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Abstract

We propose an algorithm for the simultaneous position and clock tracking of a

wireless mobile node by a set of reference nodes. Based on a protocol similar

to that of two-way ranging, our algorithm efficiently estimates the position and

velocity of the mobile, and the skew and offset of its clock. We take into account

that the propagation conditions between each reference node and the mobile

change as the latter moves. In particular, changes between line-of-sight (LOS)

and several non-line-of-sight (NLOS) scenarios are considered. We study the

performance of our algorithm and compare it to other relevant proposals in the

literature by means of simulations, showing that our proposed method improves

localization accuracy.

Keywords: Positioning, synchronization, NLOS.

1. Introduction

Due to the relevance of location-based services and applications, the track-

ing of wireless devices has been the focus of intense research during the last

two decades. Most localization approaches are based on measurements of the

received signal strength (RSS), angle of arrival (AOA), time of arrival (TOA),5

or time difference of arrival (TDOA) (see Refs. [1–6] and references therein).

In this work, we focus on TOA measurements. Intuitively, for positioning

with TOA techniques, what really matters are the distances between a mobile
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node whose location is required and a number of reference or anchor nodes.

Under line-of-sight (LOS) conditions, those distances are proportional to the10

time it takes a signal to travel between the mobile and the anchors. Each time

of flight can be estimated from a TOA measurement at each anchor if the exact

sending time is known. This requires the clocks of the mobile node and the

anchors to be synchronized. Let us focus on this problem as it is most relevant

for understanding the motivation of this paper. The distance between a mobile15

node and an anchor can be estimated as

d = c× (ta − ts) , (1)

where ta is the time-of-arrival of a wireless signal to the anchor, ts is the time

when the signal was sent from the mobile node, and c is the speed of light. In

this equation we have arbitrarily assumed that the communication was initiated

by the mobile node. The sending time can be communicated by the mobile in a20

message. If the mobile and the reference nodes are not perfectly synchronized,

there may be an error in the time measured, say, at the mobile. For example,

the sending time measured and communicated by the mobile to the anchor can

be written as τs = ts + ϕ, where ϕ is an offset due to lack of synchronization.

Under this setting, the estimated distance would be25

d̂ = c× (ta − τs) = c× (ta − ts − ϕ) = d− c× ϕ. (2)

As an example, a value of ϕ = 0.5 µs corresponds to an error of ∼ 15 cm. A

common solution is to use two-way ranging [1]. In this scheme a message is

sent from, say, the mobile to the anchor and it is immediately replied so both

the sending and final arrival times are measured at the mobile. If the measured

sending and arrival times can be written as τs = ts + ϕ and τa = ta + ϕ, where30

ts and the ta are the actual times, then the distance can be estimated as

d̂ = c× (τa − τs)

2
= c× (ta + ϕ− ts − ϕ)

2
= c× (ta − ts)

2
= d, (3)
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where the factor of two is due to the two-way nature of the communication. This

procedure appears to solve the problem, but only because we have considered the

lack of synchronization as modeled by a constant offset. Time measurements are

based on a local oscillator whose frequency may not be perfectly constant and35

drifts slowly from its nominal value, specially in cheaper nodes [7–9]. Thus, in

general, measured times are better modeled by τs = ω×ts+ϕ and τa = ω×ta+ϕ,

where ω represents the clock drift and it is close to unity. In this case, the

estimated distance reads

d̂ = c× (τa − τs)

2
= ω × c× (ta + ϕ− ts − ϕ)

2
= ω × d. (4)

As an example, if |ω − 1| = 2 × 10−5 and d = 500 meter, the estimation error40

would be of the order of 1 cm. We must also observe that the drift ω and the

offset ϕ of the local clock are not constant in general and their changes must be

tracked (see, e.g., [10, 11] and references therein).

In several practical situations, we may expect to have better local oscillators

in the reference nodes, as they may correspond to higher cost fixed communica-45

tion infrastructure (e.g., base transceiver stations in a cellular network or access

points in a WiFi network). In these cases, it is reasonable to assume that the

influence of the anchor’s clock inaccuracies are negligible. Indeed, this is one

of the assumptions of this work. Under this setting, it is worth it to reverse

the order of the communication so it is the anchor that initiates the two-way50

exchange. If the drift of the local oscillator at the reference node is ω = 1 (a per-

fect clock), then the estimation in Eq. (4) would be perfect. However, Eq. (4)

assumes that the reply is immediate. This is an unreasonable assumption as

there is always a necessary processing time, say tp. Thus, when the anchor node

initiates the exchange, the estimated distance can be written as55

d̂ = c× (τa − τs)

2
= c× (ta + ϕ− ts − ϕ)

2
= d+ c× tp

2
. (5)

The reply processing time may be modeled, in general, as a random variable.
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If the mobile node measures tp, it would include the errors due to its clock

inaccuracies and, thus, we would be back to the same problems we have when

the two-way exchange is initiated by mobile node. There are several ways out

of this conundrum. For example, we can resort to TDOA, requiring only the60

perfect synchronization of the reference nodes [1], or we can thrive to keep the

clock of the mobile node as perfectly synchronized as possible (see, e.g., [12–

16] and references therein for more information on network synchronization).

In Ref. [17] we proposed a different approach by simultaneously tracking the

position and the clock of the mobile based on TOA measurements at the mobile65

and anchor nodes. The core of our proposal was the assumption that, though

random, tp can be, in general, upper bounded. This upper bound allowed us to

impose a fixed deterministic reply time δ (> tp). The fact that δ was inaccurately

measured at the mobile node enabled the estimation of its clock drift ω. More

details on our solution can be found in Ref. [17], but let us mention that the70

explicit estimation of the distances between the mobile node and the anchors

is avoided, proceeding to estimate directly the position and the velocity of the

mobile and the drift and the offset of its clock.

We must note that there are other works in the literature on the simultaneous

positioning and synchronization problem [18–21]. However, to the best of our75

knowledge, only line-of-sight (LOS) scenarios were considered in most cases. In

the presence of a non-line-of-sight (NLOS) channel, an extra delay Γ must be

added to the time of flight of wireless signals. In this case, the simplest range

estimation in Eq. (3) becomes

d̂ = c× (τa − τs)

2
= c× (ta − ts)

2
+ c× Γ = d+ c× Γ, (6)

where we have assumed that the NLOS delay is the same in both directions,80

and Γ is usually modeled as a random variable. There is a vast literature on the

mitigation of NLOS positioning errors (see, e.g., [21–69] and references therein).

Although a complete review of the area is beyond of the scope of this paper,

for our purposes we can divide the literature in three main approaches. First,
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there are many proposals that assume no further information than the time-85

of-arrival or time-difference-of-arrival measurements. In these cases, either no

(except for its positivity) or little knowledge (such its probability distribution)

is assumed about Γ. Second, there is a group of papers that assume that cer-

tain characteristics of the received signal may indicate the presence of a NLOS

condition. For example, the kurtosis of the estimated channel impulse response90

or the root mean square (RMS) delay spread have been proposed as statistics

for the detection of NLOS channels in the presence of multipath fading. Finally,

there is a third approach which consists on the fusion of TOA observations with

other measurements, such as AOA. The development in this work falls mainly

in the second group. However, since we want the core of our proposal to be95

applicable to a wide variety of communication networks, we avoid any details of

the actual physical channel, like its multipath fading characteristics. Following

the work of Huerta et al. [51], we assume that any channel-related measure-

ment can be summarized in a test statistic that gives an indication of the NLOS

condition. This abstraction has the advantage of generality and paves the way100

for the specialization of our proposal to any given physical layer of communica-

tion and receiver structure. Furthermore, it enables us to extend the Improved

Unscented Kalman Filter (IUKF) developed in Ref. [51] to the context of our

problem, as explained in Section 4.

A special comment is due about the work of Wu et al. [21] as, to the best of105

our knowledge, is the only paper in the literature that deals with the simulta-

neous positioning and synchronization problem under NLOS conditions on the

basis of TOA measurements. The proposal in Ref. [21], however, has two lim-

itations: only a stationary mobile node is considered, and the synchronization

error is modeled by a constant offset. In this paper we lift both limitations as110

we consider a moving node and a more complex model of the inaccuracies of its

local oscillator.

Interestingly, most of the literature focuses on only two possible channel

conditions, either LOS or NLOS. However, it has been noted that this is only a

rough approximation to more complex situations where different types of non-115
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line-of-sight conditions can be distinguished. For example, Pahlavan et al. [36]

(see also Refs. [44, 45, 70]) described two different channel profiles associated

with NLOS conditions in UWB-based TOA measurements. It is worth it to

describe the reasoning behind these different types of NLOS conditions. Let us

consider the channel impulse response modeled as120

h(t) =

L∑
k=1

gkδ(t− sk), (7)

where L is the number of multipath components, and gk ∈ C and sk ∈ R≥0

correspond to the amplitude and TOA of the kth path, respectively. As it is

customary, let us assume that sk+1 > sk. The receiver estimates the time of

arrival of the signal as that of the first detected path. The key here is the word

detected. Indeed, in the usual LOS condition and for not too long distances,125

the first detected path will correspond to that of the direct path and TOA

= s1. Nonetheless, there may be an estimation error due to the multipath

condition and other noise sources. Whenever the power of the first path (∝

|g1|2) falls below a receiver-specific threshold, the direct path can be considered

as undetected. This situation is analog to the usual NLOS condition in the130

literature, and the time of arrival is estimated on the basis of a secondary path,

that is, from sk for some k > 1. Moreover, the authors of Ref. [36] distinguish

two different cases. In the first case, the direct path is undetected (e.g., because

it is blocked by a large metallic object), but the total signal power (∝
∑

|gk|2)

is high (probably because the distance is small). In the second case, not only135

the direct path is blocked, but the total power is small (probably because the

transmitter and the receiver are far apart). In the latter case, the authors

observe larger TOA estimation errors than in the former; these are the two

types of NLOS conditions.

Other authors have used more than one type of NLOS condition [38, 62, 67,140

71, 72]. In particular, in the area of UWB channels, it is common to use the

terms soft and hard to distinguish between two different NLOS conditions [38,
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71]. Thus, we shall also refer to LOS, soft NLOS and hard NLOS conditions

in some numerical experiments in this paper. Nonetheless, we consider that, in

general, more than two non-line-of-sight conditions are possible. Indeed, in very145

complex physical channels, very different “typical” multipath fading profiles or

channel impulse responses are possible. For this reason, we shall also speak

of sight conditions, referring to any of those characteristic channels. We must

note that, to the best of our knowledge, the problem of joint positioning and

synchronization of a wireless node under several sight conditions has not been150

studied.

In the case of a fixed indoor plan, changes in the channel between the mo-

bile node and each reference anchor can be modeled on the basis of the route

followed by the mobile. Although this detailed physical modeling approach is

possible, it is also specific to a given indoor plan. For this reason, most of155

the literature models changes between different sight conditions by means of

Markov chains [33, 34, 44, 45, 50, 51, 56]. Furthermore, it is reasonable to

model the corresponding transition probabilities as dependent on the velocity

of the mobile node, as it is done in Refs. [34, 45, 51]. In particular, Huerta

and colleagues [34, 51] use their proposed relation between the transition prob-160

abilities and the mobile velocity to estimate the former from the estimation of

the latter. Since these velocity-dependent models are peculiar to the physical

characteristics of the wireless network and the type of indoor environment under

consideration, and for the sake of generality, we use essentially fixed transition

probabilities in our modeling approach.165

In summary, in this paper we study the problem of simultaneously track-

ing a mobile node and the characteristics of its local oscillator based on TOA

measurements on the same node and a set of reference (anchor) nodes, under

varying LOS/NLOS conditions. This work’s contributions can be outlined as

follows:170

• We propose an algorithm to track the position, velocity and parameters

of the clock of a mobile wireless node by a set of reference nodes.
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• The algorithm accounts for the fact that the propagation channel between

the mobile node and each anchor may change from LOS to several different

types of NLOS.175

The remaining of the paper is organized as follows. Section 2 summarizes

the system model and Section 3 explains the details of the observation proto-

col. Section 4 describes the proposed solution. Performance of our proposal is

evaluated and compared to that of other algorithms in Section 5. Finally, we

close with some final remarks in Section 6.180

2. System Model

In this section we present some details beyond the generalities anticipated in

the Introduction. Even though time is considered a continuous variable, most

of the modeling approach is based on time discretized in epochs of length h.

That is, we assume that changes in the system model occur at times tk = k× h185

with k ∈ N0.

2.1. Clock Inaccuracies

The local oscillator at the wireless mobile node can be characterized by its

offset ϕ and drift (or skew) ω [73, 74]. In particular, time measured at the

mobile node can be written as190

τ = ω × t+ ϕ+ n, (8)

where t is the actual time and n is a measurement noise which we assume zero-

mean Gaussian, i.e., n ∼ N (0, σ2
m). Usual values for ω, ϕ and time measurement

noise can be found in Refs. [9, 75].

We model variations of clock parameters due, e.g., to temperature changes

and other factors, by means of Gaussian random walks. Although this is a

simplification of more complex clock models in the literature [10, 11, 76, 77], it
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is sufficient for our purposes here. In particular, we let

ωk = ωk−1 + uω
k−1, ϕk = ϕk−1 + uϕ

k−1, (9)

where uω
k−1 ∼ N (0, σ2

ω) and uϕ
k−1 ∼ N (0, σ2

ϕ) are independent.

We assume that anchors have local oscillators with negligible inaccuracies195

and which are perfectly synchronized. Nonetheless, even anchor nodes may

incur in errors when measuring times of arrival. As it was already explained,

these errors may be partially due to multipath fading, even in the presence of a

LOS condition. For the sake of simplicity, we also model the measurement noise

at the reference nodes as N (0, σ2
m).200

We must note that only the standard deviations σω, σϕ and σm are assumed

to be known, while all other parameters must be estimated.

2.2. Mobility Model

We use the Gauss-Markov Mobility Model [78] for the mobile node. In par-

ticular, we assume that its velocity behaves as a random walk with uncorrelated

Gaussian steps. Let v⃗k = (vxk , v
y
k)

T denote the mobile velocity at time tk, x⃗(t)

the position at time t and x⃗k = (xk, yk)
T
= x⃗(tk). Then, we describe the motion

of the node by

v⃗k = v⃗k−1 +

uvx
k−1

u
vy
k−1

 , (10)

x⃗(t) = x⃗k + v⃗k × (t− tk) for t ∈ [tk, tk+1], (11)

where uvx
k−1, u

vy
k−1 ∼ N (0, σ2

v) are independent. We must remark that the mobil-

ity model is not essential for our proposed solution to the problem of mobile and205

clock tracking. Indeed, what is relevant is that there is a known model. How-

ever, the simplicity of the previous equations facilitate numerical experiments.

For the sake of simplicity, anchor nodes are assumed to be stationary. Nonethe-

less, it is straightforward to extend our results to moving anchors with perfectly

known positions.210
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2.3. Sight Condition

As it was explained in Section 1, we consider several sight conditions, either

LOS or different types of NLOS channels. Let us call Nz the number of such con-

ditions. We shall refer to each sight situation by z ∈ {0, 1, · · · , Nz − 1}, where

we reserve the value z = 0 for the LOS channel. Time-of-arrival measurements215

are offset by a random variable Γ with distribution Fz(t).

We model changes in the sight situation by means of a Markov chain with

transition matrix Q ∈ RNz×Nz such that Qi,j = P (z = j|z = i) is the transition

probability from sight condition i to sight condition j. Transitions occur at

multiples Ksight of the time epoch h.220

The number of relevant sight situations Nz, the distributions Fz, the transi-

tion matrix Q and Ksight can be estimated by a prior onsite survey, as it is done

in Refs. [44, 45]. Although it is desirable to avoid this offline step and to allow

for the online estimation of these parameters, we shall assume them known in

this work.225

2.4. Summary of the System Model

At each time tk, the system is characterized by two vectors

s⃗k =
(
ωk, ϕk, v

x
k , v

y
k , xk, yk

)T

, (12)

z⃗k =
(
z0k, z

1
k, · · · , z

Na−1
k

)T

, (13)

where zik is the sight situation between the mobile node and the ith reference

node and Na is the number of anchors. Although the complete system state

can be modeled as a single vector resulting from the concatenation of s⃗k and z⃗k,

this particular separation facilitates the explanation of our proposed algorithm.230

The evolution of s⃗k can be written as (cf. Eqs. (9)-(11))

s⃗k = F s⃗k−1 +G u⃗k−1, (14)
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where u⃗k−1 ∼ N (⃗0,Ru) with Ru = diag(σ2
ω, σ

2
ϕ, σ

2
v , σ

2
v), and

F =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 h 0 1 0

0 0 0 h 0 1


, G =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


. (15)

Changes in the sight condition are modeled as a Markov chain with stochastic

matrix Q, where changes can occur only at multiples Ksight of the observation

period. Since time is discretized at a finer granularity, it is convenient to de-

scribed the evolution of z⃗k as modeled by the non-homogeneous Markov chain235

P
(
zik = j

∣∣ zik−1 = m
)
=

Imj if k ̸= rKsight,

Qmj if k = rKsight,

(16)

for r ∈ N, i = 0, 1, · · · , Na − 1, and where I is the Nz ×Nz identity matrix.

3. Measurement Protocol and Observation Model

The observation model consists of two main parts, the TOA measurement

protocol, described in Section 3.1, and the test statistics related to the sight240

situations as explained in Section 3.2.

3.1. Measurement Protocol

Our system is based on the measurement protocol which we proposed in

Ref. [17] and is shown in Fig. 1. For the sake of completeness, we summarize

this protocol as follows:245

1. The kth observation round starts at time tk = kh, where h is a fixed time

period.
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ith anchor wireless node
kh+ i∆

τ i
k

τ i
k + δ

τ i,D
k

δ2Ti
k + δ

Figure 1: Measurement protocol. Time is discretized into observation periods of length h.
A time i∆ after the beginning of the kth observation period, the ith anchor exchanges two
messages with the wireless node. Time measurement noise and the effect of clock skew and
offset are not shown for clarity.

2. The ith reference node (i = 0, 1, · · · , Na−1) is expected to send a message

to the mobile at time tk + i∆, where ∆ is such that Na∆ < h. Due to

measurement noise at the anchor, the actual sending time is tk+i∆+ni,A
k ,250

where ni,A
k ∼ N (0, σ2

m).

3. The mobile node records the arrival of the message at time

τ ik = ωk ×
(
tk + i∆+ ni,A

k +
dik
c

+ Γi
k

)
+ ϕk + ni,B

k , (17)

where ωk and ϕk are the mobile clock skew and offset, respectively, dik

is the traveled distance, c is the speed of light, and ni,B
k ∼ N (0, σ2

m).

Γi
k is a random non-negative delay with a sight-dependent probability255

distribution, i.e., Γi
k|zik ∼ Fzi

k
(see Section 2.3). Let us note that the

expression between parentheses in the first term corresponds to the actual

receiving time.

4. The mobile sends a message back to the anchor after a short time δ. This

message contains the reception time τ ik as measured by the mobile node.260

As it was explained in Section 1, δ is set large enough so that it can

accommodate any reply processing delays in the mobile node. The actual
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reply time is

ti,Ck = tk + i∆+ ni,A
k +

dik
c

+ Γi
k +

δ

ωk
+

ni,B
k + ni,C

k

ωk
, (18)

where ni,C
k ∼ N (0, σ2

m) and the presence of ωk in the denominator of the

last two terms is due to the fact that, because of its local clock inaccuracies,265

the mobile node fails to comply with the specified reply delay time δ.

5. The reference node receives this last message at a measured time

τ i,Dk = ti,Ck +
dik
c

+ Γi
k + ni,D

k , (19)

where ni,D
k ∼ N (0, σ2

m). Observe that we assume that the mobile posi-

tion and the sight condition do not vary significantly during a message

exchange. Both assumptions are reasonable if δ is kept small.270

As a result of this message exchange, only the values of τ ik and Ti
k = (τ i,Dk −

tk −∆i− δ)/2 for each anchor node are kept as observations. Let us note that

Ti
k =

dik
c

+ Γi
k +

δ

2

(
1

ωk
− 1

)
+ ni,A

k + ni,D
k +

ni,B
k + ni,C

k

ωk
. (20)

Since this expression does not include ϕk, the values Ti
k are insufficient to track

the clock at the mobile node and, thence, the need to record the values τ ik. In

the presence of a perfect clock and noiseless time measurements, Eq. 20 reduces275

to

c× Ti
k = dik + c× Γi

k, (21)

which is exactly the same as Eq. (6) in the Introduction.

It is instructive to rewrite the observations assuming noiseless measurements

in a LOS scenario. In this case, we have

τ ik = ωk ×
(
tk + i∆+

dik
c

)
+ ϕk, (22)

Ti
k =

dik
c

+
δ

2

(
1

ωk
− 1

)
. (23)
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Since the state vector s⃗k has six components and there are 2×Na observations,

at least three anchor nodes are needed to estimate the system state. If more

other sight conditions are considered, more information is needed and we turn280

to that problem in following section.

3.2. Sight Condition Statistic

As it was explained in the Introduction, we avoid any details of the underly-

ing physical channel by assuming that any information on the sight condition,

which can be inferred from the wireless signal, is summarized in a test statis-285

tic. Thus, to the observations τ ik and Ti
k, we add the values of the statistics

ζik, i = 0, 1, · · · , Na, which provide an indication of the type of sight condi-

tion present during the message exchange between the mobile node and the ith

reference node.

We assume that the distribution of the test statistic conditional on each290

sight situation is known. This distribution can be estimated from the definition

of the statistic and previous knowledge about the sight condition based on a

prior onsite survey. For the sake of clarity, let us call p(ζ|z = i) the probability

density function of the test statistic ζ given that the sight situation is z = i.

3.3. Summary of the Observation Model295

Observations at each measurement round can be summarized by the vectors

y⃗k =
(
τ0k , T

0
k, · · · , τ

Na−1
k , TNa−1

k

)T

, (24)

ζ⃗k =
(
ζ0k , · · · , ζ

Na−1
k

)T

, (25)

where the conditional distributions of y⃗k and ζ⃗k given s⃗k and z⃗k are known.

Under this setting, our problem is to estimate the system state s⃗k based on y⃗k

and ζ⃗k, where z⃗k can be considered a vector of nuisance parameters.

From Eqs. (17) and (20), it is clear that we can write

y⃗k = h⃗(s⃗k, Γ⃗k, n⃗
′

k), (26)
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where h⃗ is a nonlinear function, and

Γ⃗k =
(
Γ0
k, · · · , Γ

Na−1
k

)T

, (27)

n⃗
′

k =
(
n0,A
k , n0,B

k , n0,C
k , n0,D

k , · · · , nNa−1,D
k

)T

. (28)

The noise vector n⃗
′

k ∈ R4(Na−1) has a Gaussian distribution. Given the sight300

conditions z⃗k, the distribution of Γ⃗k ∈ RNa−1 is known, but it may be, in general,

non-Gaussian. For reasons that will become apparent in the next section, it is

convenient to write the observation function as depending only on normally

distributed random variables. This is indeed possible because it can be shown

that a random variable with any arbitrary distribution can be expressed as305

the (possibly nonlinear) transformation of another variable with a Gaussian

distribution. Therefore, given z⃗k we may write, with some abuse of notation,

y⃗k = h⃗( s⃗k, n⃗k| z⃗k), (29)

where n⃗k ∼ N (⃗0,Rn), Rn = σ2
mI with I the identity matrix in R5(Na−1)×5(Na−1).

4. Estimation Algorithm

Since observations τ ik and Ti
k depend nonlinearly on the mobile position310

and velocity, we can use an algorithm such as the Unscented Kalman Filter

(UKF) [79–82] to track the state vector s⃗k. The Unscented Kalman Filter,

which is briefly outlined in Algorithm 1 for the sake of reference, approximates

the posterior distribution of the parameters given the observations by a Gaussian

density represented by a few selected deterministic samples known as sigma315

points. These sample points allow to compute the true mean and covariance up

to a second order of the Taylor expansion of any nonlinear function.

If we want to apply UKF to our problem, we have to start with the definition

of the functions f⃗ and h⃗ in Eq. (30) (see Algorithm 1). Function f⃗ describes the

evolution of the state vector s⃗k and it is explicitly written for our case in Eq. (14).320

However, we cannot find the observation function h⃗. The closest description is
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Algorithm 1: Unscented Kalman Filter
Model: The state vector s⃗k and the observation vector y⃗k are modeled by

s⃗k = f⃗ (s⃗k−1, u⃗k−1) , y⃗k = h⃗ (s⃗k, n⃗k) , (30)

where f⃗(·) and h⃗(·) are two nonlinear functions, u⃗k−1 ∼ N (0,Ru) is a vector
of innovations and n⃗k ∼ N (0,Rn) is a noise vector.

Computation of sigma points:

S0
k−1 = ŝk−1, Sl

k−1 = ŝk−1 + γ
(√

PS
k−1

)
l
, Sl+L

k−1 = ŝk−1 − γ
(√

PS
k−1

)
l
,

for l = 1, · · · , L, where PS
k−1 = block-diag(Pk−1,R

u,Rn) and the sub-index
l indicates the lth column.

Time update:

Ss,l
k|k−1 = f⃗(Ss,l

k−1,S
u,l
k−1), ŝk|k−1 =

2L∑
l=0

W
(m)
l Ss,l

k|k−1, (31)

Y l
k|k−1 = h⃗(Ss,l

k|k−1,S
n,l
k|k−1), ŷk|k−1 =

2L∑
l=0

W
(m)
l Y l

k|k−1, (32)

Pss =

2L∑
l=0

W
(c)
l

[
Ss,l
k|k−1 − ŝk|k−1

] [
Ss,l
k|k−1 − ŝk|k−1

]T
, (33)

Pyy =

2L∑
l=0

W
(c)
l

[
Y l

k|k−1 − ŷk|k−1

] [
Y l

k|k−1 − ŷk|k−1

]T
, (34)

Psy =

2L∑
l=0

W
(c)
l

[
Ss,l
k|k−1 − ŝk|k−1

] [
Y l

k|k−1 − ŷk|k−1

]T
, (35)

where the supra-indices s, u and n denote the rows corresponding to the
state, the innovations and the noise, respectively.

Measurement update:

K = PsyP
−1
yy , ŝk = ŝk|k−1 +K · (y⃗k − ŷk|k−1), Pk = Pss −K ·Pyy · KT .

For the values of γ, W (m)
l and W

(c)
l see Ref. [79].
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that in Eq. (29), where it is expressed conditional on the knowledge of the vector

of sight situations z⃗k. Therefore, UKF cannot be straightforwardly applied, as

in our case we have to deal with varying statistical conditions depending on the

unknown sight situations. Huerta et al. [51] proposed a modification of the UKF,325

the so-called Improved Unscented Kalman Filter (IUKF), to deal precisely with

this problem. The IUKF uses several sets of sigma points, one for each possible

sight situation, and estimates the system state s⃗k by weighting the results from

each set. The weights are the posterior probabilities of each sight condition

based on the known transition probabilities and the sight test statistics. In330

particular, let us call P̂ (zik−1 = j) the estimated probability that zik−1 = j.

Then, the posterior probability given the test statistic ζik can be estimated by

P̂ (zik = j) ∝ p(ζik|zik = j)

Nz−1∑
m=0

P (zik = j|zik−1 = m)P̂ (zik−1 = m), (36)

where P (zik = j|zik−1 = m) is the known transition probability from sight con-

dition m to sight condition j at time tk (see Eq. (16)) and p(ζik|zik = j) is the

probability density function of the test statistic given the sight condition.335

Note that the predicted observations in Eq. (32) (see Algorithm 1) depend

on the assumed values of the sight condition for each mobile-anchor channel.

IUKF proceeds by re-writing Eq. (32) as

Yi,l
k|k−1 =

Nz−1∑
j=0

P̂ (zik = j)⃗hi
(
Ss,l
k|k−1,S

n,l
k|k−1

∣∣∣ zik = j
)
, (37)

where the supra-index i indicates the rows corresponding to the ith reference

node and h⃗i(·|zik = j) is the observation function given the sight condition zik = j340

(cf. Eq. (29)). The remaining steps of IUKF are as in UKF.

Since IUKF needs an initial state guess, we find a rough estimate by con-

sidering only two message exchanges and assuming LOS in all paths, as it was

done in Ref. [17]. The reader is referred to that work for more details.

It must be emphasized that our approach is very different to that in Huerta et345
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Table 1: Main simulation parameters

σω 10−11 σϕ 10−2 ns σv 0.1 m s−1

ω0 1− 10−5 ϕ0 500 ns σm 0.2 ns

h 1 ms ∆ 5 µs δ 1 µs

σω, σϕ and σv are the standard deviations of the steps in the Gaussian random walks
modeling the evolution of the clock skew ω, the clock offset ϕ and each component of
the mobile velocity v⃗, respectively. Initial skew and offset are denoted by ω0 and ϕ0,
respectively. σm is the standard deviation of the time measurement noise.
h is the time between measurement rounds, ∆ is the time between message exchanges,
and δ is the nominal reply delay by the mobile (see Fig. 1).

al. [51], although we adapt the Improved Unscented Kalman Filter to our prob-

lem and we make use of a test statistic that indicates the presence of NLOS. In-

deed, Ref. [51] deals with only two sight conditions (LOS and NLOS), it does not

consider clock inaccuracies, and uses a much simpler time measurement scheme.

For the sake of reference, we shall call our algorithm Time-Synchronization350

IUKF (TS-IUKF).

5. Numerical Experiments

In this section we present numerical results corresponding to different sce-

narios. First, we consider examples with three sight conditions, one LOS and

two different NLOS situations. Then we turn to simpler examples that enable355

us to compare the performance of our proposal to that of other well-known

algorithms in the literature. In order to conduct a fairer comparison, we use

simpler scenarios with only two sight conditions, LOS and one NLOS, and either

a perfect clock or a stationary node.

5.1. Three Sight Conditions360

Table 1 presents the main simulation parameters. Although our proposed

algorithm can be extended to more complex scenarios, we assume three possible

sight situations, LOS, hard NLOS and soft NLOS (see Section 1). We adapt
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the four-state model in Ref. [44] and fix the transition probability matrix to

Q =


0.970 0.010 0.020

0.010 0.970 0.020

0.025 0.025 0.950

 , (38)

where the states are in the following order: LOS, hard NLOS, soft NLOS. We365

model changes in the state of this Markov chain as occurring only at integer

Ksight multiples of the observation interval h. In particular, we use Ksight = 1000

and 150 when the initial mean mobile speed is zero and 1 ms−1, respectively.

Intuitively, the sight condition is expected to change more frequently as the

mobile moves faster.370

Following Ref. [44], we model Γ as a normal random variable with mean

µsNLOS and variance σ2
sNLOS in the soft NLOS situation, and with a generalized

extreme value distribution GEV(khNLOS, µhNLOS, σ
2
hNLOS) in the hard NLOS

case. The parameters used for simulations are µsNLOS = 0.35 ns, σsNLOS =

0.07 ns, µhNLOS = 8.5 ns, σhNLOS = 4.25 ns, khNLOS = 0.4. In the LOS375

situation, we simply assume Γ = 0.

The probability densities of the test statistic given each sight condition are

shown in Fig. 2. These distributions have been chosen so it is difficult to distin-

guish LOS and soft NLOS conditions. Besides this fact, they are arbitrary and

solely for the purpose of simulations.380

Reference nodes are uniformly and deterministically distributed on a circum-

ference with a 100 m radius. At the beginning of each simulation, the mobile

node is located at the center of that circumference.

Figures 3-4 show results for TS-IUKF when considering all clock inaccura-

cies (skew and offset) and three line-of-sight conditions, for five reference nodes385

(Na = 5). The accuracy in the estimation of the state parameters in s⃗k is

measured as the root-mean-square error resulting from an average of 250 re-

alizations. We also include the Cramér-Rao bound found in Ref. [17] for the

LOS-only case. As it can be observed, not only the performance of our proposed

19



algorithm improves over time, but it also reaches a positioning accuracy in the390

order of centimeters. We also explore the effect of varying the number of anchors

in Fig. 5. As expected, the localization error improves as more reference nodes

are added and an order of magnitude improvement is obtained when going from

Na = 3 to Na = 15. All in all, we find that our proposed solution effectively

tracks the mobile node and its clock.395

5.2. Two Sight Conditions

It is interesting to compare the performance of our proposed algorithm to

that of two well-established approaches such as Rwgh [22] and QP [26]. Since

these algorithms consider only two sight conditions and in order to make a fairer

comparison, we adapt our modeling setup in the previous section to a simpler400

LOS/hard-NLOS scenario, with a transition probability matrix is given by

Q =

0.970 0.030

0.030 0.970

 . (39)

It must be noted that these algorithms use only the estimated distances between

the mobile node and each anchor node. In terms of the measurements in our

0.0 0.2 0.4 0.6 0.8 1.0
Value of static

0.0

0.5

1.0

1.5

2.0

pd
f LOS

Soft NLOS
Hard NLOS

Figure 2: Probability density of the test statistic conditional on the sight condition:
Beta(4.0, 1.5) in the case of LOS (solid blue), Beta(3.0, 1.5) in the case of soft NLOS (dotted
green), and Beta(1.5, 4.0) for hard NLOS (dashed orange).
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Figure 3: RMSE of the TS-IUKF algorithm for the skew (left) and the offset (right), when
the mean mobile speed is 0 m s−1 (blue dotted line) and 1 m s−1 (solid red line). Three
line-of-sight conditions and all clock inaccuracies are considered.
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Figure 4: RMSE of the TS-IUKF algorithm for the position when the mean mobile speed is
0 m s−1 (blue dotted line) and 1 m s−1 (solid red line). Three line-of-sight conditions and all
clock inaccuracies are considered.

protocol, we assume that estimated distances correspond to c ·Ti
k. Furthermore,

Rwgh and QP do not take into account clock inaccuracies. For this reason, we405

present results for a stationary mobile node (σv = 0 ms−1) with a perfect clock

and Na = 5 in Fig. 6. As it can be observed, TS-IUKF is the best performing

algorithm.Figure 7 shows results for a mobile node with a mean speed of 1 ms−1.
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Figure 5: RMSE of the TS-IUKF algorithm for the position of the mobile node when using
different numbers of reference nodes. Improvement is appreciated as the number of anchors
increases. Three line-of-sight conditions and all clock inaccuracies are considered, and the
mean velocity is 0 m s−1.
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Figure 6: Position RMSE of QP (dash-dotted red line), Rwgh (dashed blue line), and TS-IUKF
(solid violet line). TS-IUKF outperforms the other algorithms. Two line-of-sight conditions
and a perfect clock at a stationary mobile are considered.

As it can be observed, while TS-IUKF performs similarly as in the stationary

node case,the performance of Rwgh and QP is much worse.410
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Figure 7: Position RMSE of QP (dash-dotted red line), Rwgh (dashed blue line), and TS-IUKF
(solid violet line). TS-IUKF outperforms the other algorithms. Two line-of-sight conditions
and a perfect clock at node moving with a 1 m s−1 speed are considered.

6. Conclusion

We have presented an approach to simultaneously track the position and

velocity of a wireless node, and the skew and offset of its clock, under varying

sight conditions of the links between the node and a set of anchors. To the best

of our knowledge, this is the first proposal to tackle this problem.415

We have shown, by means of simulations, that our proposal (TS-IUKF)

yields good results. Furthermore, we have compared its performance to that

of other well-established localization algorithms in the literature, showing that

TS-IUKF has lower localization errors.

One of the shortcomings of our proposal is the need for an offline site survey420

to estimate the distributions of the NLOS delays and the transition probability

matrix of the Markov chain. A possible alternative for the estimation of the

transition probabilities might be the use of a technique such as the Baum-

Welch algorithm [83]. Indeed, changes in the sight condition can be represented

as a hidden-Markov model where the corresponding observations are the test425

statistics ζik. The investigation of this and other alternatives is a matter of

future work which is needed in order to facilitate the real-world implementation
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of the algorithm.
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