by using the Morlet mother wavelet

because it can describe mathematically the SWD morphology[247, 248, 249, 250], see the Figure

5.2.
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5.5.2 Spike-and-wave detection by k-nearest neighbors classi�er

Consider a classi�cation into two possible classes! ns = 0 and ! s = 1 , then for a feature vector

� C(i ) each class is given by

p
�
� C(i ) j! ns = 0

�
=

1
! 0

X

! 2 ! ns

N
�
� C(i ) j� !

C(i ) ; � I
�

=
1

! 0 (2�� )D=2

X

! 2 ! ns

exp�

�
�

C(i ) � � n
C(i )

� 2

2� (5.6)

p
�
� C(i ) j! s = 1

�
=

1
! 1

X

! 2 ! s

N
�
� C(i ) j� !

C(i ) ; � I
�

=
1

! 1 (2�� )D=2

X

! 2 ! s

exp�

�
�

C(i ) � � !
C(i )

� 2

2� (5.7)

whereD is the dimension of a data-point� C(i ) and ! 0 or ! 1 are the numbers of training points of

class0 or class1 respectively, and� is the variance of� C(i ) .

Using the Bayes rule to classify a new datapoint� �
C(i ) in class! ns = 0 the following equation is

obtained

p
�
! ws = 0 j� �

C(i )

�
=

p
�
� �

C(i ) j! ns = 0
�

p (! ns = 0)

p
�
� �

C(i ) j! ns = 0
�

p (! ns = 0) + p
�
� �

C(i ) j! s = 1
�

p (! s = 1)
: (5.8)

The marginal likelihoodp(! ns = 0) is ! 0=(! 0+ ! 1), andp(! s = 1) = ! 1=(! 0+ ! 1). An analogous

expression to eq. (A.48) can be obtained forp
�
! s = 1 j� �

C(i )

�
. To determine which class is most

likely, the ratio between their two expressions is calculated as follows::

p
�
! ns = 0 j� �

C(i )

�

p
�
! s = 1 j� �

C(i )

� =
p

�
� �

C(i ) j! ns = 0
�

p (! ns = 0)

p
�
� �

C(i ) j! s = 1
�

p (! s = 1)
: (5.9)

If this ratio is greater than one,� �
C(i ) is classi�ed as! ns = 0 , otherwise, it is classi�ed as! s = 1 .

It is important to note that in the case where� is very small in (5.9), then both the numerator as

the denominator will be dominated by the term for which the datapoint� ! 0

C(i ) in class0 or � ! 1

C(i ) in

class1 are closest to the point� �
C(i ) , such that
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On the limit � ! 0, � �
C(i ) is classi�ed as class0 if � �

C(i ) has a point in the class0 data which is

closer than the closest point in the class1 data. The nearest (single) neighbor method is therefore

recovered as the limiting case of a probabilistic generative model [185, 130].

5.5.3 Experimental Results

In the training stage, the annotated database previously exposed in Section 5.4 was utilized.

These 780 monopolar signals (340 spike-and-wave signals and 440 non-spikes-and-wave signals),

were trained o�-line usingk-nearest neighbors on a modi�ed vector[�; �; ex] 2 R3 collecting the

parameters associated with Morlet wavelet coe�cients for each 2-second segment, where� is the

scale parameter of the generalized Gaussian distribution,� = � 2�(3 =� )=�(1 =� ) is the variance

parameter, andex is the median parameter from the wavelet Morlet coe�cients from the feature

vector� C(i ) . Remember that scale parameter� depends on� and is closely related to the variability

of the brain activity, being therefore, a good descriptor for performing seizure detection, see Section

2.8.2 for more details. The variance and the median do not introduce any additional computational

cost.

Table 5.2 contains the di�erent bounds for each parameter. Note that both the minimum

and the maximum are large for[�; �; ex] when SWD and non-SWD signals are compared. This

observation suggests that a threshold could be implemented to detect SWD patterns as clear

discrimination exists between spike-and-wave and non-spike-and-wave. To illustrate this, Figure

5.5 shows scatter plots for the tree parameters as follows:

1. Scale parameter (� ) vs variance (� ) : For class 1 or SWD, we can see the direct rela-

tionship between the variance and sigma, both grow proportionally. While for class 0 or

non-SWD, both sigma and variance remain in a range of values.

2. Scale parameter (� ) vs median ( ex): As � grows, median increases and decreases for both

SWD and non-SWD, but is larger for SWD. A cone-shaped pattern can be identi�ed.

3. Variance ( � ) vs median ( ex): As the variance grows, the median increases and decreases

for SWD, while for non-SWD, it remains in a small range (cluster).

The performance of thek-nearest neighbors classi�cation method using 10 neighbors with 3

predictors[�; �; ex] was evaluated using a dataset consisting of 69 new annotated measurement.
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Metric Sigma (� ) Variance (� ) Median (ex)

Class 0 [12.19,1275.38] [946.60,31620526.09] [-27698.91,21799.08]

Class 1 [31.22,1811.37] [2715.81,43218940.81] [-73254.70,74064.46]

Table 5.2: Range of values for sigma (� ), variance (� ) and median (ex) parameters for class
0 or non-spike-and-wave and for class 1 or spike-and-wave.

(a) sigma (� ) vs variance (� ) (b) sigma (� ) vs median (ex)

(c) variance (� ) vs median (ex)

Figure 5.5: Scatter plots of the o�-line training classi�cation in database signals, for� , �
and ex parameters for spike-and-waves events (SWD = class 1 = red dots) and non-spike-and-
waves events (non-SWD = class 0 = blue dots), showing the data dispersion of the proposed
approach. In (a) Scale parameter (� ) vs variance (� ). For class 1 or SWD, we can see the
direct relationship between the variance and sigma, both grow proportionally, while for class 0
or non-SWD both sigma and variance remain in a range of values. (b) Scale parameter (� ) vs
median (ex). As sigma grows, median increases and decreases for both SWD and non-SWD,
but is larger for SWD. (c) variance (� ) vs median (ex). As variance grows, median increases

and decreases for SWD, while for non-SWD, remains in a small range.

The annotated dataset corresponds to 69 segments extracted from six EEG signals of di�erent

subjects from Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI). The

assessment of the results was performed in terms of the overall accuracy of the classi�cation. The

classi�er achieved a 100% sensitivity (True Positive Rate) and speci�city (True Negative Rate) for

SWD detection.

5.6 Spike-and-wave detection using t-location-scale

distribution

The t-location-scale distribution or non-standardized Student's t-distribution is a statistical model

for univariate and multivariate signals that has three parameters: location, shape and a non-
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negative scale. It is useful for modeling data distributions with heavy tails which are more prone

to outliers than the normal distribution. The t-location-scale distribution has been applied to

di�erent signal processing problems in diverse areas such as radar, watermark, speech and wireless;

in medicine and health, it is widely used in genetics and has been recently used in sleep patterns

[261]. In Section 5.5, we showed that the generalized Gaussian distribution can be used for SWD

pattern recognition. Knowing that the t-location-scale distribution is heavy-tailed and more prone

to outliers than the normal distribution, the following question arose: what if this distribution

could be used to detect a SWD pattern recognition in epileptic EEG signals?. Question that we

will answer in this preliminary study.

The t-location-scale distribution is a statistical model that belongs to location-scale family

formed by translation and rescaling of the Student's t-distribution. The probability density function

(PDF) of a location-scale distribution, is given by

g(xj�; � ) =
1
�

 
�

x � �
�

�
: (5.11)

The probability density function (PDF) of the Student's t-distribution, is given by
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2

�

p
�� �
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Therefore applying (5.12) to (5.11), we have the probability density function (PDF) of the t-

location-scale, which is given by
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where �1 < � < 1 is the location parameter,� > 0 is the scale parameter,� > 0 is the

shape parameter, and�( :) is the Gamma function. The optimization problem of estimating the

parameters of this distribution can then be solved using the simplex search method of Lagarias et

al. [109].

5.6.1 Methodology

Let X 2 RM � N denote the matrix gatheringM EEG signalsxm 2 R1� N measured simultaneously

on di�erent channels and atN discrete time instants. The proposed methodology is composed of

three stages. The �rst stage splits the original signalX into a set of non-overlapping 1 second

segments using a rectangular sliding windowX (i ) = 
 (i )X . In the second stage the parameters

of the t-location-scale distribution for eachX (i ) are estimated and �nally, in the third stage,

the feature vector associated with each time segment is classi�ed by usingk-nearest neighbors

classi�er as spike-and-wave/non-spike-and-wave through the feature vector� C(i ) = [ �; �; � ]T of

the t-location-scale parameters: location (� ), scale (� ) and shape (� ), see Section 5.5.2 for more

details.
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5.6.2 Experimental Results

To asses the performance of the proposed method we used 192 monopolar 256Hz signals for o�-line

training classi�er, 96 spike-and-waves and 96 non-spikes-and-waves from the database described

in Section 5.4, and 46 new labeled test signals used for on-line classi�cation. Their onset and

duration time have been labeled by an expert neurologist from FLENI. Here we used the expert

annotations to extract a short epoch from each recording such that it is focused on the spike-

and-wave in long-time signals (the epochs have a duration of the order of 1 minute). Figure 5.6

and Figure 5.8 show scatter plots of the kNN o�-line training classi�er and on-line classi�cation

respectively, using the three t-location-scale distribution parameters: location (� ), scale (� ) and

shape (� ).

Data dispersion of spike-and-wave events (label 1: blue dots) and non-spike-and-wave events

(label 0: red dots) in Figure 5.6, during the training stage, suggests that in a) and c) spike-and-wave

events tend to have a higher scale� with respect to non-spike-and-wave events, in b) non-spikes-

and-wave events tend to have a location� concentrated between a certain threshold with respect

to spike-and-wave events; while the data dispersion in Figure 5.8, during the classi�cation stage,

suggests that in a) spike-and-wave events tend towards the center down with respect to non-

spike-and-wave events, in b) the trend is not very clear, although there is a great concentration

of spike-and-wave events in the center down near zero with respect to non-spike-and-wave events

and in c) spike-and-wave events tend to be located towards the right and near zero with respect

to non-spike-and-wave events.

From the illustration in Figure 5.7 and Figure 5.9 we can see the di�erent histograms and

the perfect group discrimination between spike-and-wave events (label 1) and non-spike-and-wave

events (label 0) in o�-line training classi�cation for Figure 5.7 and on-line classi�cation Figure 5.9.

The performance of the onlinek-nearest neighbors classi�cation method using an equal weight

distance with the number of neighbors equal to one and the distance metric Euclidean, see Figure

5.8 and Figure 5.9, was assessed in terms of overall accuracy classi�cation, and achieves a 100% of

sensitivity (True Positive Rate) and speci�city (True Negative Rate) for spike-and-wave detection.

These results invite us to study this distribution in deeper (e.g. goodness-of-�t test, parameters

estimation, and model-based characterization, similar to Sections 2.6 and 2.8), in order to be used

in the future in seizure onset detection and epileptiform patterns recognition in epileptic signals.
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(a) Location (� ) vs. scale (� ) (b) Location (� ) vs. shape (� )

(c) Scale (� ) vs. shape (� )

Figure 5.6: Scatter plots of the o�-line training classi�cation in 192 dataset signals, for the
t-location-scale parameters� , � and � for spike-and-waves events (blue dots) and non-spike-
and-waves events (red dots), showing the data dispersion of the proposed approach. In a)
and c) spike-and-waves tend to have a higher scale� , in b) non-spikes-and-waves tend to

have a location� concentrated between 0 and 100.

Figure 5.7: Scatter plot in o�-line training classi�cation in 192 dataset signals for the t-
location-scale parameters� , � and � , we can see the correct discrimination between two
groups whose size is the same (96 spike-and-waves and 96 non-spikes-and-waves), label 1 for

spike-and-wave and label 0 for non-spike-and-wave.
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(a) Location (� ) vs. scale (� ) (b) Location (� ) vs. shape (� )

(c) Scale (� ) vs. shape (� )

Figure 5.8: Scatter plots in on-line classi�cation in 46 test signals, for the t-location-scale
parameters� , � and� for spike-and-waves events (blue dots) and non-spike-and-waves events
(red dots), showing the data dispersion of the proposed approach. In a) spike-and-waves
tend towards the center down, in b) the trend is not very clear, although there is a great
concentration of spike-and-waves in the center down near zero, and in c) spike-and-waves

tend to be located towards the right and near zero.

Figure 5.9: Scatter plot in on-line classi�cation in 46 test signals for the t-location-scale
parameters� , � and� , we can see the correct discrimination between two groups whose size is
di�erent (spike-and-waves labeled by an expert neurologist and non-spikes-and-waves), label

1 for spike-and-wave and label 0 for non-spike-and-wave.
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5.7 Spike-and-wave detection using cross-correlation and

decision-trees

A decision tree is a hierarchical model for supervised learning whereby the local region is identi�ed

in a sequence of recursive splits in a smaller number of steps [262, 185, 187]. A decision tree is

composed of internal decision nodes and terminal leaves, see Figure 5.10. It is de�ned in a way

that there is a single node, called the root, which has no parents, and all other nodes only have

one parent. When a node receives an input a speci�c test, designed for that particular node, is

applied and one of the branches is taken depending on the outcome. This process starts at the

root and is repeated recursively until a leaf node is hit, at which point the leaf's value constitutes

the output. Each speci�c test is a simple function which de�nes a discriminant in the input space

dividing it into smaller regions that are further subdivided as we take a path from the root down.

In this manner, a complex function is broken into a series of simple decisions by simply writing the

tests down as a tree.

Cross-correlation

Similarity
non

Similarity

non-SWD
(0.4) non

SWD
(0.6) yes

yes

Figure 5.10: A decision tree example. Consider the decision problem as to whether or not
to go ahead with a cross-correlation similarity. If we go ahead with the similarity and meets
the threshold (0.6), then we have a spike-and-wave candidate; on the other hand, if we don't
go ahead with the similarity (0.4) then the threshold is not met and therefore we don't have
a spike-and-wave candidate. Note that, this tree has only two regions given by the similarity

threshold for SWD or non-SWD.

We now introduce the detection trees in general form using the methodology from [185]. The

goal is to predict a single target variablet from a D-dimensional vectorr = ( r1; :::; rD )T of input

variables related to the cross-correlation in our study. The training data consists of input vectors

f r1; � � � ; rN g along with the corresponding continuous labelsf t1; :::; tN g. If the partitioning of the

input space is given, and we minimize the sum-of-squares error function, then the optimal value

of the predictive variable within any given region is just given by the average of the values oftn

for those data points that fall in that region, two regions or classes in our case spike-and-wave or

non-spike-and-wave, see Figure 5.11. To determine the structure of the decision tree, the �rst step

is start with a single root node, corresponding to the whole input space, and then growing the tree

by adding nodes one at a time. At each step there will be some number of candidate regions in

input space that can be split, corresponding to the addition of a pair of leaf nodes to the existing

tree. For each of these, there is a choice of which of theD input variables to split, as well as

the value of the threshold. For a given choice of split variable and threshold, the optimal choice
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of predictive variable is given by the local average of the data. This is repeated for all possible

choices of the variable to be split, and the one that gives the smallest residual sum-of-squares

error is retained. The stopping of the addition of nodes, is related to the number of data points

associated with the leaf nodes, to then prune back the resulting tree. The pruning is based on a

criterion that balances residual error against a measure of model complexity. For example, if we

denote the starting tree for pruning byT0, then we de�neT � T0 to be a subtree ofT0 if it can be

obtained by pruning nodes fromT0. Suppose the leaf nodes are indexed by� = 1 ; � � � ; jTj, with

leaf node� representing a regionR � of input space havingN� datapoints, andjTj denoting the

total number of leaf nodes. The optimal prediction for regionR � is then given by

y� =
1

N�

X

rn2R T

tn (5.14)

and the corresponding contribution to the residual sum-of-squares is given by

Q� (T) =
X

rn2R T

f tn � y� g2: (5.15)

The pruning criterion is then given by

C(T) =
jT jX

� =1

Q� (T) + � jTj (5.16)

The regularization parameter� determines the trade-o� between the overall residual sum-of-squares

error and the complexity of the model as measured by the numberjTj of leaf nodes, and its value

is chosen by cross-validation. For classi�cation problems, the process of growing and pruning the

tree is similar, except that the sum-of-squares error is replaced by a more appropriate measure of

performance of the Gini index for a binary classi�er, de�ningp�k to be the proportion of data

points in regionR � assigned to classk, wherek = 1 ; � � � ; K , in our case we have two classes

spike-and-wave and non-spike-and-wave, see eq. (5.17).

Q� (T) =
KX

k=1

p�k (1 � p�k ): (5.17)

5.7.1 Methodology

Let bX 2 RN� M be an EEG raw signal, measured simultaneously onN di�erent channels with 256

Hz of sample rate anddSW 2 R1� P a spike-and-wave pattern database gathered from di�erent

EEG signalsbX , given by

bX = [ x1; x2; :::; xm; :::; xN ]T with 1 � m � N (5.18)

dSW = [ sw1; sw2; :::; swp; :::; swP ] wi th 1 � p � P (5.19)
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whereN = 23 channels andP = 96 spike-and-waves from database described in 5.4. The proposed

methodology is composed of four stages.

The �rst stage is the �ltering of bX and dSW using two cascade Butterworth IIR �lters inZ

domain with an empirical design based on physicians experience, a 2-order lowpass �lter with

cuto� frequency of 100 Hz and 1-order highpass �lter with cuto� frequency of 30 Hz, see eq.

5.20-5.21 respectively

Wl p (z) =
b

(1 � az� 1)2 (5.20)

Whp(z) =
b(1 � z� 1)
(1 � az� 1)

: (5.21)

Let X and SW be the �ltered original signals. Then in the second stage, the �ltered signalX is

splitted into a set of non-overlapping 1 second segments using a rectangular sliding window so that

X (i ) = 
 (i )X . In the third stage, a cross-correlation is used to �nd the best match between the

two signalsX (i ) and SW p. Cross-correlation measures the similarity betweenSW p and shifted

(lagged) copies ofX (i ) as a function of the lag. Note thatX (i ) is an EEGRN� M matrix andSW p

is a R1� P vector which contains all the spike-and-wave to be analyzed. Assuming thati = p = n

then a cross-correlationrX;SW for the displacement in time of each EEG channel with respect to

each spike-and-wave is given by

rX;SW [� ] =
1
N

NX

n=1

X [n� � ]SW [n]: (5.22)

Then waveforms similarity are classi�ed by the local peaks of the absolute value ofrX;SW . Of

which, only the peaks greater than a certain threshold given by eq. (5.23), are considered similar

enough. Besides, a minimum distance of 1 second is established between peaks, which means that

for this algorithm there could not be more than one SWD per second:

max
[X ;SW ]T

�
�rX;SW [� ]

�
� � � (rX;SW [� ]) (5.23)

wherej:j is the absolute value and� is the standard deviation. Finally, in the fourth stage, only the

SWDs greater than 40% of the threshold of the total of coincidences by using the eq. (5.23), are

chosen as spikes-and-waves by each channel. Last two stages are using as a D-dimensional input

vectorr for decision trees classi�er in two regions namely spike-and-wave and non-spike-and-wave,

see Section 5.7.

The proposed methodology can be summarized by using the next algorithm:
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Data: EEG raw
Result: SWD detection
for each SWDdo

for eachX (i ) for each channeldo
1. Cross-correlation estimation between each SWD andX (i ) , see eq. (5.22);
2. SWDs candidates selection: based-on the waveform similarity and the distance
between peaks of 1 second greater than a threshold given by eq. (5.23);

3. SWDs: Only the SWDs greater than 40% of the total of coincidences are
chosen, see eq. (5.23) and Figure 5.11;

4. Steps 2. and 3. are using as aD-dimensional input vectorr for decision trees
classi�er in two regions namely spike-and-wave and non-spike-and-wave, see Figure
5.10;

end
end

Algorithm 4: SWD detection by using cross-correlation and decision trees.

5.7.2 Experimental results

We evaluate the performance of the proposed seizure detector in with 46 segments between 40

and 60 seconds from 23 channels, see Figure 5.11, which correspond to sleep long-term epileptic

signals recordings of one patient from Fundación contra las Enfermedades Neurológicas Infantiles

(FLENI).

Figure 5.11: Scatter plot example between all 23 channels (x axis) and the total coincidences
(y axis) into spike-and-wave signals from database, the line in 40 is the threshold used.

We compare the medical annotated data with our cross-correlation classi�er and using 10 and

20 empirical K-fold cross-validation through the decision tree to evaluate how our results can be

generalized to an independent data set. We found an Area Under Curve (AUC) of 97% in 874

predictors corresponding to all database candidates from two EEG epochs with 23 channels, with

86% sensitivity and 98% speci�city for spike-and-waves detection in long-term epileptic signals,

see classi�er performance in ROC Figure 5.12.
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Figure 5.12: Receiver operating characteristic curve (ROC) in 874 predictors

5.8 Conclusions

In this chapter, we studied three di�erent methods to detect spike-and-wave discharges in EEG

signals using a database created in Fundación Lucha contra las Enfermedades Neurológicas In-

fantiles (FLENI). For each new patient, ten new SWD patterns were selected to be part of the

database before training. Once the entire new database is trained, the prediction transforms into

a patient-speci�c seizure detection.

The main method used the generalized Gaussian distribution (GGD) coupled with the k-NN

classi�er. In the second method, we used the t-location-scale distribution with a similar metho-

dology as with GGD. Both methods obtained an accuracy of100%. Finally, in method three, we

used a cross-correlation coupled with decision trees classi�er getting 98% sensitivity (True positive

rate) and 86% speci�city (True negative rate) for spike-and-wave detection.

This research experience suggests that the proposed methods are potentially useful for spike-

and-wave detection in EEG long-term signals in epilepsy.
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Chapter 6

Conclusions, contributions, advantages,

limitations and research perspectives

6.1 Conclusions and contributions

This thesis originated with the Dynamic Brain SticAmSud project (2012-2014): "Dynamic image

reconstruction and segmentation for brain tissue characterization". The interdisciplinary research

was conducted by the following partners: Hadj Batatia and Jean Yves Tourneret from IRIT-

ENSEEIHT Laboratory of the University of Toulouse, France; José Bermudez and Marcio Costa

from LPDS/EEL Laboratory of the Universidade Federal de Santa Catarina, Brazil; Marcelo Pereyra

from School of Mathematics of the University of Bristol, UK; Carlos D'Giano from FLENI, Ar-

gentina; and Marcelo Risk and Antonio Quintero-Rincón from ITBA, Argentina. All institutions

with funding source by Centre national de la recherche scienti�que (CNRS) from France, Coor-

denação de aperfeiçoamento de pessoal de nivel superior (CAPES) from Brazil and Ministerio de

Ciencia, Tecnología e Innovación Productiva (MinCyT) from Argentina.

In this thesis, the main methodological and theoretical aspects of EEG data processing have

been covered, from an accurate solution of detection, quanti�cation, and characterization of

epilepsy seizures to e�ective approaches to correct classi�cation between seizures and non-seizures.

Our work with real data led us to the analysis and comparison of state-of-the-art with similar

results, domain to which we contributed by introducing a statistical model that acts as a strong

dimension reduction mechanism yielding a signi�cantly lower computational complexity. This

makes feasible a fast online implementation of an onset detection algorithm using a linear or

Bayesian classi�er.

This work was motivated by the real need to detect epileptic seizures in clinical practices for two

reasons: manually marking the pattern is time consuming and the visual detection may be di�cult

and error-prone. This topic was investigated from the exploration of the data to the construction of

principled methodology that allowed us to obtain promising results. It was possible to achieve two

methods: a new onset detection method in epileptic signals with a low computational complexity

that can be trained using a reasonably small dataset, but remains an open issue; and the other

one, a spike-and-wave epileptiform pattern recognition method.

Our interest in the research area motivated us to address some hard and still open questions

in the �eld. Going beyond detection, we proposed a temporal spread estimation algorithm working
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on thescaleparameter of the generalized Gaussian distribution that o�ers interesting perspectives

for the investigation of the variability of the brain activity. We applied this method to epileptic

signals processing which demonstrated that such an approach could provide a good descriptor for

performing seizure onset detection.

Another topic addressed during this thesis relates to the analytical development of Kullback-

Leibler divergence (KLD) using the generalized Gaussian distribution parameters (scale and shape),

to distinguish between seizure and non-seizure in epileptic signals.

Pattern recognition was addressed with three novel methods to detect spike-and-wave dis-

charges (SWD) in long-term EEG signals. Recently, this work was selected for a national innovation

competition in Argentina named �INNOVAR 2018�.

The contributions are basically methodological and applied. Throughout this thesis, we tried to

make the right mathematical choices to model the problems of interest. We believe this enabled us

to propose appropriate and e�cient algorithms so that we could �nally tackle challenging epilepsy

problems.

To summarize:

� We contributed by providing to the EEG community an excellent seizure onset detector in

epileptic signals.

� We presented mathematical details of the statistical model based on the generalized Gaussian

distribution that acts as a strong dimension reduction mechanism yielding a signi�cantly

lower computational complexity. This makes feasible an online implementation of an onset

detection algorithm.

� We developed a Kullback-Leibler-divergence-based methodology to distinguish between seizure

and non-seizure in epileptic signals.

� We contributed to set up a full experimental study from protocol design and data exploration

to the construction of a data analysis pipeline that o�ers promising results for the study of

EEG signals.

� We proposed a novel algorithm to address the hard problem of temporal spread estimation.

We believe that this contribution can be a valuable tool to investigate inter-trial variabilities,

which is of major interest in epilepsy studies.

� We proposed three novel methods to detect spike-and-wave discharges (SWD) following

the methodology used in this thesis. SWD is an EEG generalized discharge pattern seen

particularly during absence epilepsy, whose clinical importance lies in cognitive and behavioral

disturbances.

� We generated challenging research activity for bioengineering students at ITBA. This allowed

them to be trained in research and generating di�erent projects on the exciting world of EEG

signal processing.
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� We generated collaborations between di�erent international universities from France, U.K.,

Brazil, Germany and Tunisia.

These contributions are re�ected in the following publications:

International Journal Papers

1. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D'Giano, Marcelo Risk and Hadj Bata-

tia. Fast statistical model-based classi�cation of epileptic EEG signals. Biocybernetics and

Biomedical Engineering, Vol. 38, No. 4, pages 877-889, 2018 [4].

2. Antonio Quintero-Rincón, Carlos D'Giano and Marcelo Risk.Epileptic seizure prediction

using Pearson's product-moment correlation coe�cient of a linear classi�er from generalized

Gaussian modeling. Neurología Argentina, Vol. 10, Issue. 4, pages 201-217, 2018 [5].

3. Antonio Quintero-Rincón, Marcelo Risk, Carlos D'Giano, Valeria Muro, Jorge Prendes, Hadj

Batatia. A novel spike-and-wave automatic detection in EEG signals. International Journal

of Signal and Imaging Systems Engineering. Vol. x, No. x, pages X, 2019 (In press) [10].

4. Antonio Quintero-Rincón, Catalina Carenzo, Joaquin Ems, Lourdes Hirschson, Valeria Muro,

Carlos D'Giano.Spike-and-wave epileptiform discharge pattern detection based on Kendall's

Tau-b coe�cient. Applied Medical Informatics. Vol. x, No. x, pages X, 2019 (In press)

[263].

5. Antonio Quintero-Rincón, Carlos D'Giano and Hadj Batatia.Curve �tting based on two-

point central di�erence to detect epileptic EEG seizures.Journal of Biomedical Research.

Vol. x, No. x, pages X, 2019 (In press) [264].

International Proceedings Papers

1. Antonio Quintero-Rincón, Carlos D'Giano, Hadj Batatia.Seizure onset detection in EEG

signals based on entropy from generalized Gaussian PDF modeling and ensemble bagging cla-

ssi�er. European Association for Predictive, Preventive and Personalised Medicine (EPMA),

Springer book series, Vol. x, No. x, pages X, 2019 (In press), DOI: 10.1007/978-3-030-

11800-6, https://www.springer.com/gp/book/9783030117993#aboutBook [7].

2. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D'Giano, Hadj Batatia and Marcelo

Risk. A visual EEG epilepsy detection method based on a wavelet statistical representa-

tion and the Kullback-Leibler divergence. International Federation for Medical and Biolo-

gical Engineering (IFMBE) Proceedings Springer book series, Vol. 60, pages 13-16, 2017.

https://doi.org/10.1007/978-981-10-4086-3_4 [2]

3. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D'Giano, Hadj Batatia and Marcelo Risk.

A New algorithm for Seizure Onset Detection and Spread in Epilepsy Signals. Journal of

Physics: Conference Series, Vol. 705. No 1, page 012032, 2016. DOI:10.1088/1742-

6596/705/1/012032 [3]
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National Journal Papers

1. Antonio Quintero-Rincón, Máximo Flugelman, Jorge Prendes and Carlos D'Giano.Study

on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic

regression. Revista Argentina de Bioingeniería, Bioengineering Argentinian Society. Vol. x,

No. x, pages X, 2019. (In press) [8].

2. Ivanna Zorgno, Maria Cecilia Blanc, Simon Oxenford, Francisco Gil Garbagnoli, Carlos

D'Giano and Antonio Quintero-Rincón.Epilepsy seizure onset detection applying 1-NN

classi�er based on statistical parameters. Argentina Biennial Congress ARGENCON 2018,

San Miguel de Tucumán, 6-8 June 2018. DOI: 10.1109/ARGENCON.2018.8646234 [265].

3. Antonio Quintero-Rincón, Manuela Alanis, Valeria Muro and Carlos D'Giano.Spike-and-

Wave detection in epileptic signals using cross-correlation and decision trees. Revista Ar-

gentina de Bioingeniería, Bioengineering Argentinian Society, 22(4):3-6, 2018 [11].

International Conference Papers

1. Bassem Bouaziz, Lot� Chaari, Hadj Batatia, Antonio Quintero-Rincón.Epileptic seizure

detection using a Convolutional Neural Network.International conference on digital health

technologies (ICDHT). October 15-16, 2018 - Sfax, Tunisia, [266].

2. Antonio Quintero-Rincón, Jorge Prendes, Valeria Muro and Carlos D'Giano.Study on Spike-

and-wave detection in epileptic signals using t-location-scale distribution and thek-nearest

neighbors classi�er. IEEE URUCON 2017 Congress on Electronics, Electrical Engineer-

ing and Computing. Montevideo, Uruguay, 23-25 October 2017. DOI: 10.1109/URU-

CON.2017.8171869 [9].

3. Antonio Quintero-Rincón, Jorge Prendes, Marcelo Pereyra, Hadj Batatia and Marcelo Risk.

Multivariate Bayesian Classi�cation of Epilepsy EEG Signals. The 2016 IEEE Image Video

and Multidimensional Signal Processing (IVMSP) workshop (IVMSP). Bordeaux, France.

11-12 July 2016:1-5. DOI: 10.1109/IVMSPW.2016.7528180 [6].

4. Antonio Quintero-Rincón, Hadj Batatia, Marcelo Pereyra and Marcelo Risk.Detection

of Onset in Epilepsy Signals using Generalized Gaussian Distribution. Fifth International

Conference on Advances in New Technologies, Interactive Interfaces and Communicabi-

lity. Huerta Grande, Córdoba, Argentina, 10-12 November 2014. (Special Mention) ISBN:

978.88.96.471.37.1, DOI: 10.978.8896471/371 Blue Herons Editions [1].

International Technical Reports

1. Antonio Quintero-Rincón and Marcelo Risk.Estimation and Regularization of Inverse Pro-

blem in EEG. STIC-Amsud Technical Report -12STIC-03 DynBrain, EEG dynamic image

reconstruction and segmentation for brain tissue characterization, Toulouse, France, 21 Ja-

nuary 2014.
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2. Antonio Quintero-Rincón and Marcelo Risk.Head Models: Review of the State of the Art.

STIC-Amsud Technical Report -12STIC-03 DynBrain, EEG dynamic image reconstruction

and segmentation for brain tissue characterization, Toulouse, France, October 1st 2012.

National Congress

1. Antonio Quintero-Rincón.Detección de Crisis en Señales Epilépticas usando la Distribución

Gaussiana Generalizada. Terceras Jornadas Interdisciplinarias de Análisis Avanzado de Imá-

genes y Señales (JIAAIS), Universidad Tecnológica Nacional de Buenos Aires, May 11-12,

2017.

2. Antonio Quintero-Rincón, Alberto Tablón, Marcelo Pereyra and Marcelo Risk.Spatial Re-

gularization for Head Models using EEG and MRI. XIX Argentinean Bioengineering Society

Congress, SABI 2013 (XIX Congreso Argentino de Bioingeniería y VIII Jornadas de Ingeniería

Clínica), Tucumán, Argentina, september 4-6, 2013 [267].

3. Antonio Quintero-Rincón, Sergio Liberczuk and Marcelo Risk.EEG preprocessing with Ham-

pel �lters. Biennial Congress of IEEE Argentina, ARGENCON 2012, Córdoba Argentina,

June 13-15, No 89, Vol. 2012 [18].

4. Sergio Liberczuk, Antonio Quintero-Rincón and Marcelo Risk.Evaluación de un mapa Auto-

Organizado aplicado a una Interfaz Cerebro Computadora. Biennial Congress of IEEE Ar-

gentina, ARGENCON 2012, Córdoba Argentina, June 13-15, No 126, Vol. 2012 [268].

Finally, we hope that this thesis elucidates some aspects of EEG data processing in order

to improve the understanding but also the use of new methodological tools in the community.

Consequently, we hope that such a better understanding will improve the quality of results obtained

with EEG signal processing in order for these brain studies to have a higher impact on both basic

neuroscience and clinical studies.

6.2 Advantages and limitations

Through the use of a statistical model-based classi�cation technique, the proposed method has

three main advantages. First, it requires only estimating and classifying two scalar parameters

for seizure onset detection or a few scalar parameters for spike-and-wave detection, allowing it to

be implemented in dedicated real-time hardware. Second, they can be trained using a reasonably

small dataset due precisely to the fact that it used only a few classi�cation parameters. This

contrasts with methods using a number of features that would require large training datasets.

Third, it allows seizure detection simultaneously in the di�erent brain rhythms, complying with

current medical practices.

Nevertheless, the proposed methods have three main limitations. First, due to the very high

dynamics of epileptic signals, de�ning the sliding time-window and the overlap of epochs is di�cult.

Second, it needs de�ning regularization parameters for the training stage in order to take into

consideration random peaks, noise and artifacts that might lead to false positives. Third, seizures
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have variable and dynamic o�sets corresponding to the complex nature of di�erent epilepsy types.

As an example, when brain waves slow down, change fromseizureto non-seizureis di�cult to

track and can generate classi�cation errors.

Lyapunov exponents (LLE) are not instant for seizure detection because their coe�cients are

quite computationally time-consuming. It is important to conduct further studies in order to

quantify the variation of LLE coe�cients in the di�erent brain states throughout all brain rhythms.

This new information may have the potential to correlate with di�erent characteristics of the

seizure event and eventually provide new insights to evaluate epileptic treatments.

6.3 Research perspectives

In this thesis, we approached the challenging problems of seizure onset detection and spike-and-

wave epileptiform pattern recognition in patients su�ering from epilepsy. These topics have a major

interest especially in real time monitoring on EEG long-term signals where the inter-trial variability

can provide valuable information such as feasibility, anticipation, time, delay and source location

of epilepsy seizure. In the near future, we plan to apply our existing tools for source location

estimation. The idea is to use source location information to characterize the spatio-temporal

patterns and its connectivity of epileptic activity in intracranial and extracranial records.

The next methodological step would be to extend our approach to di�erent kinds of inter-trial

variabilities. This work is currently starting in collaboration with Centro Integral de Epilepsia y

Telemetría from Fundación contra las Enfermedades Neurológicas Infantiles (FLENI), IRIT-INP-

ENSEEIHT from University of Toulouse, School of Mathematical and Computer Sciences (Heriot-

Watt University) and Max-Planck Institute for Empirical Aesthetics from Frankfurt (Germany).

Also, we will focus on other epileptic waveforms patterns and implementing a medical-friendly

interface with automatic epileptiforms count with an amplitude cerebral area map, robust non-

parametric statistical methods application; convolutional neural networks (CNN) approaches and

an increase of the database of spike-and-waves in on-line EEG long-term signals detection. It is

important to improve the latency time of seizure detection and conduct a detailed study about the

reliability prediction as the seizure develops across time. Other interesting research questions to

explore in more depths, are related with the analysis of the frequency bands detected before the

onset seizure, and which channels are active despite not participating directly in the detection of

the seizure onset.

We would also be interested in the marked point process (MPP) [269, 270] using the formalism

of generating probability functions (GPF) describing the space-time organization for large space

and time windows in EEG signals by taking account of the preexisting heterogeneity of spontaneous

seizures in epilepsy signals. Because EEG data assimilation is routinely employed as the optimal

way to combine noisy observations with prior model information for obtaining better estimates of

a state and, thus, better forecasts that can be achieved by ignoring data uncertainties.



Appendix A

Estimation and regularization of source

localization using EEG

A.1 Dipole assumption

A typical model used in neuroscience and appropriated for a single pattern interpretation from

magnetic �eld or potential over the electrodesB , is the dipole current. For a dipole atK location,

the magnetic �eld observed at electrodei in the positionR(i ), is given by

B (i ) =
�
4�

Q � (R(i ) � K )
jR(i ) � K j

; for i = 1 ; :::; NE ; (A.1)

For m-dipoles, the magnetic �eld in the locationj can be obtained by

B (i ) =
�
4�

mX

i

Qj � (R(i ) � K j )
jR(i ) � K j j

; for i = 1 ; :::; NE (A.2)

where� represents the vector product,Q is the dipole moment,NE is the number of elec-

trodes, K j is the j -th dipole location and the magnetic �eldB can be considered asB =

[B(1); B(2); :::; B(NE )], see Figure (A.1).

Factoring the dipole moments and normalizing with respect to�
4� , into the product of their

unit orientation moments and strengths, the magnetic �eld can be expressed asB = GQ, where

Q = [ Q1; Q2; :::Qm]T andG = [ g(1); g(2); :::; G(m)] is the propagating medium matriz. Therefore

B can be expressed asB = GMJ , whereGM is a function of location and orientationH(L; M ),

resultingB = H (K; M )J.

The initial solution to this problem used a least-square approach (LS) [271], that minimizes

the di�erence between the estimate and the measurement data, which is given by:

JLS = k� � H (K; M )Jk2
F (A.3)

where � is the magnetic �eld or the potential over the electrodes. The parameters to be

estimated are location, dipole orientation and magnitude for each dipole. This is subject to

knowing the number of sources or dipoles.
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Figure A.1: The magnetic �eldB at each electrode is computed with respect to the dipole(s)
moment(s) and the distance between the center of the dipole volume and the electrode.

The application of the dipole moment at the brain activity location, assumes implicitly that

the current source is located in a small area or in several places separated in several dipoles

models. These require a priori knowledge about the number of sources, which are usually not

known. Misleading results can be obtained if these assumptions are not valid. If too few dipoles

are selected, the resulting parameters are in�uenced by the missing dipoles. If too many dipoles,

the accuracy will be reduced, because some of them are not valid brain sources. In addition,

the computational cost is high because the parameters optimization are made simultaneously

[272, 273]. One way to solve this is through the projection of the minimization problem:

JLS = k� � H (K; M )Jk2
F = kP?

H � k2
F (A.4)

The P?
H matrix projects the data on to the orthogonal complement of the column space of

H(K; M ), F is the Frobenius norm.

A.2 Lead-Field

The distribution of an electromagnetic �eld on the head or sources from EEG measurements is

described by the linear Poisson

5 � (� 5 � ) = 5 � Js; in 
 (A.5)

with no-�ux Neumann boundary conditions on the scalp:
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� (5 � )� = 0 ; on � 
 (A.6)

where� is the electrical conductivity tensor,� is the electric potential andJs are the electric

current sources. The mapping from electrical sources in the skull for scalp recordings can be

represented by a linear operatorK and given a particular con�guration of sourcesj 2 J, the

resultant recordings� 2 � , and the noise in the system� , represent the inverse problem approach

as

� = KJ + �: (A.7)

whereK is the lead-�eld or kernel of the response of the system, his size isNE x 3NV and con-

tains information about the geometry and conductivity from the model. TheK matrix represents

the direct transmission of the coe�cients of each source to source array. The model construction

is easy by simple geometries such as spheres or for cases in which there is an analytical solution

for the direct problem, but it is di�cult for geometries based on real data from patients.J is

an unknown data that represents the dipole moment matrix or electrical current sources. The

perturbation matrix� is the Gaussian noise, and the data matrix� can be found in the literature

as: observation model, likelihood, signal temporal data, recordings or measurements.

The goal insource image localizationproblem is: Given a set of recordings� and knowing

K (a priori), in necessary to make certain assumptions about� , in order to determine the set

of sourcesJ, which generated the recordings. The inverse problem solution basically consists of

two steps: building the matrixK using the forward problem, then �nd the solution to the inverse

problem fromK , which is required to estimate thêJ magnitude dipolar matrix, given the positions

of the electrodes and the EEG recordings in the scalp, using theK gain matrix calculated in the

forward problem.

A.3 Head models

The accuracy of a realistic head model by using EEG partly depends on head tissues geometry and

strongly a�ects the reliability of the source reconstruction process [274, 275, 276]. In the modeling

method, two practical considerations must be taken into account. First, to reduce the sensitivity

to noise, both in the measured voltages and the measured geometry, the number of independent

measurements at the body surface usually must greatly exceed the number of variables in the

source model. The overspeci�ed equations are then solved using least-squares approximation eq.

(A.3) and possibly other constraints to achieve greater stability. Second, noise sensitivity increases

greatly with a growth in the number of degrees of freedom. For example, although greater brain

region information could be obtained with a greater number of multiple dipoles, results could

become useless if too large a number were selected [17]. A head model solves the eq. (A.6) using

the forward and/or inverse problem, see Figure (A.2).
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The forward problemis the problem in which the source and the conducting medium are known

but the �eld is unknown and must be determined, see Figure A.2. The forward problem has a

unique solution and always is possible to calculate the �eld with an high accuracy. This is limited

only by the accuracy with which the source and the volume can be described. Forward models

accuracy for EEG partly depends on head tissues geometry and strongly a�ects the reliability of

the source reconstruction process, but it is not yet clear which brain regions are more sensitive to

the choice of di�erent model geometry [274, 275, 277].

The inverse problemis the problem in which the �eld and the conductor are known but the

source is unknown. To �nd the source given the measured �eld, a unique solution cannot be

found based on external measurements alone, see Figure A.2. For example in medical applications,

speci�cally in the bioelectric phenomena, the inverse problem is very important in clinical diagnosis,

because it trying to determine the source of the measured bioelectric or biomagnetic signals.

Therefore the possible pathology related to the source provides the base of the diagnostic decision.

The inverse problem may be solved by modeling the source of the bioelectric or biomagnetic signal

and the volume conductor in the following way [17]:

1. A model is constructed from the signal source. The model should have a limited number of

independent variables yet still have good correspondence with the physiology and anatomy

associated with the actual source distribution.

2. A model is constructed from the volume conductor. The conductor model accuracy must

be as good as or better than that of the source model.

3. At least as many independent measurements are made as the model as independent variables.

In practice, four types of head volume conductor models are the most used, but they are not the

only: a homogeneous sphere head volume conductor model, a boundary element method (BEM)

model, a �nite element method (FEM) model and Dipole �tting methods (DFM).

A.3.1 Homogeneous sphere head volume conductor model

The inner skull surface is usually chosen in the single compartment case because the skull con-

ductivity is much lower with respect to the cerebrospinal �uid of the brain. Although the currents

outside the skull are much smaller, some studies suggest that additional layers can have an impor-

tant contribution to the external �eld [278, 279, 280].

The volume conductor head models have been successfully considered to be a series of concen-

tric spherical regions (e.g. brain, skull, and scalp) with results that correspond reasonably well to

measurements [281, 282, 283, 284, 277], but although the head has been modeled with a sphere

approximating the local inner curvature of the skull, the assumption of sphericity is poor. For

example, when temporal and frontal areas are studied or when measurements cover a large area

on the head. Even if a brain-shaped homogeneous conductor is considered, the secondary currents

on the outer interfaces give only a negligible contribution to the magnetic �eld outside the head

[278, 285, 286, 274, 276]. For head geometry realistic models, the surface Laplacian is estimated
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Figure A.2: Forward and Inverse Problems

from scalp potential directly into realistic scalp surfaces by using a triangular mesh reconstructed

from MRI scans [287].

A.3.2 Boundary element model

The Boundary Element Modeling (BEM) uses the T1-MRI for creates realistically shaped layers of

the body tissues. For example, a piece-wise homogeneous conductivity in each layer is assumed to

build the subject-speci�c head volume model. A lot of studies have been shown to be computa-

tionally strong, optimum and e�cient for many applications of electrophysiological source imaging

or to solve the EEG forward or inverse problem [288, 277, 278, 289, 290, 291, 292]. In [293] a

realistic BEM head model was constructed to localize sources by introducing the �rst results of

numerical methods for modeling the dynamic structure and evolution of epileptic seizure activity

in an intracranial subdural electrode recording.

A.3.3 Finite element model

The Finite Element Method (FEM) divides the head into small elements where the geometry and

conductivity can be de�ned individually. FEM modeling allows handling of conductivity inhomo-

geneity and also tissue anisotropy. However, is restricted by the complexity and estimation of

model construction. Nevertheless, is the best approximation to the real head volume conductor

[294, 295, 286, 296]. If the conductivity tensor throughout the head is known, then is possible

to obtain an accurate solution using FEM numerical methods [297, 298, 295, 299], without de-
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tailed anatomical data for each subject [280]. In [298] the adaptive meshing scheme (wMesh)

was introduced. This scheme re�ects the electrical properties of the human brain optimally by

using the MRI structural information and the fractional anisotropy maps derived from di�usion

tensors in the FE-mesh generation process. wMesh produce di�erent forward solutions that are

di�erent from conventional regular meshes. These are useful for modeling an individual-speci�c

and high-resolution anisotropic FE head model by incorporating realistic anisotropic conductivity

distributions. Allowing a more accurate analysis of a bioelectromagnetic problem.

A.3.4 Dipole �tting model

The Dipole �tting methods (DFM) are used for localizing focal activation with high accurately.

DFM has high computational demand and it is necessary to have model assumptions because

cannot reconstruct an extended source distribution and cannot localize multiple sources without

enough a priori knowledge [300, 277]. Dipole �tting techniques are widely used, but in fMRI and

EEG/fMRI studies have been found that spontaneous �uctuations are usually organized as di�used

networks [277]. Therefore, one or a few discrete dipoles might not be adequate to represent

such large-scale activity. Alternatively, EEG/MEG distributed source imaging serves well for this

purpose. A straightforward strategy is to estimate the source distribution instant-by-instant to

image brain activity spanning a continuous time period. Such a strategy has been applied to identify

large-scale resting-state rhythms, but it is challenged by the low SNR of continuous EEG/MEG

signals and the high computational demand. In Epilepsy, the subspace scanning technique for

spatiotemporal dipole �tting has been used to reconstruct the ictal activity in short periods. The

spatial precision and temporal resolution of which, allowed the identi�cation of a causal relationship

between epileptic sources [301]. The comparison between DFM realistic model, BEM model, and

the sensor-�tted spherical model, suggest that the realistic geometry can provide a factor of

improvement which is particularly important when considering sources placed in the temporal or

in the occipital cortex. Template models have been suggested to simplify the analysis pipeline

and possibly reduce the computational burden [302, 303, 304]. The performance between the

centroid-head models and Thin Plate Spline (TPS)-MNI models (or Montreal Neurological Institute

(MNI)-shaped), might be even larger for FEM/DFM models because this type of head modeling is

probably much more sensitive to the approximations achieved at �ner levels of detail of the image

[305].

A.4 Inverse problem

The inverse problem has the imposition that the physiological constraints are based on the infor-

mation available on the anatomy and physiology of the active tissue [17]. This imposes strong

limitations on the number of available solutions because there is no unique solution to the inverse

problem. Therefore more than one source con�guration will generate �elds that are consistent with

the measurements. However, it may be possible to select from among these competing solutions

one that at the same time meets physiological expectations.
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In simpli�ed models, the source and the volume conductor are characterized by only a few

degrees of freedom. Because of one only attempts to minimize errors from the last approximation

by �tting a sphere. The idea is to go from a uniform conductor to a sphere, and not from

approximating the head by a uniform conductor. This is because a fully realistic model would

be needed to attempt to reproduce his results with a sphere, which would defeat the purpose of

using a spherical model in the �rst place [280]. The distributed source imaging (DSI), is used

for the problems of equivalent dipole modeling. DSI uses the assumption that a source model

consisting of a large number of unit dipoles evenly positioned in the brain volume or over the

cortical sheet of gray matter (e.g. the cortical current density (CCD) model). Such a distributed

source model approximates the biophysical organization and distribution of pyramidal neurons.

DSI has the merits of solving a linear inverse problem since the locations of dipoles are �xed

[277]. DSI has been developed to obtain an optimal source estimation by adding biophysical

and/or physiological constraints to the distributed source imaging inverse problem. For example,

the minimum norm estimate (MNE) identi�es an optimal solution by using`2-norm optimization

in the sense of most energy e�ciency [306], or by applying the weighted-MNE (WMN) method

to help to compensate the disfavored deep sources [271], or by using FEM approach [297] or by

utilization of low-resolution brain electromagnetic tomography (LORETA) that further consider

spatial smoothness of the neural activity [307] and their statistical analysis [308]. However,`2-

norm-based techniques produce blurred images spreading over multiple cortical sulci and gyri, which

lack spatial resolution to separate spatially focal sources. Nonlinear techniques based on`p-norm

(p < 2) were developed in an attempt to make the distributed source imaging images apply to

the distributed focal source, such as the focal underdetermined system solver (FOCUSS) [309], a

sparse source imaging based on`-1 norm [310, 311] and̀p-norm iterative sparse [312].

Using MEG source localization is possible investigate the spatiotemporal dynamic estimation

in large-scale distributed source spaces with several thousand source locations and hundreds of

sensors [313]. The resulting inverse solutions provide substantial performance improvements over

static methods by using the dynamic maximum a posteriori expectation-maximization (dMAP-

EM) source localization algorithm. This algorithm is useful to estimation of cortical sources and

model parameters based on the Kalman �lter, the �xed interval smoother, and the EM algorithms.

Kalman �lter provides a natural framework in order to incorporate dynamic EEG generation models

in source localization [314]. The linear spatial �lters (e.g. beamformer) explain how the spherical

approximation errors can give rise to larger localization di�erences when all modeling e�ects are

taken into account and with your complex source con�gurations [280].

A.5 Source localization approaches in EEG inverse problem

The main di�culty of EEG interpretation is the in�nity of spatial patterns that result in identical

measurements. One possible solution is to select the current distributions, among the in�nite

available by selecting the more consistent with the a priori information of the problem. This

additional information represents some characteristic or restriction of the currents whose cannot

be determined directly from the data available. The veracity of this additional information is critical
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to the reliability of the solution. Only the a priori knowledge of the source of the data, allows us to

make the �nal decision [22]. EEG measurements along with the solution of the direct problem are

possible to locate the brain regions that produced the data, in both space and time. However, due

to the physics of the problem, the limited sensors number compared with the possible number of

origin locations, and the measurement noise makes ill-posed the inverse problem. The general form

of the inverse problem is given by the instantaneous measurementsNE given by the electrodes,

and by the amount ofNV voxels in the brain. Typically, the voxels are determined by subdividing

uniformly the solution space, which is usually taken as the cortical grey matter volume or surface.

At each voxel, there is a point source, which may be a vector with three unknown components

(the three dipole moments), or a scalar (e.g. unknown dipole amplitude, known orientation). The

estimate of the sources of an EEG electromagnetic �eld, can be classi�ed into two categories:

A.5.1 Equivalent current dipole approach

The equivalent current dipole approach (ECD) or parametric methods, assume that the EEG signals

are generated by a relatively small number of point sources. Typically between 1 and 5 where both,

position and the ideal time of each dipole are adjusted by data measuring [315, 316, 317, 318].

The concept of dipole source is a mathematical simpli�cation of the actual distributed current

source [319].

The dipoles locations are found by using the least-squares approximation (LS), see eq. (A.3).

LS is a nonlinear optimization method to minimizes the variance of the data with respect to

the dipole locations based on the comparison between the maps observed (EEG data) and the

theoretical maps generated by the selected dipoles. The method stops when the di�erences between

the two maps are reduced or when they have an acceptable minimum. The high dependence on

the initial parameters can cause them to be trapped in the local minima, which do not represent

real solutions to the problem. These di�culties are accentuated with an increasing number of

sources and therefore the number of dipoles that can reasonably be estimated in practice is less

than predicted by the theory. In general, ECD methods have two important limitations. First,

the number of dipoles must be speci�ed by the user and second, the optimization algorithm can

become trapped in a local minimum, and therefore might not be able to �nd the optimum dipole

location. Indeed, ECD methods are known to be unreliable when used many dipoles [320, 321].

Some methods used to dipoles adjust are brain electrical source analysis (BESA) [316], multiple

signal classi�cation (MUSIC) [322] and non-recursive subspace algorithm (FINES) [323].

A.5.2 Linear current distributed approach

The linear current distributed approach, current distributed-source reconstruction (CDR) or non-

parametric methods, assume that all possible locations of the sources are simultaneous. A more

general model assumes that the EEG measurements are due to a distribution of sources in the brain.

As the number of unknown sources is much larger than the number of measurements, additional

restrictions are required in order to obtain a unique solution [324, 325, 326, 327, 328, 329].

The source location is equivalent to �nding the current amplitudes for all dipoles simultaneously.
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This is an ill-posed problem because the number of dipoles is much larger than the number of

sensors. However, the use of dipoles �xed location means that the forward problem is linear and

the location of the source can be considered as the solution of a linear system with indeterminate

equations. Similar to the problems encountered in signal processing and image processing [171].

The optimization of these methods are routed by sung distributed source imaging (DIS) or images

methods [277]. The �rst inverse solution of a distributed model was the minimum-norm least-

squares (MNLS) [22], which later developed into weighted minimum-norm (WMN), a solution

used to avoid the intrinsic bias toward super�cial currents [325, 271].

A.6 Current distributed-source estimation

The inverse problems usually use a solution according to`p-norm, where the regularization method

is to minimize the cost function

F� (J) = kKJ � � k2 + � kJkp (A.8)

whereJ is the sources currents vector,K is the lead-�eld,� is the EEG measurements,� is the

regularization parameter andk:k is the minimum`p-norm method in the interval1 � `p � 2. The

main distributed-source estimates are introduced follow.

A.6.1 Minimum norm estimation

The minimum norm estimation (MNE) is based on �nding a unique solution with minimum power.

It is necessary to make assumptions about the solution, such assumptions can be formulated as

deterministic regularization terms [149]. MNE is used when a minimum a priori information about

the J source is available. When no assumptions about current discrete elements, estimates turn

out to be current distributions [326], where the dipole activity extends over some areas of the

cortical surface (voxel). One approach to minimizes the norm ofJ under the constraint of the

forward problem is

minkJk2
2 subject to� = KJ (A.9)

(A.10)

with a solution as

J = K T (KK T )y� (A.11)

Where y denotes the Moore-Penrose pseudo-inverse. The goal is to �nd a sparse solution

with zero contribution from most of the sources. Therefore by combining the equations (A.9) and

(A.11), the cost equation (A.8) becomes

F� (J) = kKJ � � k2
2 + � kJk2

2 (A.12)
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J estimation is given by

ĴNE >N V = ( K T K + � I NV ) � 1K T � (A.13)

ĴNV >N E = K T (KK T + � I NE ) � 1� (A.14)

whereNE is the number of electrodes andNV is the number of dipoles or voxels,T is the inverse

operatorK T (KK T + � I NE ) � 1, so TK is the resolution matrix, ideally the identity matrixI .

The main feature is that MNE penalizes distant sources to the sensors. Therefore the estimation

bene�ts the surface sources. This favors distributions from sources close to the measurement

surface, resulting in a poor location capability for deeper sources, also has poor performance

source localization in three-dimensional space.

A.6.2 Weighted minimum-norm

The weighted minimum-norm (WMNE) compensates the MNE depth sources. Therefore the

method estimates the weak and surface sources. In addition, improves the performance of the

three-dimensional location of sources. This is accomplished by introducing spatial weights (e.g.

3x3 weighting voxels/dipoles matrix) which ensure distribution of activity in all brain volume. The

norms of the columns ofK are normalized, therefore the constraint can be formulated as

minkW Jk2
2 subject to� = KJ (A.15)

(A.16)

with a solution as

J = W � 1K T (KW � 1K T )y� (A.17)

whereW is a diagonal of3NV � 3NV weighting matrix, which compensates for deep sources in the

following way:

W = diag

"
1

kK 1k2
;

1
kK 2k2

; :::;
1

kK3NV
k2

#

(A.18)

wherekK i k2 represents the Euclidean norm of thei th column ofK , W corresponds to the inverse

of the distances between the sources and electrodes. Therefore the cost equation (A.8) becomes

F� (J) = kKJ � � k2
2 + � kW Jk2

2 (A.19)

J estimation is given by

kJk = ( K T K + �W T W ) � 1K T � (A.20)

(A.21)
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or

kĴk = ( KK T ) � 1K T (K (W T W ) � 1K T + � I NE ) � 1� (A.22)

There are many weighting strategies for the WMN solution, the low-resolution electromagnetic

tomography (LORETA) algorithm, is a well-known solution for a weight matrix choice capable to

the depth compensation with a smooth solution, hence the name low resolution.

A.6.3 LORETA

The low-resolution electromagnetic tomography (LORETA) [307], combines the lead-�eld matrix

normalizationK with the spatial Laplacian operator(L ) with the aim of reconstructing the surfaces

and deeps sources. This operator produces a spatially smooth solution, given an assumption with

respect to the neurophysiological a priori. The function of interest is

minkLW Jk2
2 subject to� = KJ (A.23)

This minimum norm approach produces a smooth topography in which the peaks representing the

source locations are accurately located. Therefore the cost equation (A.8) becomes

F� (J) = kKJ � � k2
2 + � k� BJ k2

2 (A.24)

whereB = 
̂ 
 I 3, 
 denotes the Kronecker product,I 3 is the 3x3 identity matrix and a
 is a

diagonal matrix for the column normalization ofK .

J estimation is given by

kJk = ( K T K + �B � T � B ) � 1K T � (A.25)

or

kĴk = ( B � T � B ) � 1K T (K (B � T � B ) � 1K T + � I NE ) � 1� (A.26)

LORETA is better than MNE because the sources are distributed in smaller quantities through-

out the interior volume of the head. This process generates source distributions with low spatial

resolution. Whereas that the deeper sources by using MNE cannot be recovered because the dipoles

are placed on the surface of the source space. The depth compensated of the inverse solution is

given according to the restriction of smoothly distributed sources based on maximum smoothness

of the solution. The LORETA overall average localization error is smaller than one grid unit [308].

LORETA detect relatively strong activations in the thalamus, but a focal source reconstructed by

LORETA appears to be a cloud of active sources with the maxima hopefully located at the true

source location [312]. However, in many cases a higher spatial resolution is more desirable (e.g.

when extracting spatial features for spatiotemporal pattern recognition) [319].
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A.6.4 FOCUSS

Focal underdetermined system solver (FOCUSS), it is an iterative process of locating energy to

make the solution sparse and localized, a linear functionJ = Wq is applied to the function of

interest as follows

minkqk subject to� = KW q (A.27)

FOCUSS is a high-resolution process for underdetermined systems [330, 309], where thek-th

iteration of the transformW k is a diagonal matrix constructed by the prior iteration solutionJk� 1,

denoted byW k = diag(Jk� 1). The �nal solution depends largely on the initial source distribution

J0, usually provided by LORETA. In addition, is sensitive to noises and source con�gurations [331].

During each iteration, a matrix inverse is needed and such an inverse calculation greatly determines

the stability and validation of FOCUSS. Current e�orts in improvement of FOCUSS are mainly

made to improve the calculation of the matrix inverse and various techniques such as singular value

decomposition (SVD) truncation and regularization technique are adopted [312].

The basic form of the FOCUSS algorithm is

1. W k = diag(Jk� 1)

2. qk = ( KW k )y�

3. Jk = W kqk

When the iteration number is larger than the prede�ned maximum iteration number or when the

di�erence between neighboring iterations is less than the termination tolerance error, then the

iteration will be terminated and a sparse and energy localized solution will be achieved. FOCUSS

is appropriate for recovering a few focal sources but relies on a robust initialization, additionally

will converge to a localized solution with zero on most elements. The FOCUSS result is highly

dependent on the initialization of the algorithm.

WMNE-FOCUSS

FOCUSS repeats the procedure of the WMN method (see the previous section A.6.2), recur-

sively adjusting the weighting matrix until most elements of the solution become nearly zero, thus

achieving a localized solution. However, the �nal solution depends, to some degree, on the assu-

med initial current distribution [319]. The Weighted Minimum Norm (WMNE) compensates for

the lower gains of deeper sources by using lead-�eld normalization [332]. The information from

the previous iteration is given by

minkCJk2
2 subject to� = KJ (A.28)
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whereC = ( W � 1)T W � 1 and W i = W i � 1[diag(J i � 1(1); :::; J i � 1(3NV ))] , the solution of iteration

i is given by

Ĵ i = W i W T
i K T (KW i W T

i K T )y� (A.29)

The iterations stop when not exists signi�cant change in the estimation. Therefore the cost

equation (A.8) becomes

F� (J) = kKJ � � k2
2 + � kCJk2

2 (A.30)

J estimation is given by

kĴk = W i W T
i K T (KW i W T

i K T + � I NE ) � 1� (A.31)

wherei is the iteration index andW i is the diagonal matrix computed using

kW i k = w i W i � 1diag(J i � 1) (A.32)

The diagonal matrix for deeper source compensation is de�ned as

kW i k = diag(
1

jK (:; j )j
); j 2 [1; 2; :::; NV ]; K (:; j ) J th is the column ofK (A.33)

The algorithm is initialized with thejj Ĵjj MNE solution given by

kW 0k = diagkĴk = diag(Ĵ0(1); Ĵ0(2); :::; Ĵ0(3NV )) (A.34)

whereĴ0(n) represents then-th element of the vectorĴ0. If continued long enough, FOCUSS

converges to a set of concentrated solutions equal to the number of electrodes. The localization

accuracy is improved impressively in comparison to MNE. However, localization of deeper sources

cannot be properly estimated [332]. In practice, the algorithm converges close to the initialization

point and may easily become stuck in some local minimum [331].

LORETA-FOCUSS

Is similar to WMNE-FOCUSS, but using LORETA, so both can be combined together according

to the following steps:

1. Compute the current density using LORETA, get the smooth solutionĴ .

2. Construct theW matrix according to (A.32), the initial value ofW is given bykĴk of

LORETA eq. (A.34).

3. Compute the current density using eq. (A.31), that involving the compute of FOCUSS using

WMNE.

4. Repeat steps (2) and (3) until the solution̂J no longer changes, i.e. until convergence.
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FOCUSS is not able to accurately reconstruct the time series of active sources. Normally make

a solution increasingly sparse during the iteration. Therefore is better to remove the nodes that

do not have focal activities or to recover the active nodes that can be discarded by mistake [333].

A.6.5 sLORETA

Standardized low-resolution brain electromagnetic tomography (sLORETA), is di�erent from LORETA

because it does not use the Laplacian operator, but is similar to Dale and Sereno Method [334].

This method is based in the inverse MNE solution, which assumes the noise valueN and the dipole

intensityJ are distributed with media no zero and theR andC covariance matrix are proportional

to I matrix, is given by:

Ĵ = RK T (KRK T + C) � 1� (A.35)

In other words, Dale and Sereno [334] proposed a method in which the localization inference is

based on a standardization of the current density approach. In particular, the current density esti-

mation is employed given by the minimum norm solution, and standardized by using the expected

standard deviation, which is hypothesized to be originated exclusively by measurement noise. This

method produces systematic non-zero localization errors, even in the presence of negligible noise.

Precisely sLORETA location [307], is based on images of standardized current density approach.

This method employs the current density estimation given by the minimum norm solutionjjJ jj ,

where instantaneous extracranial measurements satisfy the expressionNv � NE (number of voxels

in the brain � number of electrodes), see equation (A.13). The localization inference is based

on standardized values of the current density estimation, which is de�ned so the variance of the

actual source beSD = I 3dipoles = I 3NV
and the noisy variations measures areSNoise

� = �I NE .

The electrical potential variance is given by

S� = KS � K T + SNoise
� (A.36)

The variance of the estimated current density is given by

SĴ = T S� T T = K T [KK T + � I NE ]� 1K (A.37)

Eq. (A.37) is similar to theT K matrix resolution (see section MNE (A.6.1)). For the EEG, for

an unknown current density vector, the standardized current density power estimation is given by

Ĵ
T
MNE;l f [SĴ ]l l g� 1ĴMNE;l (A.38)

where ĴMNE;l 2 R 3x1 is the current density estimation at the voxell th given by MNE and

[SĴ ]l l 2 R 3x1 is the l th diagonal block of the resolution matrixSĴ . sLORETA returns a unique

solution to the inverse problem. Therefore the cost equation (A.8) becomes

mink� � KJ k2
2 + � kJk2

2 (A.39)
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Using the Tikhonov-Phillips regularization, �nd a possible solution to the inverse problem of the

form

j i = K T
i [K i K T

i + � i I ]� 1� = R i J (A.40)

wherej i indicates the candidate sources,J are the actual sources,R is the resolution matrix given

by

R i = K T
i [K i K T

i + � i I ]� 1 (A.41)

The reconstruction of multiple sources performed by the �nal iteration of sLORETA is used as an

initialization for the combined adaptive standardized LORETA-FOCUSS (ALF) (see section A.7.3)

and weighted minimum norm (WMN or FOCUSS) algorithms [273]. The number of sources is

reduced each time and the equation (A.11) is modi�ed as follow

j i = W i W T
i K T

f [K f W i W T
i K T

f + � I ]� 1� (A.42)

whereK f indicates the �nalNE � NV lead-�eld matrix, returned by sLORETA.W i is a diagonal

(3NV )f � (3NV )f matrix, which is recursively improved based on the current density estimated by

the previous step:

W i = diag[j i � 1(1); j i � 1(2); :::; j i � 1((3NE )f )] (A.43)

The resolution matrix given by (A.41) after each iteration changes to

R i = W i W T
i K T

f [K f W i W T
i K T

f + � I ]� 1K f (A.44)

The iterations are continued until the solution does not change signi�cantly. sLORETA permits an

accurate location without errors when the single sources are reconstructed. The maximum power

current density estimation matches with the exact dipole location. While in Dale and Sereno

method, the current density estimation is based only on the noise measurement. Also, sLORETA

takes into account the variance of the actual source [308].

A.6.6 LPISS

The `p-norm iterative sparse solution (LPISS) �nd a sparse solution using`p-norm iterative with

p � 1, hence the name [312]. LPISS is di�erent to FOCUSS because the sparse solution of an

intermediate auxiliary variableq, is estimated by using̀p-norm constrained optimization procedure,

instead of the matrix inverse estimation. When the algorithm converges, a sparse solution of source

J is readily derived from the obtained sparsely by using the next algorithm:
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1. Initialization. Setk = 1 , iteration termination error� and the maximum iteration number

T max, initialize source distributionJk� 1 with LORETA solution.

2. Update the diagonal weight matrix:W k = diag(Jk� 1).

3. Using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method [335], which is

an iterative method to solve unconstrained nonlinear optimization, to estimate the sparse

qk in:

arg mink� � KW kqkk2 + � kqkkp (A.45)

4. Update source distribution:Jk = W kqk .

5. Judge termination condition. Comparing the di�erence between the prior and the last source

distribution:

If kJk � Jk� 1k � � or k � T max terminate the iteration andJk is the �nal source distribution.

else

k = k + 1 and jump to step 2, FOCUSS Algorithm (A.6.4) and go on.

A.6.7 Bayesian approach

This method relates the probability functions with both current and data in order to select a highly

probable current distribution in a statistical sense. Depending on the complexity of the distribution

assumed, may be linear or nonlinear algorithms, which allows incorporations of a priori information

more elaborate. The Classic solution to solve the inverse problem, is given by eq. (A.46) previously

introduced in (A.7). The idea is to try to estimateJ, knowing that� is the known variable, which

can be measured and observed,� is the perturbation andK is the lead-�eld that represents the

solution to the direct problem. In this approach is essential to take into account any information

about the a priori probabilities. In EEG applications the inverse problem equation is given by

� (n) = KJ (n) + � (n) (A.46)

where� (n) is a NE � 1 vector (whereNE is the number of electrodes) containing the sample

values of the EEG in timen, K is a NE � m matrix, represents the head model,J(n) are the

m� 1 vectors, containing the sample values of the sources at the timen and� (n) is a noise sample

vectorNE � 1 at instant n. The a priori information about the sources imposes some restrictions on

their locations and their temporal properties because there is an in�nite amount ofJ(n). Usually,

the goal is to �nd theĴ estimation that maximize some kind of criteria. The estimation may be

performed using a maximum a posteriori (MAP) criterion, in which the estimator tries to �ndJ(n)

that maximizes the probability distribution ofJ(n) given the measurements� (n). The estimator

is denoted as:

Ĵ = arg max
J

[� (J(n)j� (n))] (A.47)
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where� (J j� ) is the refers to the conditional probability density ofJ given � . This estimator is

the more probably with respect to the measurements and the a priori considerations [332].

The starting point of all Bayesian methods is based on the Bayes theorem. Known that� (J j� )

is the a posteriori density ofJ, therefore

� (J(n)j� (n)) =
� (� (n)jJ(n)) � (J(n))

� (� (n))
(A.48)

where� (� (n)jJ(n)) is the likelihood, � (� (n)) is the marginal distribution of the measurements or

evidence and� (J(n) is the prior probability.

The posterior can be written in terms of energy functions as

� (J(n)jz(n)) =
1

z(n)
exp[� U(J(n))] (A.49)

whereU(J(n)) can be expressed as

U(J(n)) = (1 � � )U1(J(n)) + �U 2(J(n)) (A.50)

whereU1 is the likelihood, U2 is the a priori and0 � � � 1. The a priori may be separated into

two functions, spatial priorsUs and temporal priorsUt . Both re�ect a balance between the data

�delity and the function spatiotemporal smoothness� .

A.6.8 Spatial estimation

The spatial estimation is a modi�cation of quadratic estimation, where theU2(J) parameter

estimation in the eq. (A.50), is calculated by using the intensity gradient of the dipole [336],

which leads to smooth variations in the solution by means of the estimator

Ĵ = ( K T K + � 5 T 5 ) � 1K T � (A.51)

or

Ĵ = ( 5 T 5 ) � 1K T (K (5 T 5 ) � 1K T + � I NE ) � 1� (A.52)

The spatial estimation is an inversion procedure based on a non-quadratic choice forU2(J) in the

eq. (A.50), which makes the estimator becomes nonlinear and more suitable for detecting the

intensity of energy [336], this is given by

Us(J) =
NX

n=1

� (5 J) (A.53)

whereN = NV � N, is the number of dipoles (e.g. voxels) by the number of neighbors of each

sourceJ; 5 J is th-vector element5 . The spatial prior function can take into account the

smoothness of the spatial variation of the sources. A cost function that determines the spatial
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smoothness is

� (u) =
u2

1 + ( u
K )2 = � � � (A.54)

whereK is the scaling factor that determines the required smoothness,� depends on the distance

between a source and his current neighbor and� of the discrepancy depends on the orientations

of the two sources considered. Thus the function a priori for space constraints can be written as:

Us(J(n)) =
NX

n=1

�
� x

k (5 xJ(n)jk) + � y
k (5 yJ(n)jk)

�
(A.55)

where the indicesx andy correspond to horizontal and vertical gradients respectively. For small5 ,

the local cost is quadratic, producing areas with spatial changes of smooth intensity. Whereas for

big 5 , the local cost is in�nite,�( u) � K 2, thus enabling preservation of discontinuities estimator

is given by

Ĵ = � (K ; Ĵ i � 1)� (A.56)

where� is a NV � NE matrix (NV is the number of dipoles andNE is the number of electrodes),

which depends onK and with priors calculated from the previous estimated sourceĴ i � 1. The

spatial resolution depends on the signal-noise ratio of the scalp. One approach to achieving a

higher resolution is to usè1-norm instead of̀ 2-norm. `1-norm methods can generate more focal

solutions and have a more robust behavior with respect to outliers in the measurement data.

However,`1-norm methods require much more computational e�ort in comparison with`2-norm

methods [282].

A.6.9 Spatiotemporal estimation

The component of the temporal magnitudes are assumed to evolve slowly respect to the sampling

frequency, therefore the time restrictions imposed by assuming that the projection ofJ(n) on the

space perpendicular toJ(n � 1) is small or close.

The temporal prior function can be expressed as

Ut (J(n)) = kP?
n� 1J(n)k2 (A.57)

whereP?
n� 1 matrix is the projection onto space perpendicular toJ(n � 1). Therefore the overall

minimization criterion for estimation ofJ(n) will be

Ut (J(n)) = argmin
J

"

k� (n) � KJ (n)k2 + �
NEX

k=1

�
� x

k (5 xJ(n)jk) + � y
k (5 yJ(n)jk)

�

+ � kP?
n� 1J(n)k2

#

(A.58)
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where� and � are the penalty terms or regularization parameters.

A.7 Shrinking methods

A.7.1 Shrinking LORETA-FOCUSS

This method combines LORETA and FOCUSS by iterative adjustments in the space solution in

order to reduce calculation time and increase the resolution of the source. The method begins

with a soft LORETA solution that improves the intensity of some relevant dipoles in the solution

while accentuates the intensity of those who are not.

The algorithm consists of the following steps:

1. Estimate the current density using LORETA to obtain̂J .

2. Construct the weighting matrixW using the solution estimated from the previous step, i.e.,

update the weighting matrix (A.32), Then, compute the current density according to (A.29),

where the initial value is given by the equation (A.34) withĴ of LORETA.

3. Current densityĴ i estimation, which is calculated using the equation that involves the

estimation of FOCUSS using WMNE (A.31).

4. In the readjusted smoothing process, the prominent nodes are preserved, i.e. the nodes

greater than 1% of maximum value with its neighbors. The values of current density at

these nodes, readjust by smoothing, the new values are given by

1
Nl

�
Ĵ (l ) +

X

u
Ĵ (u)

�
8u under the constraintkrl � ruk � d (A.59)

whererl is the position vector ofl th node,Nl is the number of neighbor nodes around the

l th node with a distance equal to the minimum distanced between the nodes.

5. Shrinking process: the elements corresponding toĴ and K are retained and theK = JĴ

matrix is calculated.

6. Repeat steps 2. to 5, until convergence, can be de�ned as a threshold or when there is no

signi�cant change in the weights of the additional iterations.

7. Let the solution of the last iteration before smoothing be the �nal solution.

Steps 4. and 5. are stopped if the new solution space has fewer nodes than the number of

electrodes or the solution of the current iteration is less sparse than that estimated by the previous

iteration.

Once steps 4. and 5. are stopped, the algorithm becomes a FOCUSS process.

The method in simulated data without noise, is able to reconstruct a three-dimensional source

distribution with a smaller error of localization and energy, regarding WMNE,`1-norm and LORETA

with FOCUSS is 10 times faster than LORETA-FOCUSS and several thousand to`1-norm. The

method is not able to accurately reconstruct the temporal series of active sources [319, 337].
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A.7.2 Standardized shrinking LORETA-FOCUSS (SSLOFO)

The Standardized Shrinking LORETA-FOCUSS (SSLOFO) method combines the characteristics

of high resolution given by FOCUSS with the low resolution given by WMNE and sLORETA.

Therefore SSLOFO can extract regions of dominant activity, as well as locate multiple sources

within the region of interest. For the algorithm is not trapped in a local minimum is performed

smoothing process. The algorithm is similar to LORETA-FOCUSS:

1. Current density is calculated using sLORETA to obtainĴ .

2. The weighting matrixW is build using the eq. (A.34) with sLORETÂJ.

3. Current densityĴ i is calculated using eq. (A.31) of FOCUSS. Estimate the source power is

normalized as:

Ĵ
T
i (l ) f [R i ]l l g

� 1 J i (l ) (A.60)

where[R i ]l l is the l th diagonal block of matrixR i = W i W T
i K T (KW i W T

i + � I NE )K

4. Retain the prominent nodes and their neighboring nodes. Adjust the values on these nodes

through smoothing.

5. Rede�ne the solution space to contain only the retained nodes, i.e. only the corresponding

elements inJ and the corresponding column inK .

6. Update the weighting matrix.

7. Repeat steps 3 to 6 until a stopping condition is satis�ed. The stopping condition may be

when a threshold is de�ned, or when there is no negligible change in the weights in further

iterations.

8. The �nal solution is the result of the last step before smoothing.

In simulated data the reconstruction of the temporal waveforms of both source, individual as

multiple, were correct. Thus allowing the direct estimation of the dynamics of cortical neuronal

sources. The algorithm achieves an excellent localization ability on noise-free data. It is capable

of recovering complex source con�gurations with arbitrary shapes and can produce high-quality

images of extended source distributions [337]. SSLOFO shrinks the source space after each itera-

tion of FOCUSS, reducing the computational request. The sources reconstructions obtained are

better than WMNE with FOCUSS and sLORETA, even outperforms FOCUSS with many extended

sources.

A.7.3 Adaptive standardized LORETA-FOCUSS (ALF)

While the above methods need a complete calculation of the matrixK of SSLOFO, Adaptive Stan-

dardized LORETA-FOCUSS (ALF), only requires between 6% and 11% of the of the full-resolution
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of the lead-�eld matrix with a localization accuracy that was not signi�cantly di�erent from an

exhaustive search through a fully-sampled source space. ALF It minimizes forward computations

through an adaptive procedure that increases source resolution as the spatial extent is reduced

[331].

The algorithm consists of the following steps:

1. A set of successive decimation is de�ned on the set of possible sources, these ratios determine

successively higher resolutions, the �rst ratio is selected so as to produce a selective number

of sources selected by the user and the last one relationship produces the full resolution

model.

2. Beginning with the �rst decimation ratio, are retained only the corresponding dipole locations

and columns inK of SSLOFO.

3. sLORETA in eq. (A.38) is used to achieve a smooth solution. The source with maximum

normalized power is selected as the center point for spatial re�nement in the next iteration,

in which the next decimation ratio is applied. Successive iterations include sources within a

spherical region at successively higher resolutions.

4. Steps 2 and 3 are repeated until the last decimation ratio is reached. The solution produced

by the �nal iteration of sLORETA is used as initialization of the FOCUSS algorithm, where

the normalization process, see eq. (A.60), is incorporated.

5. Iterations are continued until there is no change in the solution.

The location accuracy achieved with ALF is not signi�cantly di�erent than that obtained when

an exhaustive search is performed for fully sampled source space is made [331]. A multiresolution

framework approach can be implemented too [338]. At each iteration of the algorithm, the source

space on the cortical surface was scanned at a higher spatial resolution such that at every resolution

but the highest, the number of source candidates was kept constant [332].

A.8 Regularization

The regularization techniques or penalty, are approximations of an ill-posed problem in a family

neighborhood of well-posed problem. They are used to prevent a large number of degrees of

freedom in the source space from being used to over-�t to added noise [337].

The regularization is expressed in terms of the� operator which is given by

F� = kKJ � � k2 + � kJkp (A.61)

This cost equation has two properties

1. Among all possible solutions, only select the best �ts that satisfy the set constraints such as

math (minimum norm estimates), anatomical, physiological or functional a priori information.
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This is based on the understanding of both neurophysiological and biophysics analysis. The

goal is to �nd the best approximation to the solution.

2. The solution is stable.

Thus, a challenge is to develop e�cient optimization strategies that can solve the EEG inverse

problem with such priors in a short time. The optimum� value, can be determined using the

spectral truncation [149] or the truncated SVD (TSVD) criteria [330], where in general, a high

noise power corresponds a greater� [339, 312, 340, 341]. Di�erent criteria to �nd� can be found

in the literature, for example by using a visually or empirically approaches [342], using the L-Curve

method [343, 344], setting, scaling or adjusting a SNR value [345, 346, 311, 347], by taking the

additive noise as a parameter known [348], or by selecting a percent of the Lead-Field matrix,

such as 99% of the total power [346] or 10% of maximum singular value [349]. Another way to

estimate� is by using the equation� = �
p

2logN, where� is the standard deviation of noise and

N is the size of the solution space [350].

A.8.1 `1 and `2 Regularization

In the literature, we can be found two types of approaches, the least-squares approximation, and

the logistic regression. The idea in both is try to �nd aJ matrix, which will minimize a loss

function kKJ � � k2 and the� operator. The linear model using, see section (A.2), is given by

� = KJ + � (A.62)

where� is the observation matrix such that� 2 R m, J is the unknown matrix such thatJ 2 R m,

� is the noise matrix such that� 2 R m and K is the lead-�eld matrix such thatK 2 Rm� n.

Over-�tting may occur when the number of observationsm is not large enough compared with the

number of feature variables� , which tends to occur when large weights are found inJ. Therefore

`2 regularizationis used, also it is easy to calculate and does not add too much complexity to

existing problems [351]. In this case the regularization term in (A.61), is given by� kJk2
2.

The least square problems seek to minimize the equation

kKJ � � k2
2 + � kJk2

2 (A.63)

where the regularization term restricts large value components, this is a special case of Tikhonov

regularization. This can be computed directly(O(n3)) or by using iterative methods, such as the

conjugate gradients method.

The logistic regression problem seek to minimize the equation

l avg(v ; J) + � kJk2
2 (A.64)

where the smooth and convex problem can be solved by using the gradient descent, steepest

descent, Newton, quasi-Newton, truncated Newton or conjugate gradients methods.
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The `1 regularizationterm in eq. (A.61) is given by� kJk1, this creates sparse answers and

better approximations in relevant cases [351].

The least square problems seek to minimize the equation

kKJ � � k2 + kJk2
2 + � kJk1 (A.65)

The logistic regression problems seek to minimize the equation

` avg(v ; J) + � kJk1 (A.66)

The regularization term in eq. (A.65) and eq. (A.66) penalize all factors equally which make

J sparse. This means that the complexity can be reduced, thus can be viewed as a selection of

relevant characteristics and/or importance. In addition, it is a non-di�erentiable, therefore the

problem is NP-complex, which can be transformed into a convex quadratic problem, where it seeks

to minimize

kKJ � � k2 + kJk2
2 + �

nX

i =1

ui subject to:� ui � J i � ui for i = 1 ; :::; n (A.67)

The solution is by using the standard convex optimization methods that usually cannot handle

large practical problems [351]. The regularization assumptions made in terms of deterministic

regularization or Bayesian interpretation as the minimum norm estimate (MNE) and minimum

current estimate (MCE) [326, 329] correspond to`1-norm and`2-norm. In this methods a large�

corresponds to a large penalty in the current sources and a small� emphasizes the reliability of the

data. This means that̀ 1-norm promotes sparse solutions, which that fact is a strong hypothesis.

This implies that the solution must have only a small number of coe�cients di�erent from zero.

While in some cases the minimum̀2-norm may tend to force the solution of the dipoles near the

sensors, rather than the true source because the magnetic �eld follows the inverse square of the

distance between the sensor and the source [352]. In other words, this process usually leads to an

overestimation of the extension of the focal areas of activation.

`1-priors are used to promote a priori solution spatially sparse and soft, while`2-priors are

used either for guidance [353] or for time and guidance [311], which leads to an optimization

problem convex. The prior most used in the EEG community are based on`2-norm [271, 334, 307]

and the Gaussian distribution as a likelihood measurements from the current sources [329, 354,

355, 356, 357]. Iǹ 2-norm, MNE is post-processed to obtain an interpretable image activation

patterns spatiotemporally [358]. MNE locates the source con�guration with minimal energy. The

regularization parameter or Ridge regularization is estimated by cross-validation producing a linear

solution obtained by simple matrix multiplication [149]. This process makes estimation extremely

fast. In [339] for example using MEG, the� parameter was calculated by using the Markov random

�eld (MRF) coupled with the mean �eld, in order to evaluate the accuracy of the wrong location

and the di�erence between points in E/MEG.

The MNE solution is usually unstable with respect to modeling errors or the location and noise



130 Appendix A. Estimation and regularization of source localization using EEG

measurement [271]. Noise measurement can be projected onto the cortical sources, therefore set-

ting the � parameter is intended to limit this e�ect [340]. Also, MNE often too di�use and tend to

estimate sources extending over a considerable part of the brain, which is not always physiologically

signi�cant, see section (A.6.1). To address these limitations have been proposed many alternatives,

for example, in [310] was proposed the regularization of amplitudes from estimated sources with`1

priors by using the optimization procedure based on the simplex method [359]. This approach was

later modi�ed slightly [329], which was called MCE penalized`1 solutions, the solutions obtained

by MCE are often too sparse and tend to scatter around the true sources [360]. LORETA [307]

uses a regularization term based on a spatial Laplacian to enforce the smoothing solution [311].

The iteratively reweighed least-squares (IRLS) approach was proposed by [330] to �nd the source

image location. FOCUSS algorithm approximates the solution with`0 a priori, this involves an

iterative weights estimation of MNE solutions with updated weights after each iteration [361].

Some applications using FOCUSS are to �nd the lead-�eld in magnetic �eld tomography (MFT)

[362],or to improve the calculation of the gradient vector �ow (GVF) in MRI data [363]. Other

approaches are by combining algorithms such as shrinking from LORETA and FOCUSS, in order

to adjust the weight matrix and the spatial solution, obtaining a low error rate in the energy and

focal localization sparse [333], later improved in shape recursive [319] and using with sLORETA in

SSLOFO approach [337], Further improvements of the method arose with adaptive improvement,

using only between 6% and 11% of the resolution of lead-�eld, creating sparse signals to locate

the source [331], see section (A.7).

Some alternatives using̀1-norm can be found in [353], which proposes the focal vector �eld

reconstruction method (FVR) with a� �xed, this is calculated by the division between the standard

values of the electrodes and the array containing all the raw data, in simulated data the sources

were recovered reliably. [364] proposed the sparse source imaging method (SSI), which reconstructs

the estimated sources and the active and inactive cortical currents,� was set to a large enough

value so that the probability satis�esk� � KJ k2 � � ; [341] proposed the common spatial patterns

method (CPS-̀1) with a � calculated by using the Tikhonov method [149] in order to optimize the

outliers to classify the motor imagery in BCI spatial �lters. Other methods are prelocation sources

of multivariate (MAP), which restricts the solution space to rebuild the focal activity in cortical

areas [344] or the mixed integer linear programming (MILP), where� is estimated based on the

uncertainty potential measurement. This method obtains a location of the minimum number of

streams able to reconstruct the evoked potentials recorded on the scalp.

The Bayesian approach [336] was extended by introducing a spatial and temporal prior informa-

tion [334], where the regularization parameter� was calculated empirically through the maximum

a-posteriori probability (MAP). MAP �nds the coe�cients that are used to establish a balance

between a probability term (the quanti�cation of �delity to the raw data) and a term a priori on

the estimator behavior. As for the marginalization of the regularization parameter, concerning

the dependence of the current measurements, in [365] was proposed that instead of calculating

a single best solution according to some criterion, is better generate before use, a large number

of possible solutions using MCMC, both for the data as for the priors information.� -hiperapriori

can be marginalized so that, is possible to create a connection point between`2-norm, MCE, FO-
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CUSS, sLORETA and minimum beamformer algorithm, to locate sources of E/MEG [366] or also

by applying the potential functions resolution in empirical form. Gradients are applied to optimize

the anatomical information by using a method based on the multiresolution approach to identify

real sparse focal patterns from current density [338].

These approaches are originated from the fact that it is possible that the con�gurations of

realistic sources, have only a limited number of active regions, see section (A.5), for example,

when a few brain regions are activated signi�cantly from a particular cognitive task. The source

con�guration is said to be spatially sparse. This assumption has proven to be relevant for clinical

applications and also justi�es the location approximation from dipole �tting which is currently the

most widely used method in the clinical setting. [358].

However, the above approaches su�er from signi�cant limitations. Solutions to sparsity-

inducing priors, are slow when applied to the analysis of real data sets, also algorithms proposed

so far, are complex and di�cult to implement [358]. These can be calculated in a few hundred

milliseconds, but sparse inverse solutions can take a long time to converge when the actual di-

mensions are used [353, 311]. More however under certain conditions, it has been shown that

the sparse can allow perfect resolution of ill-posed problems [367]. On the other hand, when a

sparse solution is originated independently at each time instant, is not possible to recover the

time trajectories of cortical sources, therefore is important to consider the temporal dynamics from

data [366, 368, 311], where hyperparameters can be calculated by using the restricted maximum

likelihood (REML) approach [369, 370] or focal vector �eld reconstruction [353].

In sparse Bayesian learning methods [369, 370, 366], the problem can be reduced to the

maximization of a non-convex cost function calledmodel evidence. For example, in [353, 311],

the problem was approached by using sparsity-Inducing prior, a mixture of`1-nom and`2-norm.

Estimating mixed standards (M � NE ) have the ability to structure a priori in order to incorporate

some additional assumptions on the sources. Is possible to promote spatially focal sources with

soft time estimation with a level-2̀1=`2, while a level-3 can be used to promote spatially non-

overlapping sources between di�erent experimental conditions. SomeM � NE can be obtained

e�ciently, for example, by using coordinate descent (based on the proximal estimation) or gradient

operators methods. Both based on the current understanding of mathematics and convergence

properties of these solutions.

LARS-LASSO algorithm [371, 372], which is a variant of the homotopy method [373, 374], is

an extremely powerful method for solving the`1 problem [375]. Simple coordinate descent [376]

or blockwise coordinate descent methods, also called block coordinate relaxation (BCR) [377],

are possible strategies. Other methods have been proposed based on the gradient projection and

proximity operators [358], sparsely connected sources analysis (SCSA) [357] or adaptive recursive

least-squares (RLS) group lasso for real-time [374], in this last, the time sequence is generated

of the optimal coe�cients from the sparse prediction vectors, with a �xed0:1 < � < 0:9 value,

typical standard RLS value for homotopy method with a steady state 0.05 error. Another interesting

approach is through the structured sparse regularization, by using brain electrical sources (BES)

matrix directly in the spatiotemporal source space, without having to rely on selecting a good basis

for sparse decomposition techniques [378].
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A.8.2 1 < p < 2 regularization

Usually, the main neural electrical activities are localized to sparse way, therefore, a reasonable

solution must not only explain scalp records that they are localized sparse way [312]. The approach

to achieve a sparse inverse problem solution for EEG can assume sparse few sources by using a

non-linear optimization method [274] or estimating directly`p-norm with prede�ned values, such

as p = 1 or p = 2 . `2-norm produces extensive and extremely smooth estimates, while`1-norm

can be estimated focally. These approaches used the classical regularization methods such as

Tikhonov-Arsenin [149] or/and TSVD [361], both combined with the estimation methods such

as LORETA [307], sLORETA [308], Bayesian approach [326, 336, 329] or by using`1-norm and

`2-norm where a large� corresponds to a large penalty in the current sources and a small�

emphasizes the reliability of the data.

For p values between1 < p < 2, which are subject to uncertainty,p must be treated as an

unknown variable. One option is by using Bayesian inference, which is a popular method for �nding

a solution of the electromagnetic inverse problem [365, 354, 336], another option is through the

method of Markov Chain Monte Carlo (MCMC) [365, 379], or methods based on the solution

of shrinking spaces, shrinking LORETA-FOCUSS [319], standardized shrinking LORETA-FOCUSS

(SSLOFO) [337] and adaptive standardized LORETA-FOCUSS (ALF) [331]. These methods using

a fuzzy initial solution of the distributed source as MNS, by iterative reduction of the solution

space, the solution converges to a relatively sparse, such as self-coherence enhancement algorithm

(SCEA) [380] and the focal solution of indeterminate systems using FOCUSS [309], WMNE with

FOCUSS [319] or by using methods that promote spatially sparse solutions, taking into account

the temporal dynamics of the data [366, 368, 311]. Sparse component analysis (SCA) is a method

that permits that allows the decomposition of sparse signals, which takes usually`p-norm with

p � 1 as the restriction of signals decomposition, criteria used in LPISS Method [381, 382, 312].
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