### Examinando por Materia "FUNCIONES DE LYAPUNOV"

Mostrando 1 - 4 de 4

###### Resultados por página

###### Opciones de ordenación

Artículo de Publicación Periódica (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization(2021) Mancilla-Aguilar, J. L.; Haimovich, HernánMás... "It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input."Más... Artículo de Publicación Periódica ISS implies iISS even for switched and time-varying systems (if you are careful enough)(2019-06) Haimovich, Hernán; Mancilla-Aguilar, J. L.Más... "For time-invariant systems, the property of input-to-state stability (ISS) is known to be strictly stronger than integral-ISS (iISS). Known proofs of the fact that ISS implies iISS employ Lyapunov characterizations of both properties. For time-varying and switched systems, such Lyapunov characterizations may not exist, and hence establishing the exact relationship between ISS and iISS remained an open problem, until now. In this paper, we solve this problem by providing a direct proof, i.e. without requiring Lyapunov characterizations, of the fact that ISS implies iISS, in a very general time-varying and switched-system context. In addition, we show how to construct suitable iISS gains based on the comparison functions that characterize the ISS property, and on bounds on the function f defining the system dynamics. When particularized to time-invariant systems, our assumptions are even weaker than existing ones. Another contribution is to show that for time-varying systems, local Lipschitz continuity of f in all variables is not sufficient to guarantee that ISS implies iISS. We illustrate application of our results on an example that does not admit an iISS-Lyapunov function."Más... Artículo de Publicación Periódica Uniform asymptotic stability of switched nonlinear time-varying systems and detectability of reduced limiting control systems(2019-07) Mancilla-Aguilar, J. L.; García Galiñanes, RafaelMás... "This paper is concerned with the study of both, local and global, uniform asymptotic stability for switched nonlinear time-varying (NLTV) systems through the detectability of output-maps. With this aim, the notion of reduced limiting control systems for switched NLTV systems whose switchings verify time/state-dependent constraints, and the concept of weak zero-state detectability for those reduced limiting systems are introduced. Necessary and sufficient conditions for the (global)uniform asymptotic stability of families of trajectories of the switched system are obtained in terms of this detectability property. These sufficient conditions in conjunction with the existence of multiple weak Lyapunov functions yield a criterion for the (global) uniform asymptotic stability of families of trajectories of the switched system. This criterion can be seen as an extension of the classical Krasovskii-LaSalle theorem. An interesting feature of the results is that no dwell-Time assumptions are made. Moreover, they can be used for establishing the global uniform asymptotic stability of the switched NLTV system under arbitrary switchings. The effectiveness of the proposed results is illustrated by means of various interesting examples, including the stability analysis of a semiquasi-Z-source inverter."Más... Artículo de Publicación Periódica Uniform input-to-state stability for switched and time-varying impulsive systems(2020-12) Mancilla-Aguilar, J. L.; Haimovich, HernánMás... "We provide a Lyapunov-function-based method for establishing different types of uniform input-to-state stability (ISS) for time-varying impulsive systems. The method generalizes to impulsive systems with inputs the well established philosophy of assessing the stability of a system by reducing the problem to that of the stability of a scalar system given by the evolution of the Lyapunov function on the system trajectories. This reduction is performed in such a way that the resulting scalar system has no inputs. Novel sufficient conditions for ISS are provided, which generalize existing results for time-invariant and time-varying, switched and nonswitched, impulsive and nonimpulsive systems in several directions."Más...