Browsing by Subject "ESTABILIDAD ASINTOTICA"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
artículo de publicación periódica.listelement.badge (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization(2021) Mancilla-Aguilar, J. L.; Haimovich, Hernán"It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input."ponencia en congreso.listelement.badge Invariance results for constrained switched systems(2010) Mancilla-Aguilar, J. L.; García Galiñanes, Rafael"In this paper we address invariance principles for nonlinear switched systems with otherwise arbitrary compact index set and with constrained switchings. We present an extension of LaSalle's invariance principle for these systems and derive by using detectability notions some convergence and asymptotic stability criteria. These results enable to take into account in the analysis of stability not only state-dependent constraints but also to treat the case in which the switching logic has memory, i.e., the active subsystem only can switch to a prescribed subset of subsystems."artículo de publicación periódica.listelement.badge Nonrobustness of asymptotic stability of impulsive systems with inputs(2020-12) Haimovich, Hernán; Mancilla-Aguilar, J. L."Suitable continuity and boundedness assumptions on the function f defining the dynamics of a time-varying nonimpulsive system with inputs are known to make the system inherit stability properties from the zero-input system. Whether this type of robustness holds or not for impulsive systems was still an open question. By means of suitable (counter)examples, we show that such stability robustness with respect to the inclusion of inputs cannot hold in general, not even for impulsive systems with time-invariant flow and jump maps. In particular, we show that zero-input global uniform asymptotic stability (0-GUAS) does not imply converging input converging state (CICS), and that 0-GUAS and uniform bounded-energy input bounded state (UBEBS) do not imply integral input-to-state stability (iISS). We also comment on available existing results that, however, show that suitable constraints on the allowed impulse–time sequences indeed make some of these robustness properties possible."ponencia en congreso.listelement.badge Some invariance principles for constrained switched systems(2010) Mancilla-Aguilar, J. L.; García Galiñanes, Rafael"In this paper we consider switched nonlinear systems under average dwell time switching signals, with an otherwise arbitrary compact index set and with additional constraints in the switchings. We present invariance principles for these systems and derive by using observability-like notions some convergence and asymptotic stability criteria. These results may enable us to analyze the stability of solutions of switched systems with both state-dependent constrained switching and switching whose logic has memory, i.e., the active subsystem only can switch to a prescribed subset of subsystems."artículo de publicación periódica.listelement.badge Strong ISS implies strong iISS for time-varying impulsive systems(2020-12) Haimovich, Hernán; Mancilla-Aguilar, J. L."For time-invariant (nonimpulsive) systems, it is already well-known that the input-to-state stability (ISS) property is strictly stronger than integral input-to-state stability (iISS). Very recently, we have shown that under suitable uniform boundedness and continuity assumptions on the function defining system dynamics, ISS implies iISS also for time-varying systems. In this paper, we show that this implication remains true for impulsive systems, provided that asymptotic stability is understood in a sense stronger than usual for impulsive systems"artículo de publicación periódica.listelement.badge Uniform asymptotic stability of switched nonlinear time-varying systems and detectability of reduced limiting control systems(2019-07) Mancilla-Aguilar, J. L.; García Galiñanes, Rafael"This paper is concerned with the study of both, local and global, uniform asymptotic stability for switched nonlinear time-varying (NLTV) systems through the detectability of output-maps. With this aim, the notion of reduced limiting control systems for switched NLTV systems whose switchings verify time/state-dependent constraints, and the concept of weak zero-state detectability for those reduced limiting systems are introduced. Necessary and sufficient conditions for the (global)uniform asymptotic stability of families of trajectories of the switched system are obtained in terms of this detectability property. These sufficient conditions in conjunction with the existence of multiple weak Lyapunov functions yield a criterion for the (global) uniform asymptotic stability of families of trajectories of the switched system. This criterion can be seen as an extension of the classical Krasovskii-LaSalle theorem. An interesting feature of the results is that no dwell-Time assumptions are made. Moreover, they can be used for establishing the global uniform asymptotic stability of the switched NLTV system under arbitrary switchings. The effectiveness of the proposed results is illustrated by means of various interesting examples, including the stability analysis of a semiquasi-Z-source inverter."artículo de publicación periódica.listelement.badge Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse frequency(2020-11) Mancilla-Aguilar, J. L.; Haimovich, Hernán; Feketa, Petro"We provide novel sufficient conditions for stability of nonlinear and time-varying impulsive systems. These conditions generalize, extend, and strengthen many existing results. Different types of input-to-state stability (ISS), as well as zero-input global uniform asymptotic stability (0-GUAS), are covered by employing a two-measure framework and considering stability of both weak (decay depends only on elapsed time) and strong (decay depends on elapsed time and the number of impulses) flavors. By contrast to many existing results, the stability state bounds imposed are uniform with respect to initial time and also with respect to classes of impulse-time sequences where the impulse frequency is eventually uniformly bounded. We show that the considered classes of impulse-time sequences are substantially broader than other previously considered classes, such as those having fixed or (reverse) average dwell times, or impulse frequency achieving uniform convergence to a limit (superior or inferior). Moreover, our sufficient conditions are stronger, less conservative and more widely applicable than many existing results."