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Automático de Diabetes Mellitus Tipo 1”

� The Instituto Tecnológico de Buenos Aires, for the enriching academic environment and for

the opportunity of teaching process control during these years.

“I almost wish I hadn’t gone down the rabbit-hole -and yet-and yet- it’s rather curious, you

know, this sort of life!”

- Alice.



Resumen

En los últimos años se ha incrementado el número de investigaciones orientadas al desarrollo de

un Páncreas Artificial (AP) para la regulación automática de glucosa en pacientes con Diabetes

Mellitus Tipo 1 (T1DM). Sin embargo, el riesgo de hiper- e hipoglucemia sigue siendo un impe-

dimento para una regulación adecuada de la glucemia en algunos casos. Una fuente importante

de limitaciones se origina a partir de la incertidumbre del modelo, y la alta variabilidad inter- e

intra-paciente que afecta la dinámica de la regulación de la glucosa. Por lo tanto, considerando

que se requieren herramientas para el diseño de estrategias de control robustas y variables en el

tiempo que permitan considerar estos aspectos, esta tesis se centra en desarrollar modelos que

permitan integrarlos en la etapa de diseño del controlador.

Con el fin de caracterizar las variaciones intra-paciente en sujetos con T1DM, se realiza una

revisión de su origen y la fisioloǵıa subyacente relacionada con esta variabilidad, obteniendo un

resumen de las variables que afectan los requerimientos diarios de insulina de cada paciente.

Además, se analizan los enfoques para modelado/simulación de las variaciones de sensibilidad a

la insulina (SI) y las diferentes maneras en las que se han tenido en cuenta estas variaciones en

los modelos orientados a control.

En el marco del control robusto, se obtienen diferentes modelos orientados al control de T1DM

incluyendo las variaciones en SI. Primero, a partir de un modelo lineal de parámetros variantes

(LPV) desarrollado previamente, usando técnicas de invalidación, un conjunto de modelos de

bajo orden capaz de“cubrir”las variaciones intra-pacientes con ĺımites de incertidumbre dinámica.

Este conjunto de modelos es fundamental para el diseño de controladores robustos que garanticen

estabilidad y desempeño. En segundo lugar, se incluyen variaciones intra-pacientes durante la

etapa de identificación del modelo, lo que permite integrarlas dentro de una estructura LPV de

bajo orden adecuada para el diseño de controladores LPV. La eficacia de este nuevo modelo se

evalúa de la siguiente forma. Por un lado, se computa el error cuadrático medio (RMSE) entre las

desviaciones de glucosa predichas por los modelos LPV con y sin variaciones intra-paciente y el

simulador. Por otro lado, se miden las distancias entre ambos modelos y el simulador a través del

�-gap, a fin de determinar las diferencias de desempeño a lazo cerrado. Finalmente, se desarrolla

un modelo LPV que permite dar cuenta de los efectos de la hiperglucemia/hiperinsulinemia en la

sensibilidad a la insulina y su efectividad se evalúa nuevamente en lazo abierto y lazo cerrado.
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Abstract

Research on the development of a closed-loop artificial pancreas for automatically regulating the

blood glucose level in Type 1 Diabetes Mellitus (T1DM) patients has intensified in the past years.

However, the risk of hyper- and hypoglycemia remains an impediment to adequate glycemic control

in some cases. A significant source of limitations originates from model uncertainty, and the

extremely high inter- and intra-patient variability that affects the dynamics of glucose regulation.

Therefore, considering that tools are required for the design of robust and time-varying control

strategies that consider these issues, this thesis focuses on developing control-oriented models

that allow considering them in the controller design stage.

In order to characterize intra-patient variations in T1DM, a review of the sources and under-

lying physiology related to intra- and inter-day variability is made, obtaining a summary of the

variables affecting daily insulin requirements. Moreover, modeling/simulation approaches of In-

sulin Sensitivity SI variations that have been adapted for T1DM are analyzed. Additionally, the

different ways they have been accounted for in control-oriented models are reviewed.

Following a robust control framework, different control-oriented models including variations in

SI are obtained. First, invalidation techniques are applied to a previous linear parameter varying

(LPV) model to develop a set of low-order LPV models that“covers” intra-patient variations with

dynamic uncertainty bounds. This model set is instrumental for obtaining robust controllers that

guarantee stability and performance. Secondly, intra-patient variations are included during the

model identification stage to embed them within a low-order LPV model structure that is amenable

for LPV controller design. The performance of this new model was evaluated in comparison with

the previous LPV model without intra-patient variations in terms of their open- and closed-loop

differences with the UVA/Padova model. In open-loop, the analysis is made through the Root

Mean Squared Error (RMSE) between the glucose deviation predicted by the models and the

UVA/Padova simulator. In closed-loop, the �-gap metric was used, which measures the distance,

in terms of performance, between two models. Finally, an LPV model that allows to account for

the effects of hyperglycemia/hyperinsulinemia on insulin sensitivity is developed and evaluated

both in open- and closed loop.
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Chapter 1

Introduction

Type 1 Diabetes Mellitus (T1DM) is a chronic disease characterized by the inability to produce

insulin due to the destruction of the pancreatic ˛-cells. Typical treatments require constant

patient interaction with glucometers and insulin injections, or in the best scenario, glucose sensors

and insulin pumps. This way of treatment is burdensome and subject to human errors that

lead to complications and therefore, to an increased health expenditure on their treatment. In

consequence, the goal is to develop systems that improve patients quality of life and reduce

the extremely demanding self-management plan and lifestyles they follow. In this regard, the

Artificial Pancreas (AP) a long-awaited alternative for T1DM management and its development

was triggered by recent developments of Continuous Glucose Monitoring (CGM) and complex

simulation models. The AP is a control engineering problem that is challenged by the significant

delays in insulin absorption, variability in system dynamics between patients and within the same

patient, meals, exercise, and sensor/pump errors. Controller design for AP needs to focus on

the balance between system complexity, clinical benefits, and patient convenience. In this regard,

mathematical modeling and computer simulations allow optimization of controller designs before

their clinical testing.

Considering that large intra-subject variability represents a big challenge for both modeling

and control tasks, this thesis focuses on developing a mathematical model that reflects this

time-varying and nonlinear dynamic behavior, while maintaining a simple structure that allows

reliable and robust control synthesis techniques to be used, and produce a controller that can be

implemented in real-time. In this Chapter, a brief overview of the motivation and results of this

thesis are presented. In Section 1.1 the current advances and challenges for the development of

the AP control system are discussed. Objectives and main accomplishments of this work, along

with dissemination of partial results are gathered in Sections 1.2 and 1.3, respectively. Finally,

Section 1.4 maps out the thesis outline.
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Figure 1.1: Block diagram for the closed-loop glucose regulation (Artificial pancreas).

1.1 Motivation

T1DM patients require intensive insulin therapy to control their glycemia and avoid the hazardous

complications that may arise [1, 2]. According to the conventional therapy, they should monitor

their glucose concentration levels and administer insulin injections every day for the rest of their

lives, which makes T1DM a burdensome disease for both the patients and their families. Usually,

patients not only have to adjust a basal insulin delivery to stabilize his/her glucose levels during

fasting periods, but also need to count the Carbohydrate (CHO) content of every meal before

eating in order to determine how much insulin to infuse to counteract its effect. Unfortunately, in

real life this calculation is far from accurate and therefore, patients are continuously exposed to

hyper- and hypoglycemic events originated from under- and overestimating the ingested carbohy-

drates. Moreover, hyper- and hypoglycemic risks increase due to many other situations related to

every-day life, like mood, sleep cycle or physical activity, which have an impact over the glycemic

levels of the patient, and therefore, in his/her quality of life [3].

The AP was conceived to automate the information collection, decision making, and insulin

management of a person with T1DM to maintain euglycemia, despite various daily disturbances.

In this way, an AP has three essential elements: sensors, insulin pumps, and a decision-making

algorithm (controller) to close the loop. A representation of the AP and its role in glucose

regulation is presented in Figure 1.1.

Initially, the intravenous route was considered for both insulin infusion and glucose monitoring.

Afterwards, alternative routes were analyzed, but the most significant breakthrough was in the

1990s with the appearance of the CGM [4, 5], which allowed the transition from having just a few

measurements to obtaining them every five minutes through a minimally invasive procedure. The

main disadvantage of these sensors is the delay between the interstitial glucose measurements and

the plasma glucose levels.

Contrary to the pancreas, an AP cannot have direct portal circulation for insulin infusion.

The first Continuous Subcutaneous Insulin Infusion (CSII) pump appeared around 1978 [6]. Im-

plantable insulin pumps that infuse insulin into the peritoneum represent a more suitable alter-



1.1. Motivation 3

native from the physiological point of view, but their invasiveness limits their application [7]. In

turn, subcutaneous pumps, being less expensive and invasive, are the ones considered feasible [7].

However, this subcutaneous infusion represents another source of delay since the insulin molecule

has to be absorbed through the capillary wall in order to have effective action. Finally, the con-

trol algorithm is in charge of calculating the adequate amount of insulin to be infused by the CSII

according to the CGM readings, and this decision is usually based on a mathematical model that

describes the glucose-insulin dynamics.

In order to automate the decision of how much insulin to infuse, several control algorithms

have been tested in clinical trials, e.g., Model Predictive Control (MPC), Proportional-Integral-

Derivative (PID) control, switched Linear Quadratic Gaussian (LQG) or fuzzy logic controllers [8–

20]; and in-silico, e.g., H∞ control, Linear Parameter-Varying (LPV) and switched LPV [21–29],

or adaptive control [30–32]. A recent state-of-the-art of the current activities and developments

in this area can be found in [33]. Despite vast improvements in glycemic control achieved with the

AP, there is still no efficient and safe system able to normalize glucose levels in T1DM patients

regardless of the numerous disturbances that affect the system [7, 34]. Besides sensor/actuator

failure, the major challenges for closed-loop control include:

1. The delay associated with the CGM measurements and the actual plasma glucose lev-

els introduced by the subcutaneous route. This delay is attributed to physiology (glucose

transport) and technology factors (numerical filtering), and is around 10-15 minutes [7].

Additionally, CGM devices usually need to be periodically calibrated, and even body move-

ment and sensor location can affect the resulting measurement [34], compromising their

reliability. Such lags and differences between sensor and blood glucose measurements have

a detrimental effect on controller performance [35, 36]. This challenge can be overcomed

with the development of more accurate and reliable sensors [35, 37], like the Dexcom G6

(Dexcom, San Diego, CA) and Freestyle libre II (Abbot, Chicago, IL) sensors which do not

require calibration and the measurement delay is significantly reduced.

2. Like subcutaneous measurements, there is a significant delay associated with the insulin

infused at a subcutaneous level. Such delay is originated from the slow absorption dynam-

ics that even“rapid-acting” insulin analogues (insulin aspart, lispro or glulisine) exhibit, and

from the delayed insulin action, i.e., the time for the peak glucose-lowering effect [7, 38].

Overall, the total lag time from insulin infusion to insulin action is around 80-120 minutes,

and it remains active in the organism for several hours [7, 39–41]. Although the absorption

times have been reduced with insulin analogues like FIASP (Novo Nordisk, Denmark), the

insulin duration time remains similar to other insulin analogues.

Slow insulin absorption combined with its prolonged action, leads to what is known as in-

sulin “stacking”. When the controller continues to infuse insulin in response to increasing

glucose concentrations, an over-accumulation of insulin occurs and might lead to controller-

induced hypoglycemia [7, 38]. Therefore, considering that for single-hormone controllers,

insulin’s effect cannot be counteracted by the controller, closed-loop controllers have to ac-
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count for the slow insulin absorption to avoid insulin overdosing. Moreover, insulin “stack-

ing”, accompanied by prolonged glucose appearance, may lead to Hyperinsulinemia (HI), a

condition that leads to impaired Insulin Sensitivity (SI) [42–46].

In order to address this challenge, several control algorithms include modifications over the

insulin delivery according to a real-time estimate of plasma insulin concentration, or Insulin

On Board (IOB) [17, 47, 48].

3. The response to the same insulin dose varies from patient to patient, which is referred

to as inter-patient variability. Different dynamics reflect different biological characteristics

of each subject, and in this case, are mostly related to differences in insulin sensitivity,

requirements and absorption/action times [18, 35]. These variations are larger than in

healthy individuals [49] and preclude the possibility of obtaining a unique control algorithm

that works for everyone. In consequence most recent research efforts are focused on model

personalization [18, 19, 21, 50–57]. Some approaches use patient-specific clinical variables

like Total Daily Insulin (TDI), Carbohydrate Ratio (CR) or body weight to individualize the

Linear Time Invariant (LTI) or LPV model’s gain [21, 50]. Other strategies involve MPC

algorithms that are individualized by using patient-specific model parameters or personal-

izing the MPC cost function weights [7, 58]. Adaptive algorithms (like run-to-run control)

that adjust and individualize controller parameters have also been proposed.

4. Insulin needs also exhibit day-to-day variations within the same patient (intra-patient vari-

ability), which often presents in ultradian (less than 24-hour periods), circadian (24-hour

periods) or circannual (365-day periods) rhythms [59]. In T1DM, insulin requirements to

control glycemia vary across the daytime [60], attributed to circadian changes in Glucose

Tolerance (GT), i.e., the relative amount of glucose taken up by peripheral tissue [61], and

SI [62], which corresponds to the ability of insulin to stimulate glucose utilization and inhibit

glucose production [63]. Many factors like meals, exercise, sleep architecture, stress, and

rhythms of counterregulatory hormones also influence this variability [52, 59, 64, 65], but the

underlying mechanisms are not fully understood [66]. A better understanding of how these

factors are involved in SI variations is crucial to developing models to improve glucose con-

trol, minimizing glucose variability and thus, reduce possible complications [49]. In this re-

gard, several approaches to tackle intra-patients variations in closed-loop control have been

explored, like adaptive predictive controllers or adaptive PID controllers. These strategies

include real-time estimation of SI to adjust controller coefficients according to the estimated

SI, both in single-hormone [30, 31, 67] and dual-hormone controllers [68, 69]. However, de-

veloping models and algorithms to overcome this variability remains an active research area.

5. Large disturbances affect the dynamics of the system that have a significant effect on glu-

cose concentration, like meals, physical exercise or stress. Usually, meals are tackled by a

feedforward action, where the patient announces meal time and CHO content of the meal,

and matching insulin boluses are infused according to his/her CR. Although the injection

of an open-loop bolus based on the CHO intake facilitates the reduction of postprandial
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glucose values [70], CHO counting is prone to errors and burdensome for the patients [71].

Moreover, meal composition, rather than CHO contents alone, also influences insulin re-

quirements. For example, high-fat meals require more insulin than a meal with low-fat

content, even when having the same CHO ammount [7]. Meal-related insulin requirements

are also different in days when the subject has been physically active compared to resting

ones, and these factors are not considered by solely counting CHOs. Therefore, several

alternatives for eliminating the CHO counting have been tested, relying on CGM measure-

ments to control post-prandial glucose levels. However, this approach generally leads to

prolonged hyperglycemia due to the significant insulin absorption delays compared to meal

absorption [7, 41]. Recently, unanounced meals have been tackled by informing the con-

troller that a meal is happening but providing partial information (meal size classification)

that may deliver a partial bolus [72–75] or trigger the switching between two different con-

trollers together with an adjustment of limits on insulin infusion [17].

Exercise represents another important source of variations in glucose concentrations, hav-

ing significant impacts over insulin sensitivity [41]. These variations are, in turn, influenced

by many factors related to the exercise itself (type, intensity, duration) and the subject’s

glycemic control (starting blood glucose, last insulin bolus, and insulin injection site). More-

over, the sudden exercise-induced glucose variations are challenging for CGM devices to de-

tect, due to lag in measurement readings. Several approaches for managing exercise during

closed-loop control, like basal insulin suspension, CHO ingestion prior to exercise and feed-

forward action by making an announcement 20 minutes before exercise starts, have been pro-

posed. However, hypoglycemia remains a challenge, and other approaches like adding heart-

rate or activity sensors, or feedforward control in bi-hormonal systems appear as promising

alternatives. Ultimately, the goal is to achieve automated meal and exercise recognition

and control that achieves glucose regulation despite meal and exercise challenges [38, 41].

6. Another source of limitations is model uncertainty. In addition of intra-patient variability,

uncertainty also appears in key physiological processes as meal absorption, subcutaneous

insulin absorption, and subcutaneous measurement delays [35, 66]. For realistic variations

in the model parameters of the actuator, plant (subject) and sensor, the achievable closed-

loop bandwidth is severely restricted [34, 35]. These limitations impose a limit on the

feasible response time and hence, on the achievable controller performance. Unfortunately,

such limitations are unavoidable and independent of the control algorithm, being inher-

ent of the system (patient) itself [34]. Therefore, the control algorithm must be designed

with robustness properties that guarantee that the system will be stable and meet perfor-

mance requirements under worst-case scenarios of model uncertainty and ultimately make

closed-loop control reliable and safe [18, 19, 35, 65]. In this regard, several robust control

strategies have been explored [26, 27, 76, 77], with encouraging results for robust control

tools in the glucose regulation problem.

Besides advances in hardware improvement, progress in computational models of the insulin-
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glucose dynamics has played a fundamental role in the acceleration in AP systems development.

Numerous mathematical models of glucose regulation have been proposed and are used for three

main purposes: (i) to support physiology studies [78, 79], (ii) to be used in controller design

(control-oriented models) [31, 50, 57, 69, 80] and (iii) simulation and in-silico testing of controllers

[81–85].

The primary goal of T1DM simulation models is to provide a blood glucose prediction as

close as possible to a real situation. However, given their mathematical complexity, they are usu-

ally simplified for controller synthesis. Moreover, using complex models for synthesis does not

necessarily guarantee better closed-loop performance [86] nor reduce the inter- and intramodel

variability which arises due to other factors [34]. Therefore, control-oriented models have to rep-

resent the underlying dynamics, but with a simple mathematical formulation that facilitates the

controller design.

Considering the uncertain, time-varying characteristics of the glucose-insulin dynamics, adap-

tive MPC or robust control emerge as suitable and promising control strategies for AP applica-

tions. In the first approach, the prediction model’s parameters are constantly updated using con-

troller performance criteria (run-to-run control) or real-time identification by least squares min-

imization of the prediction error. Based on simulation models, in the second approach, (i) LTI

or LPV models with dynamic uncertainty bounds (model-set) [27, 86] and (ii) LPV models have

been obtained [57, 87] and used for designing H∞ LTI control [25–29], switched LQG [17], LPV

and switched LPV [21–24] and Unfalsified Control (UC) [88] strategies.

These LPV strategies are able to capture the non-linear dynamics while maintaining a simple

model structure for its real-time implementation with guaranteed stability and performance prop-

erties of the controller, contrary to adaptive identification strategies that may lead to unstable

models [31]. It is worth remarking that, among these strategies, the reliability and representation

capabilities of the prediction model are directly correlated with the efficiency and achievable per-

formance, since the model dynamics are inherited by the controller.

1.2 Objectives

Considering the advantages of LPV controllers, the main objective of this thesis is to develop

control-oriented models for the glucose-insulin dynamics that include intra-patient variations re-

lated to insulin sensitivity, while maintaining a low order structure for allowing its use in robust

controller design. In particular, the following objectives are pursued:

� State of the art: Review of physiological phenomena underlying intra-patient variations, in

order to understand underlying mechanisms and determine modeling and simulation strate-

gies that have been adopted for these variations.

� Control-oriented models: Review of control-oriented models, analyzing the different ways
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in which inter- and intra-patient variations are included, and the advantages or disadvantages

of each approach.

� Models with intra-patient variations: Development of models with intra-patient varia-

tions suitable for designing H∞ or LPV controllers, analyzing their representation capabili-

ties and benefits for controller design.

1.3 Major findings and dissemination of results

As a result of the realization of this thesis, the following aspects are highlighted:

1. Participation in the first AP clinical trial without pre-meal insulin boluses in Latin America.

In this trial, the ARG algorithm [17] was validated in a pilot study on five T1DM, where it

was able to safely regulate the glucose level, minimizing risks of hypo- and hyperglycemia.

The following publications derived from this experience:

R. Sánchez-Peña, P. Colmegna, F. Garelli, H. De Battista, D. Garćıa-Violini,

M. Moscoso-Vásquez, N. Rosales, E. Fushimi, E. Campos-Náñez, M. Breton,

et al.,“Artificial pancreas: Clinical study in latin america without premeal insulin

boluses,”Journal of diabetes science and technology, vol. 12, no. 5, pp. 914–925,

2018

P. Colmegna, F. Garelli, E. Fushimi, M. Moscoso-Vásquez, N. Rosales,

D. Garćıa-Violini, H. D. Battista, and R. Sánchez-Peña,“Artificial pancreas: The

argentine experience,” Science Reviews, vol. 1, no. 1, 2019

2. A review of the underlying physiological mechanisms of intra-patient variations was made,

that allowed to narrow down their primary source to insulin sensitivity variations. Moreover,

modeling/simulation approaches of SI variations that have been adapted for T1DM were

analyzed, finding that most approaches are for controller testing rather than synthesis. From

this work, the following congress publication was made:

M. Moscoso-Vásquez, P. Colmegna, and R. Sánchez-Peña, “Intra-patient dy-

namic variations in type 1 diabetes: A review,”in 2016 IEEE Conference on Con-

trol Applications (CCA), pp. 416–421, Sept 2016

3. An LPV model set, instrumental in robust controller design was obtained through (in)-

validation techniques, considering parametric uncertainties in insulin sensitivity. The advan-

tages of this model set were exploited by designing a switched-LPV controller, that proved

useful in presence of dynamic and parametric uncertainties, compared to a nominal LPV

model. This result conducted to the following publication:
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F. Bianchi, M. Moscoso-Vásquez, P. Colmegna, and R. Sánchez-Peña, “Invali-

dation and low-order model set for artificial pancreas robust control design,”Jour-

nal of Process Control, 2019. https://doi.org/10.1016/j.jprocont.2019.02.004

4. The development of an average LPV structure that allows to include both inter- and intra-

patient variations with a control-oriented focus using patient’s clinical data in a non-invasive

way. Additionally, the structure has the flexibility to be used together with a real-time

insulin sensitivity estimator. Related to this result, the following paper has been submitted

for publication:

M. Moscoso-Vásquez, P. Colmegna, and R. Sánchez-Peña, “Control-oriented

model with intra-patient variations for glucose regulation in type 1 diabetes.”

Submitted to Biomedical Signal Processing and Control, February 4th 2019

5. A preliminary model for including the effects of insulin on board in the reduced insulin sen-

sitivity characteristic of hyperglycemic/hiper-insulinemic conditions. The model maintains

the low-order structure amenable for control structure design. The following congress pub-

lication is under elaboration:

M. Moscoso-Vásquez, P. Colmegna, and R. Sánchez-Peña, “Model of

Hyperglycemia-Hyperinsulinemia effects for the Artificial Pancreas control,” Oct

2019. submitted to 2019 IEEE Colombian Conference Automatic Control (CCAC)

1.4 Thesis outline

This thesis is organized as follows:

Chapter 2 presents the review of physiological phenomena underlying intra-patient

variations, and the modeling and simulation strategies that have been adopted in the

literature.

In Chapter 3 a review of control-oriented models is made, analyzing the personalization

strategies and ways to include intra-patient variations. The personalized LPV model

in [57] is selected as a base model for the development of models with SI variations,

and therefore, it is formally presented in this chapter. Moreover, model invalidation

techniques are described, as a way to consider the inherent uncertainties of glucose-

regulation in a control-oriented model.

Invalidation of the LPV model is carried out in Chapter 4, obtaining a model-set suit-

able for robust controller synthesis purposes. Based on this model-set, a switched LPV

controller is designed and tested in-silico in the distribution version of the UVA/Padova

simulator, demonstrating the advantages of this approach under different sources of

uncertainty.
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In order to consider intra-patient variations within the model’s structure, in Chapter 5

an LPV model including a parameter related to insulin sensitivity variations is devel-

oped. The model tested both for simulation and control design purposes against the

UVA/Padova simulator and the LPV model of [57].

Insulin stacking effects on SI are considered in Chapter 6, where a preliminary model

for describing the effects of hyperglycemia-hyperinsulinemia on insulin sensitivity is

presented. The LPV model [57] is expanded by including a parameter dependent on

the IOB. This model is tested in open-loop to test its representation capabilities.

Finally, conclusions and future work are discussed in Chapter 7.
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Chapter 2

Intra-Patient Variations in Type 1 Diabetes

Circadian variations in glucose regulation have been demonstrated in both healthy and subjects

with diabetes. This variability leads to large intra- and inter-patient uncertainty that can be a

limiting factor to the performance of open- and closed-loop insulin therapies [62, 94]. Therefore, a

better understanding of how these factors are involved in glucose homeostasis is crucial to develop

physiological models that help improve glucose control, minimize glucose variability, and reduce

morbidity and complications subjects with diabetes.

In this Chapter, a review of the physiological explanation underlying intra-patient variability

is analyzed. To this end, the main factors that influence these phenomena in T1DM subjects are

determined in Section 2.1. Then, in Section 2.2, a review of the current strategies that account

for intra-patient variations in T1DM glycemic control is made, analyzing their advantages and

limitations. Additionally, some suggestions for addressing the modeling of intra-patient variations

are presented.

2.1 Diurnal Variations in Insulin Requirements

Insulin dose requirements are influenced by many factors, including weight, food uptake, sleep and

wakefulness, sleep deprivation, stress, exercise and temperature changes [30, 52, 62]. Because

some of these factors oscillate with pulsatile ultradian, circadian and circannual frequencies, it is

desirable to include them when designing glucose controllers [95].

A study of fasting Blood Glucose (BG) response to insulin doses at different times of day

performed in healthy adults [96], found that the hypoglycemic response to insulin is markedly

more pronounced in the morning, compared to the afternoon (see Figure 2.1). This suggests

that both GT and SI are higher in the morning and decline as the day progresses, implying they

experience a circadian variation [62]. For example, in [60], it is detected that in insulin- and non-

insulin-dependent subjects with diabetes, there is a morning to evening improvement in GT.

Variations in GT lead to fluctuations in insulin requirements as illustrated in Figure 2.2, where

low insulin requirements are observed during sleep, and peaks appear after meals. In this regard,
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different seasons. These observations imply that there appears
to be a difference in the secretion of insulin during different
seasons of the year and/or that a different blood sugar lowering-
effect is required at different times of the year to achieve a
comparable level of blood sugar control [350].

Subjects with impaired glucose tolerance and/or with non-
insulin-dependent type 2 diabetes mellitus (T2DM) show
alteration in their ultradian rhythms of insulin secretion [371–
373]. The question arises if these disturbances in the time
organization of insulin secretion play a role in the development of
insulin resistance and T2DM. Ultradian insulin oscillations in the
120–150 min range have been shown to enhance glucose
utilization in the peripheral tissues [374]. In contrast, the apparent
improvement of glucose utilization related to the high-frequency
pulses (of 10–15 min periods) seems to be due to an inhibition of
hepatic glucose production [339,375]. It appears that in the
regulation of carbohydrate metabolism different periodicities
favor the optimal functional state of different target organs.

3.2. Chronobiology of blood glucose concentration

Under normal living conditions, as opposed to the artificial
experimental conditions of a “constant routine” protocol, the
concentration of blood glucose follows a 6-hour rhythmicity,
which is in part dictated by mealtimes [347,350,376,377], with
an additional rise in the early morning hours corresponding
to the so-called “dawn phenomenon” [347,378]. These varia-
tions are superimposed upon a low-amplitude circadian rhythm
[5,236,348], which is modified by a variety of endogenous and
exogenous rhythmic and non-rhythmic variables.

3.2.1. Circadian rhythm of glucose tolerance
Oral as well as intravenous glucose tolerance tests reveal a

prominent circadian pattern in glucose tolerance. Irrespective of
age and sex, glucose tolerance is lower after a glucose load is
administered in the afternoon, as evidenced by a higher and
prolonged elevated blood glucose concentration after the glucose
load (Fig. 12)[379–381]. Also, the effect of an intravenous
infusion of tolbutamide is lower during the afternoon than at other
times of the day [382]. However, the a.m./p.m. difference is more
pronounced in the oral than the intravenous glucose tolerance test.
This suggests the role of additional factors acting upon the
glucose tolerance test, such as circadian rhythm-related differ-
ences in glucose absorption from the gastrointestinal tract
[383,384].

3.3. Diabetes mellitus

A failure in insulin effect, either due to inadequate secretion
or due to insulin resistance of the target tissues, leads to
metabolic changes which are rhythmic in nature. In insulin-
dependent patients with type 1 diabetes mellitus (T1DM) insulin
secretion is greatly diminished or absent. There is no detectable
rhythm of insulin or its binding molecule C-peptide. However,
the numerous other rhythmic factors acting on carbohydrate
metabolism, like GH, catecholamines, cortisol etc., persist and
lead to rhythmic changes in glycemia or glycosuria [385,386]. In

Fig. 10. Blood glucose response to an intravenous injection of insulin (0.05 U/
kg) given in the morning (8 a.m.) or in the afternoon (5 p.m.). The insulin
sensitivity is higher in the morning as compared with the afternoon. Figure
adapted from Gibson et al. [357].

Fig. 11. Seasonal difference in the response of insulin to an oral glucose load
(50 g) in clinically healthy young adult men. The rhythm is expressed in a
difference in peak height, the time to reach peak plasma concentration and the
area under the curve. The insulin response is faster and stronger in September as
compared to April. Figure adapted from Mejean et al. [370].

Fig. 12. Circadian and age differences in blood glucose concentration in an oral
glucose tolerance test in clinically healthy subjects conducted in the morning or
in the afternoon. The decreased glucose tolerance in the afternoon is especially
pronounced in the elderly. Figure adapted from data by Zimmet et al. [380].

1001E. Haus / Advanced Drug Delivery Reviews 59 (2007) 985–1014

Figure 2.1: BG response to an intravenous injection of insulin (0:05U=kg) at different times of
day. From [62].

insulin needs are higher after breakfast, compared to other meals. This is known as the Dawn

Phenomenon (DP) [60, 62, 94, 97] and describes a state of hyperglycemia in the early morning

hours, when the increased insulin requirements are not met [60]. The magnitude of the DP varies

considerably among subjects [94], but it is highly reproducible within the same subject if factors

that influence insulin action remain constant [98]. Furthermore, this phenomenon is not specific

to subjects with diabetes, but rather a physiological event related to a circadian variation of SI.

In T1DM, DP is also attributed to other variables, like duration of diabetes, quality of precedent

glycemic control, and state of the counter-regulation system to hypoglycemia [60, 94, 98].
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Figure 2.2: Schema of daily insulin requirements. From [94].

In order to explain the causes of the DP, multiple mechanisms that differ from the idea of a cir-

cadian variation of SI, have been explored. One considers that insulin availability may decrease dur-

ing the second part of the night because of waning of insulin injected subcutaneously the evening

before or, when an insulin pump is used, due to degradation of the infused insulin [60]. However,

previous studies linked these variations to differences in Growth Hormone (GH) secretion [60, 98].

On a different view, Blackard et al. [94] have detected that the higher insulin requirement for

breakfast is connected with decreased insulin needs for subsequent meals, because of a prolonged

insulin action remnant from previous insulin boluses. Moreover, the higher insulin requirement is
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attributed to an expected increase in glucose production during awakening compared to sleep [94].

However, most authors agree with the aforementioned hypothesis that relates DP to the cir-

cadian variation of SI. Thus, they consider that reduced SI during the morning may result in

increased glucose production and/or impaired glucose utilization during the latter part of the

night [60, 98, 99]. Also, because SI reflects the insulin ability to stimulate glucose utilization

[100], changes in SI produce variations in metabolic activity that affect the Hepatic Glucose Out-

put (HGO) level, and therefore, the insulin requirements [61].

In this regard, the diurnal variation of SI was evidenced based on clinical information of 20

subjects with diabetes [49]. Based on triple-tracer tests, differences in postprandial insulin action

for breakfast, lunch, and dinner were found, and for each meal, SI was estimated with the oral

minimal model [101]. Results for each subject, are presented in Figure 2.3, showing that every

patient exhibits his/her own specific pattern over the day. These variations are around ±40−60%

the average value observed for each patient. However, there was no significant difference in the

average SI for each meal, which shows that there is no uniformly diurnal pattern of postprandial

SI that could be generalized to the T1DM population as a whole.
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Figure 2.3: Model-based SI for different subjects (colored dotted lines) and average estimate
(black solid line) for meals at different times of day. Adapted from [49].

As mentioned before, hormonal cycles also impose an effect on glucose metabolism. Par-

ticularly, rhythmicity of counter-regulatory hormones (GH, cortisol, glucagon, catecholamines),

which increase during the early morning hours, modifies tissue SI [62]. Thus, impaired secretion

of counter-regulatory hormones relates to the magnitude of the DP [98]. Evidence indicates that

early nocturnal GH pulses play a more significant role in the development of the DP than other

hormones [60, 62, 99, 102]. However, the precise mechanism by which GH contributes to the

DP remains unclear. Its contribution to this phenomenon is related to the effects of GH on glu-

cose metabolism, insulin clearance, and lipolysis regulation elevating free fatty acids level, which

compete for glucose utilization and stimulate gluconeogenesis [60].

The quality of current BG control is another important factor that affects the magnitude of
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the DP. It has been found that poor glycemic control is associated with the enlarged manifes-

tation of the DP and vice versa [98]. In this regard, conversion from conventional to intensive

insulin therapies can produce a significant reduction in both frequency and magnitude of the

early-morning rise in BG [60].

Determination of appropriate basal insulin levels is an essential component of insulin therapy.

Basal insulin requirements typically vary throughout the day and night based on endogenous

glucose output and peripheral SI [99]. Analysis of basal patterns obtained in fasting tests on 322

T1DM subjects undergoing pump therapy, revealed differences between juvenile (under 20 years

old) and adult (over 20 years old) basal insulin patterns as shown in Figure 2.4. Because no

significant differences were found between men and women, the magnitude and pattern of insulin

requirements might reflect timing and magnitude of cortisol and GH secretion within each age

category [99].

averages, differences between peak and non-peak
averages, number of profile segments and number of
peaks. No significant interactions were found between
age and gender, including comparisons made between
men and women over age 45. No significant
differences were found between age groups for the
number of basal segments, number of peaks and hours
at peak.

Age showed a significant main effect for peak
average (F = 14.49, p < .001), non-peak average
(F = 19.47, p < .001) and the difference between
peak and non-peak averages when expressed as a
percentage (F = 3.153, p < .025). The main effect for
age showed a trend toward significance for difference

between peak and non-peak averages when expressed
as units per hour, but did not achieve statistical
significance (F = 2.56, p < .055).

The overall basal rate means by age group were as
follows:

age 3–10: 0.558 units/h;
age 11–20: 0.900 units/h;
age 21–60: 0.654 units/h;
age 60–75: 0.416 units/h.

The average profiles by age group are presented in
Fig. 2. A summary of key statistical differences bet-
ween age groups is listed in Table 1.

4. Discussion

With the growing popularity of basal/bolus insulin
programs, greater attention needs to be placed on
regulation of basal insulin. Improper basal insulin
levels can cause unexpected hypoglycemia and/or
hyperglycemia between meals and during sleep,
undesired weight loss/gain, and difficulties achieving
euglycemia during exercise. It can also interfere with
efforts to calculate appropriate bolus insulin doses
(insulin:carb formulas and blood sugar correction
formulas). Our results indicate that it is simply not
reasonable to expect basal insulin needs to be met by a
flat rate of insulin delivery for 24 h. The vast majority
(>85%) of participants in our study demonstrated

G. Scheiner, B.A. Boyer / Diabetes Research and Clinical Practice 69 (2005) 14–2118

Fig. 2. Average hourly basal rate values by age group.

Table 1

Summary statisticsa for each age group, and for significance of differences by age group

Age group F-value

Age 3–10 Age 11–20 Age 21–60 Age $61

Number of participants 29 93 179 15 –
Number of peaks in basal profile 0.86 (0.43) 0.84 (0.52) 0.92 (0.34) 0.93 (0.26) 1.1

Number of distinct infusion rates 5.37 (1.83) 5.13 (2.15) 5.04 (1.83) 5.07 (1.28) 0.41

Hours at peak 5.43 (4.62) 5.0 (3.98) 5.2 (3.36) 6.07 (4.1) 1.07

Average value at peak (units/h) 0.81 (0.46) 1.2 (0.44) 0.92 (0.36) 0.6 (0.26) 14.5*

Percentage difference between

non-peak and peak rates

72% (64) 52% (40) 57% (36) 81% (59) 3.15**

Difference (in units) between
non-peak and peak rates

0.26 (0.13) 0.35 (0.18) 0.30 (0.19) 0.24 (0.19) 2.56***

a Data described as mean (standard deviation).
* p < 0.001.
** p < 0.025.
*** p < 0.055.

Figure 2.4: Average basal rates by age group. Open triangles: Age 3-10. Open square: Age
11-20. Solid square: Age 20-60. Solid triangles: Age >60. From [99].

Either GT or SI circadian rhythms can thus explain the DP. However, GT variations are

regulated by SI, which stimulates glucose disposal [61, 103]. Therefore, intra-patient variability

can be modeled by a suitable description of SI circadian variation. Such description should

include time of day, physical activity, stress, and sleep structure. The following section focuses

on reviewing current approaches for including SI into available T1DM models.

2.2 Modeling/Simulation Of Intra-Patient Variability

Intra-patient variation of SI has been accounted for in different ways [47, 52, 85, 95, 103–106].

Although exact values of model parameters are unknown, they can be bounded by intervals that

characterize the observed variability [59]. In that regard, parametric uncertainties in IS and in-

sulin absorption models can be included in well-known simulation models, like the Cambridge

[105], and UVA/Padova [107] models, in earlier versions that lacked intra-patient variations in

their formulations [108].
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Another approach is to consider that some model parameters are time-varying. For example,

in [47], sinusoidal variations of 20% amplitude and 19- and 29-hour periods for SI and insulin ab-

sorption, respectively, are included in the UVA/Padova model. In [104], the parameters Vmx (pa-

rameter related to insulin-dependent glucose utilization) and kp3 (parameter governing amplitude

of insulin action in the liver) of the same model were modified as follows:

(t) = 0 + 0 ∗ k(t) sin

„
2ı

24 · 60
t + 2ıRnd

«
(2.1)

where (t) represents the time-varying parameter (Vmx or kp3), 0 is the default value in the

simulator, Rnd is a randomly uniformly generated number from the interval [0; 1], and k(t) is a

time-varying parameter defined as:

k(t) =

8<:0.7 (t) ≤ 0

0.3 otherwise.
(2.2)

As mentioned before, the Cambridge model can also be used to describe the intra-patient

variability. In that regard, in [105], multivariate log normal distributions obtained from clinical

data, are considered to define SI-related parameters of the Cambridge model. In [85], time-varying

parameters are included in that model, where the SI variation is represented by superimposing

sinusoidal oscillations of 5% amplitude and 3-hour period on the nominal values of selected model

parameters. Moreover, each one of those parameters has a different phase generated randomly

from a uniform distribution U[0; 3h].

Diurnal variations of SI have been recently implemented into the UVA/Padova T1DM simula-

tor [83, 109] by linking each in-silico subject to a time-varying SI profile [106]. These profiles were

obtained based on the results in [49] (see Figure 2.3). The SI of each subject, estimated with the

oral minimal model [101] for breakfast, lunch, and dinner, was classified as high (h) or low (l),

according to a fixed threshold, and the resulting trend (pattern) between meals was observed. In

Table 2.1, the SI profile and the estimated probability of each of the seven identified SI patterns

are presented. These patterns are transformed into the corresponding time-varying profile by an

almost stepwise-line signal that varies three times a day (at 4 a.m., 11 a.m., and 5 p.m.), where

the 40% of the nominal value in the simulator is assigned to the low values, and a 100% to the

high ones. Deviations from these profiles are allowed, modulating the nominal pattern by multi-

plicative random noise. As an example, the procedure for the class-5 profile is illustrated in Fig-

ure 2.5. Finally, each in-silico subject is randomly assigned to one of the seven classes, according

to the estimated probability of each class.

In [110], intra-patient variations are considered not for modeling, but for closed-loop glycemic

control purposes, using a Case-Based Reasoning (CBR) approach. CBR is an artificial intelligence

technique, widely applied in medicine, that tries to solve new problems by applying solutions

previously learned [110, 111]. The patient’s current situation is recognized based on the time of
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Table 2.1: SI pattern classes included in the UVA/Padova T1DM simulator. B, breakfast; D,
dinner; L, lunch.

Class SI pattern SI profile Probability

1 l-l-l or h-h-h 0.1

2 h-h-l 0.05

3 h-l-h 0.05

4 h-l-l 0.1

5 l-h-h 0.2

6 l-h-l 0.2

7 l-l-h 0.3

day, BG, meal intake, external disturbances, and IOB. Then, the following steps take place: (i)

Retrieve the most similar situation (case) from a base case, (ii) reuse the information on that case

to solve the problem, i.e., determining the SI and Insulin-to-Carbohydrate ratio (ICR), (iii) revise

the proposed solution based on the outcome, and (iv) retain parts of the experience that are likely

to be useful in the future. In this way, intra-patient variability and external perturbations are

considered, granting robustness against uncertain inputs [110]. The basal insulin Ib and insulin

The T1DM simulator. The T1DM simulator, accepted by
the Food and Drug Administration as a substitute for pre-
clinical animal trials for certain insulin therapies, including
the AP,13,14 consists of a model of glucose–insulin–glucagon
dynamics during a meal and a population of 100 virtual adults,

100 adolescents, and 100 children with T1DM, respectively.
Each virtual subject is represented in the simulator by a vector
containing subject-specific model parameters (e.g., SI). These
were generated by randomly extracting different realizations
of the parameter vector from an appropriate joint parameter
distribution, a process that has been demonstrated to well span
the variability of the T1DM population observed in vivo.14,15

However, as already mentioned, an important limitation of
the simulator is that it does not take into account the in-
traindividual diurnal variability of SI.

Incorporation of the model of intra-day variability of SI into
the T1DM simulator. In order to implement the intraday
variability of SI into the T1DM simulator, each in silico
subject was randomly assigned to one of the seven classes,
according to the estimated probability (see Results). The fact
that a subject belongs to the i-th Class means that the SI daily
pattern of that subject is on average the one associated to the
i-th Class. For instance, if the j-th subject, characterized by
insulin sensitivity SI

j, belongs to Class 5 (l-h-h), its param-
eters will be, on average, aSI

j, SI
j, and SI

j, respectively, at B,
L, and D, with a < 1. However, deviations from this nominal
profile are allowed, by modulating the nominal pattern with a
multiplicative random noise, described by a normal distri-
bution N(l, r2), withl = 1 and r = 0.2. Parameter r was
chosen in order to explain as a random effect deviation up to
40% of the maximum.

The actual SI pattern is then transformed in the corre-
sponding time-varying parameter SI(t) (i.e., an almost step-
wise-line signal that varies three times a day [at 4 a.m., 11
a.m., and 5 p.m.]). Figure 3 shows the procedure described
above for an illustrative subject of Class 5.

Simulation scenario

The simulation scenario reproduces the experimental
protocol described above. More specifically, the 100 in silico
subjects received B at 7 a.m., L at 1 p.m., and D at 7 p.m., with
the appropriate amount of ingested carbohydrates.16 The
optimal basal insulin was infused in each virtual subject. In
contrast, the premeal insulin bolus was reduced, on average,
by 2 U with respect to the one calculated with the patient-
specific CR. In fact, by definition, with the optimal CR,
plasma glucose would have returned to the target within the
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FIG. 2. Seven classes of insulin
sensitivity pattern. B, breakfast;
D, dinner; L, lunch.
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FIG. 3. Intraday insulin sensitivity profile for a virtual subject belonging to Class 5: the final time-varying insulin
sensitivity (continuous line) is obtained as a smoothed random variation of the nominal profile (dashed line), of which the
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Figure 2.5: Nominal (dashed line) and time-varying (continuous line) SI profiles for a virtual
class-5 subject. B: breakfast; L: Lunch; D: Dinner. From [106].
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bolus IB are corrected to the actual delivery, Idb and IdB, respectively, according to:

IdB = IBKD (2.3)

Idb = IbKDKA (2.4)

with KA a gain to simulate circadian variability, which randomly takes a value from the interval

[0.8; 1.2] every day, and

KD =

8>>>>>>><>>>>>>>:

0.7 t ∈ [0− 4] h

1 t ∈ [4− 10] h

1.5 t ∈ [10− 18] h

2.5 t ∈ [18− 24] h.

(2.5)

In [30], a similar approach is applied to modify the plasma insulin concentration IOB(t)

from the model proposed in [105]. There, circadian changes in SI are modeled by introducing

a modulating gain that affects the sensitivities of each insulin action mechanism, kb1, kb2, and

kb3, equally. This is performed by replacing IOB(t) with the following variable IOB
′
(t):

IOB′(t) = km(t)IOB(t) (2.6)

where the modulating gain km(t) is given, in the Laplace domain, by:

km =
e−fi‹s

(15s + 1)(s + 1)
kp(s) (2.7)

with the input kp(t) a step profile corresponding to the desired gain for each segment of the day,

as defined in (2.5). The dynamics are set according to expected behavior [30], and the delay in-

troduced in the input fi‹, is relative to when the segment of the day changes, considering that the

change in sensitivity is known to start earlier. This parameter is optimized such that the desired

infusion profile maintains the BG concentration as close to normal conditions as possible [30].

In [52], an SI variation function is defined based on clinical studies on the DP. There, the

evening SI is defined as the nominal value, and Insulin Sensitivity Variation Factors (SI;VFs) are

defined for several other times of the day. Then, those values are interpolated to obtain a

polynomial description of the time-varying nature associated with the SI (see Figure 2.6). The

profile obtained through this procedure considers mean population values that agree with the

mean values found in [106], and its daily evolution coincides with the class-5 SI pattern previously

defined (see Figure 2.5).

Several indexes for estimating SI have been developed, based on hyperinsulinemic-euglycemic

clamps [112], intravenous glucose tolerance test [101] and meal and oral glucose tolerance test
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Figure 2.6: SI variation curve. Adapted from [52].
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Figure 2.7: Schematic diagram for the calculation of the Pump–CGM SI Index. Adapted
from [63].

based on the minimal model [113, 114]. However, they require plasma glucose and insulin concen-

trations, and therefore their application in everyday life is not feasible. In this regard, a method to

determine a patient’s SI index based only on CGM and insulin pump data is presented in [63, 103].

The procedure, which is depicted in Figure 2.7, implies a minimally invasive technique for esti-

mating SI. The Area Under the Curve (AUC) of the CGM data and the estimated IOB is cal-

culated. These magnitudes, together with patient physical parameters and meal information are

used to compute the patient’s SI index via a simple algebraic operation [63, 103]. This index has

also been used to assess inter-day variability in 20 subject’s with AP under free living conditions,

obtaining a Markov chain model of each subjects’ day-to-day SI variations [115].

Considering that from a mathematical perspective intra-patient variations represent uncer-

tainty in model parameters, in [59, 95] these variations are described through the representation

of parameter values as intervals when simulating a model. These simulations produce an envelope

(see Figure 2.8) that represents all the possible glucose excursions that might be experienced by
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the patient, or “interval models”. Such envelopes are found through modal interval analysis, con-

sidering the lower and upper bounds for uncertainties in food intake and patient’s SI [95]. Worst-

case bound envelopes allow a safer prediction of possible hyper- and hypoglycemia episodes [95].

Limits on the adjustable parameters can be established for a model in two ways: (i) taking into

account that the limits are not widely divergent for the initial parameter value [95], or (ii) through

an identification procedure with BG measurements or CGM data in order to obtain an interval

model [116]. Bounding all glucose measurements using an interval model with time-varying pa-

rameters considered as intervals, can help to increase the robustness of the derived therapies or

control algorithms [116].
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Fig. 1 – Glucose–insulin system in T1DM.

Fig. 2 – Output of an interval dynamic model: upper and
lower bounds for the many  possible system responses that
define the response envelope (shaded area).

that the result lies within the computed range. Unfortunately,
it does not provide an exact estimate in the general case.
This comes from the multi-incidence problem: interval arith-
metic considers instances of a variable in the syntax tree of a
function as being independent of each other, leading to over-
estimation of the actual range. MIA  reduces the impact of this
problem.

In this section, each of the three models was investigated
to achieve an optimal calculation, i.e., an exact computation
of the range. Each interval function was analyzed and put,
if possible, in its optimal form. When this was not possible,
MIA  coercion to optimality theorems were applied. A sum-
mary  of the principal results of the modal interval analysis is
presented in Appendix A.

2.2.  Carbohydrate  digestion  and  absorption  interval
model

The glucose absorption model presents uncertainties because
patients generally do not know the exact amount and com-
position of their meals, which they have to estimate. Thus,
the CHO amount ingested (mg) is considered to be an interval

D. The model considered here is that described in [14], where
the rate of glucose appearance (Ra) describes glucose transit
through the stomach and intestine. The uncertainty of input D
cause that the result of interval computation of Ra will be inter-
val. Then, the monotonic behavior of equations that described
this model are studied with respect to uncertain variable D in
order to obtain an optimal rational computation. Thus, tak-
ing into account the coercion to optimality theorem [12] an
optimal calculation of Ra is obtained by:

Qsto(t) = Qsto1(t) + Qsto2(t)

Qsto1(t + 1) = Qsto1(t)(1 − kmax�t)  + D�t

Qsto2(t + 1) = Qsto2(t)(1 − kempt(t, Qsto)�t) + kmaxQsto1(t)�t

Qgut(t + 1) = Qgut(t)(1 − kabs�t)  + kempt(t, Qsto)Qsto2(t)�t

Ra(t) = fkabsQgut(t)
BW

(1)

where

kempt(t, Qsto) = kmin + kmax − kmin

2

×
[

tanh

(
˛

(
Dual(Qsto(t))

D
− b

))

− tanh

(
ˇ

(
Qsto(t)

Dual(D)
− c

))
+ 2

]
(2)

where Qsto (mg) is the amount of glucose in the stomach being
Qsto1 and Qsto2 (mg) the solid and liquid phase, respectively. Qgut

(mg) represents the glucose in the intestinal tract, kabs (1/min)
is the rate constant of intestinal absorption, kempt (1/min) is the
rate of gastric emptying, kmin and kmax are the minimum and
maximum rates of gastric emptying, respectively and BW (kg)
is the body weight. b is the percentage of the dose for which
the rate of gastric emptying decreases at (kmax − kmin)/2 and
c is the percentage of the dose for which the rate of gastric
emptying is back to (kmax − kmin)/2. The parameters  ̨ and  ̌ are
set so that kempt(t, Qsto) = kmax for Qsto(t) = D and Qsto(t) = 0, i.e.,

 ̨ = 5
2(1 − b)

(3)

Figure 2.8: Output of an interval dynamic model: All possible system responses (shaded
area) are limited by upper and lower bounds. From [95].
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Fig. 5. Comparison of classic and interval identification from CGM data. Black dot-
ted  lines are too wide to be considered useful. Three 5-h postprandial periods in
consecutive days are shown. The first and third days correspond to the same meal
and  insulin infusion to the patient.

Table 1
Correlations of postprandial BG-based vs.  CGM-based widths for the experimental
patients’ cohort. The in silico counterparts of the same correlations are shown within
parenthesis.

CGM

Max  width Avg width

BG
Max  width 0.67 (0.72) 0.75 (0.66)
Avg  width 0.79 (0.87) 0.86 (0.88)

CGM but patient’s actual intra-patient variability is overestimated
since it is confounded by CGM measurement error.

The BG-based optimal maximum width is highly correlated to
the maximum width observed by overlapping the BG signal (exper-
imental width) for days 1 and 3, where the patient ate the same
meal (r = 0.848, p < 0.005). This is also true for the average width for
all the days of the postprandial period (r = 0.797, p < 0.005).

In practice neither the optimal width nor the possibility of
overlapping several BG postprandial periods is available. To cope
with this, experimental correlations between BG and CGM width
were investigated using the experimental dataset presented in Sec-
tion 2.2 and described in detail in [23]. Table 1 shows the results
obtained demonstrating the existence of high correlation between
the CGM-based and the BG-based width computations from the
experimental cohort. Table 1 also shows the correlation among the
BG-based and CGM-based widths for an in silico study with the vir-
tual patients’ cohort reproducing the clinical study design in [23].
Correlations are very similar, reinforcing the CGM model used.

Table 2 shows the correlations of the BG-based optimal width
(both maximum and average) with the experimental width from
the CGM. Max3 and Avg3 are the maximum and average width
from the three days of the experiment, respectively. Max2 and Avg2

Table 2
Correlations of optimal widths in the virtual patients vs.  CGM model-based experi-
mental widths. The best estimators of optimal widths are highlighted.

CGM experimental width

Max3 Avg3 Max2 Avg2

Optimal maximum width 0.565 0.781 0.775 0.832
Optimal average width 0.588 0.800 0.707 0.780

Fig. 6. Comparison of Avg2 and Avg3 estimators for the optimal width in the identi-
fication from CGM data. There is little difference between estimators, but there is a
big  difference between the use of optimal width estimation and pure interval iden-
tification from CGM data (see Fig. 5). Three 5-h postprandial periods in consecutive
days are shown. The first and third days correspond to the same meal and insulin
infusion to the patient.

correspond to the maximum and average width from 2 equal days
(days 1 and 3), respectively.

All correlations shown in Table 2 are significant (p < 0.005). The
best correlations are obtained for the average CGM experimental
width, due to the mitigated influence of noise, either for 3 or 2
days. The corresponding regression lines are:

OptimalMaxWidth = 0.6617 × Avg2 + 60.4569 (5)

OptimalAvgWidth = 0.3979 × Avg3 + 27.2764 (6)

Finally, Eqs. (5) or (6) will define the individual in the CGM-based PF
to be chosen as optimal identification. This is equivalent to launch-
ing a constrained optimization problem with J1 as cost index and
fixed glucose envelope maximum width given by (5) or fixed aver-
age width given by (6).

As an illustration, the identification results for the sample
patient are shown in Fig. 6, where Avg2 and Avg3 estimators are
compared.

The use of CGM experimental widths over a number of days
for predicting the “optimal” width of a particular patient is then
justified. However, the predictive capability of the identified model
still has to be checked.

Table 3
Widths and prediction errors for the selected (best) optimal width estimators. Top
row shows the performance of the identification if the maximum glucose envelope
width for each patient is predicted from the width of two identical days. Bottom
row displays the case when the average glucose envelope width for each patient is
estimated from the width of the 3-day CGM registries.

Avg2

MaxWidth [mg/dL] Predicted [%] ErrOut [%] MARDI[%]

Median 83.3 67.8 7.5 3.3
Min/Max 67.6/163.3 34.3/97.9 1.9/38.3 0.1/11.9

Avg3

AvgWidth [mg/dL] Predicted [%] ErrOut [%] MARDI[%]

Median 61.4 52.8 8.3 4.6
Min/Max 42.4/96.4 35/97.9 2.4/30.9 0.1/15.6

Figure 2.9: Comparison of classic and interval identification using CGM data. Three 5 hour
postprandial periods in consecutive days are shown. From [116].

Interval models can be obtained through multi-objective optimization of both fitting error

and interval width. This optimization leads to a family of solutions, Pareto Front (PF), in

which an element cannot be replaced for improving an objective without worsening another.
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The PF represents all the possible solutions from a zero-width/non-zero error problem (classic

identification) to a minimum-width/zero error problem (interval approach). A comparison of

both identification approaches is presented in Figure 2.9. Here, it is worth noting that models

identified using CGM data have wider intervals that the ones from reference BG measurements.

Such difference implies an overestimation of actual intra-patient variability since it is confounded

by CGM measurement error [116]. However, given that practically neither the optimal width nor

the possibility of overlapping several BG postprandial periods are available, correlations can be

found between the CGM-based and the BG-based width, and thus, the optimal CGM-based width

can be found through such regressions. Variation throughout a 15-day simulation of the SI-related

parameters SIT , SID, SIE , ke and pump error (random time-varying error for the insulin infusion

rate) is shown in Figure 2.6.

44 A.J. Laguna et al. / Biomedical Signal Processing and Control 12 (2014) 39–46

Fig. 7. Comparison of Avg3 width estimator and the optimal width for the 15-day identification experiment. Top right (day 1), top left (day 3) and bottom right (day 15)
panel  show cases of CGM monitoring errors with satisfactory BG prediction from the model. Bottom left panel (day 11) shows the only case where BG was not enclosed by
the  predicted glucose envelope for most part of the postprandial period due to the outlier patient behavior (extreme parameter values).

3.3. Validation

Results of the BG prediction errors are shown in Table 3 for
the virtual patients’ cohort. The mean error for the samples not
enclosed by the glucose envelope (dH > 0) will also be computed for
comparison purposes, and denoted as ErrOut. In order, the table
shows the median for the population of the estimated width, the
number of samples enclosed in the glucose envelope, the relative
error considering only the samples outside the glucose envelope,
and the MARDI (%). The two width estimators that showed better
correlations, as highlighted in Table 2, were tested.

Regarding the long-term identification study, results for four out
of the 15 simulated days are shown in Fig. 7. Optimal width (com-
puted from BG-based model identification) is compared against
Avg3 width estimator, consisting in Eq. (6) applied to the average
width of the 15-day simulation. The four days selected represent
“worst-case” results and illustrate the performance of the method
against large CGM measurement error (days 1, 3 and 15) and outlier
patient behavior (day 11). For the rest of days similar results than
those shown in Fig. 6 were obtained. Fig. 8 shows the variation
of most relevant parameters for each simulated day in the 15-day
experiment. Only the insulin-related parameters are displayed for
the sake of clarity. Variation is calculated as relative to the nominal
parameter, and it is considered positive if it induces a decrement of
glucose concentration (e.g. larger insulin sensitivities), and negative
if it causes glucose to increase (e.g. larger insulin elimination rate).
Displaying the parameters deviation in a stacked form as in Fig. 8
provides helpful information on the final influence of variability on
the model’s output for a particular day. However, variation magni-
tude does not directly correlate to the magnitude of the effect since
not all the model parameters have the same sensitivity.

4. Discussion

The identification from reference BG data was  successful, as
illustrated in Fig. 3. The identified interval model was  able to cap-
ture patient’s variability when no measurement error is present in
the data. Day 1 and day 3 correspond to the same meal, but patient’s
behavior is very different, as typically observed in the clinical

Fig. 8. Depiction of the parameter variation within the 15-day experiment. For the
sake of simplicity, only the insulin-related parameters are shown here. Parame-
ter deviation is positive if it produces a decrement of glucose levels and negative
otherwise.

Figure 2.10: Parameter variation within the 15 day experiment. From [116].

Variation is computed as relative to the nominal parameter, being positive if it induces decre-

ments in glucose concentration and negative otherwise. It is worth mentioning that the magni-

tude of the deviation does not directly correlate to the magnitude of the effect since not all the

model parameters have the same sensitivity [116]. However, this provides helpful information on

the final influence of variability on the model’s output for a particular day, and could be useful in

deriving more robust glycemic control strategies.

Parametric variations were also considered in [117], where the Medtronic Virtual Patient

(MVP) model is identified for ten different subjects based on closed-loop glucose-insulin data

and the oral minimal model [101]. Intraday parameter variations for each patient was allowed in

cases when, if considered constant, lead to unsatisfactory identification results. In such cases,

parameters SI, Glucose Effectiveness at zero insulin (GEZI) and Endogenous Glucose Production

(EGP) were structured to assume one of two values during three windows inside a 24-hour time

period. Parameters assumed the same value during windows one and three, and a different one

for the second window. Start and end times of each window were identified to minimize the fitting

error in all three windows. SI variations were identified in six of the ten subjects of the study,
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obtaining ±30 − 70% variations between time-windows. Moreover, window times and duration

were also different for each subject, which reinforces the need for subject-specific SI profiles.

As mentioned in Section 2.1, intra-patient variability can be described by changes in SI, which

in addition, are influenced by meals, stress, sleep architecture and physical activity. In order to

summarize the relationship between some of these variables, a block diagram is depicted in Fig-

ure 2.11. Note that correlations between all variables are not illustrated, since their causal relations

are not fully understood, as is the case, for example on the effect of excercise on SI. Moreover,

rhythms of counterregulatory hormones and quality of BG control also influence daily variations

in insulin requirements, by modifying the patient’s SI. Therefore, a description of the SI circadian

variation should be representative of the daily variations in glucose metabolism in each patient.

Counterregulatory 
Hormones (GH)

Insulin Sensitivity
Circadian Variation

Stress

Weight

Time of Day

Physical Exercise

Sleep Architecture

Meal Glucose Metabolism
& Daily Insulin 
Requirements

Glucose Tolerance

Figure 2.11: Variables involved in intra-patient variability.

2.3 Concluding Remarks

In this Chapter, the physiological sources of intra-patient variability and the different approaches

for its modeling/simulation that have been adapted for T1DM were summarized. The following

aspects are worth highlighting:

� Circadian intra-patient variations are influenced by many factors (meals, stress, sleep archi-

tecture, physical activity, rhythms of counterregulatory hormones and quality of BG con-

trol) that, ultimately, reflect on the patient’s SI, making it vary during the day. Thus, intra-

patient variability could be described by suitable modeling of circadian SI variation.

� Several T1DM simulation models have been adapted in order to reflect the time-varying

nature of the problem. Considering the high interpatient variations it is fundamental to

obtain subject-specific patterns of SI that can be implemented in a control algorithm, and,

to date, there is no general consent on how to determine or represent such variations. In

this regard, the sensor–pump SI index presented in [63, 103] seems to be a promising tool.

Once the SI is estimated, its daily pattern can be identified and included at the controller

design stage. Moreover, other factors like stress, should continue being explored in order
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to include their effects on the insulin-glucose dynamics, and therefore, obtain more robust

and reliable glucose controllers.

� Intra-patient variability can be accounted for as uncertainty in model parameters and/or

initial conditions. Developing dynamic models that consider this uncertainty could be helpful

to improve model accuracy as well as implementing robust control algorithms for the AP.



Chapter 3

Control-Oriented Models

Understanding and modeling the dynamics of glucose regulation has lead to improvements in

diabetes treatment. A large number of models of glucose regulation have been proposed, with

different purposes and levels of detail according to their intent: physiology studies, simulation or

control purposes (design, tunning or validation), patient management, health care intervention or

systems biology.

In this Chapter, the different models used for describing glucose regulation, with a focus on

control-oriented models, are reviewed. In Section 3.1 a broad classification of available models

is carried out, outlining their characteristics and applications. Then, a review of models used in

controller design is carried out in Section 3.2, analyzing how the inclusion of intra- and inter-patient

variability is performed. Focusing on robust control strategies, which can account for parametric

and dynamic uncertainty, Section 3.3 describes a personalized LPV model that represents the time-

varying nature of the T1D problem. Section 3.4 introduces (in)-validation techniques that allow

obtaining uncertainty bounds by comparing a nominal model with experimental data and can be

used for robust controller design. Finally, some concluding remarks are presented in Section 3.5.

3.1 Models in T1DM

Mathematical models of glucose regulation have been proposed and studied since the 1960s,

and have become instrumental in developing therapeutic tools and assessing their effectiveness.

These models can be classified in two broad categories: minimal models which describe the

key components of system functionality and are capable of measuring fundamental processes of

glucose regulation, and maximal models which include a detailed and comprehensive description

of the underlying physiology and are able to simulate the glucose-insulin system.

Minimal Models

Minimal models are the simplest possible models of the glucose regulatory system. Starting from

dynamic data and a given structure, using system-identification techniques, model parameters
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that represent metabolic variables are then estimated using the data. Mathematical models in this

category are usually of low order with the following features: (i) physiologically based, (ii) simple

and reliable estimation of parameters from a single dynamic response of the system, (iii) parame-

ters that vary inside physiologically plausible ranges and (iv) ability to describe system dynamics

with the smallest number of identifiable parameters [7, 108]. These models can be used in physi-

ology studies to estimate metabolic variables such as insulin sensitivity [101], beta-cell responsive-

ness [79], and glucose effectiveness [118], using dynamic experiments like the intravenous glucose

tolerance test. Minimal models are often used for controller design and estimation strategies.

Maximal Models

In contrast to minimal, maximal models are complete comprehensive descriptions that attempt

to fully incorporate all the available knowledge of metabolic regulation into a non-linear model

of a high order with a large number of parameters, that is generally non-identifiable without

massive experimental and invasive investigations on an individual [108]. Many maximal models

have been used as test beds for examining the empirical validity of models intended for clinical

applications, or to perform experiments over the glucose system, that otherwise would be very

dangerous, expensive or unethical to carry out. These simulation models provide the opportunity

to investigate diabetes from additional viewpoints and alternative objectives.

Simulation environments (such as AiDA [119]) were developed for educational purposes to

allow patients and clinicians to gain quantitative understanding of glucose dynamics, or to assess

closed-loop delivery systems [82–85]. In the last decade, the Food and Drug Administration (FDA)

has accepted simulation models for the approval of different medical devices. The UVA/Padova

metabolic simulator [82] was accepted in 2008 as the first in-silico model that can substitute

animal studies in preclinical testing of AP systems. Detailed analysis and comparison of different

model structures are reported in the literature [120].

3.2 Control-oriented models

Glucose models have also constituted an integral part of closed-loop predictive glucose controllers.

Most control design methods make use of compact, low order models, whose main task is capturing

systems dynamics at a detail enough to achieve satisfactory regulation performances [7, 108].

These models can be parametric low-order models (minimal), parametric high-order models but

with few free parameters to allow real-time estimation or non-parametric models such as ARMAX

models or impulse response models. These can be derived from existing minimal models, by

simplifications of maximal models or be derived specifically for their used in closed-loop controllers.

Obtaining a model for any particular dynamical system, in general, is usually obtained through

an identification process. The drawback here is that this procedure, in the case of T1DM patients,
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is very invasive, and most metabolic parameters related to the insulin-glucose system are not

easily identifiable in practice. Hence, usually average models are proposed as a first approach

for describing insulin-glucose dynamics. However, the large inter-patient variability precludes the

possibility of obtaining a single controller for all possible patients with a satisfactory performance,

and obtaining personalized models has been widely studied in order to tackle this issue [18, 19,

21, 50–57, 121–125].

One approach to obtaining a personalized T1DM control-oriented model is to adapt a low-

order model structure based on the patient’s clinical data, such as weight, TDI, the CR, among

others [108]. Hence, the control-oriented models are tuned taking into account easily available

information, that the patients use daily for their glucose control. For example, given the patient’s

TDI, an insulin sensitivity factor can be obtained using the 1800 rule (1800/TDI) [126]. From

the medical point of view, the 1800 rule indicates the maximum drop in glucose concentration,

measured in mg/dl, after a 1 U injection of rapid-acting insulin. Since the work in [50], that rule

has been used in several studies, both in-silico and clinical, to tune the gain of an LTI model to

a particular patient [21, 32, 50, 57, 65, 127].

In [18, 53], three different approaches to obtain a personalized LTI model are presented: (i)

based on the patient’s CR, (ii) a non-parametric approach using historical input-output data to

perform black-box identification, and (iii) a gray-box identification with a known fixed structure.

For the first approach, each in-silico subject of the UVA/Padova simulator is associated with a 13-

th order LTI average model that is personalized according to his/her CR. CR is a parameter that

is part of the conventional therapy of the patient and represents how many carbs are covered by

one unit of insulin. Groups are defined by selecting patients having low (CR ≤ 12), medium-low

(12 < CR ≤ 15), medium-high (15 < CR ≤ 19) and high (CR > 19) SI, where CR corresponds

to the average value of the daily CR profile of each subject in the UVA/Padova simulator. Then,

the model corresponding to the patient’s group is used as a one-step-ahead prediction model to

synthesize a customized MPC. For the second approach, a non-parametric approach is used to

identify an LTI prediction model, that is subsequently converted to a state-space representation

of a given dimension, but there is no control on the order of the resulting model. Finally, a gray-

box identification is carried out through constrained optimization, maintaining a 13-th order LTI

structure.

Other model personalization approaches consist of gray-box identification from a subject his-

torical clinical data. In [128] a fifth-order LTI model is proposed, which through a least-square

cost function is able to fit clinical data over a two-day period. Its parameters are identified from

CGM data, insulin dosages, and carbohydrate estimate. This model was further expanded to a

fifth-order LTI model, to achieve parametric interpretability [129]. From these models, an esti-

mate of SI can be obtained through model parameters, but the obtained value would correspond

to an average value over the estimation window. A similar approach is considered in [130] where

a fifth-order order linear model that fits data up to 84 days is identified, allowing SI, time-to-

peak insulin absorption and time-to-peak gut absorption to assume different day-to-day values,
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thus capturing the inter-day variability of each subject, with the intra-day variations yet to be de-

scribed. In a related manner, data-driven models that are identified with historical clinical data

have been developed in [131–133]. In these works, Wiener-type or ARX models include an input

(mostly time) to account for the effects of the circadian rhythms on glucose metabolism.

Intra-subject variability is an additional important challenge for the AP and has not been

addressed in the aforementioned control-oriented personalized models. Moreover, as mentioned

in Chapter 2, although SI variations have been generally considered to test glucose controllers

through extensive simulations, better closed-loop performance may be obtained if these varia-

tions were included in the synthesis stage. In this regard, adaptive control systems consider intra-

patient variations by embedding the model in the controller and adjusting controller parameters

as the behavior of the system changes. Other adaptive control systems update the parameters of

the model recursively as new data are collected from the system, and use the latest model in the

controller [31]. Moreover, the SI index based on pump and CGM data [103] could potentially be

useful for run-to-run control strategies to adapt basal insulin patterns [30, 134], insulin boluses

[104, 110], or MPC cost functions [19]. It is worth noting that real-time parametric identification

can help improve closed-loop performance. However, the ability of real-time identification algo-

rithms to track time-varying parameters need to be carefully assessed, especially considering that

for some subjects parameters can present substantial differences over time. Model identifiability

analysis could be carried out, for example, using the methodological approach described in [135].

Another approach to cope with intra-patient variability is to compute tight-solution bounds on

prediction models [59, 66, 116]. In this case, parametric variations over a glucose-insulin model

are used to compute all the possible responses (solution envelope) and define upper and lower

bounds that can be computed in real time and employed as prediction models in control structures

like MPC. Similarly, in [86] an LTI model-set was obtained based on the Sorensen’s model [84],

by covering the modeling error as additive uncertainty, between the complete model and a sixth-

order LTI model.

A good control-oriented model should have a structure that allows a well-known, reliable and

numerically robust control synthesis technique to produce a controller that can be implemented

in real-time. Considering the time-varying characteristics of the glucose regulation problem, LPV

models are good candidates and can result in LPV or switched LPV (LTI) control strategies.

Examples of LPV models that have been proposed to describe the insulin-glucose dynamics can

be found in [23, 25, 26, 76, 87, 136]. In [76] and [23], the Bergman minimal model [78] was

considered and transformed into a quasi-LPV model by an appropriate choice of parameters. In

[25, 26, 87], the Sorensen compartmental model [137] was linearized at different points, which

were defined as the vertexes of an affine-LPV model that covers the original nonlinear one. This

model was used as an uncertainty LTI model set, and an H∞ controller was designed to control

it; hence, the time-varying characteristics were not exploited. Finally, in [136], the Cambridge

model [138] was represented with an LPV system by a particular selection of scheduling variables.

The LPV system was used to obtain a robust LPV controller that was tested on different in-silico
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scenarios, showing the benefits of including uncertainty on the controller synthesis.

In this regard, the personalized LPV model developed in [57] reflects the time-varying and

nonlinear nature of the problem, while maintaining a third-order structure, which is not the case

with previous control-oriented models [21, 50, 65]. This more accurate description of the problem

allowed the possibility of designing a switched LQG controller [17] that has been successfully

tested on the complete in-silico adult cohort of the UVA/Padova metabolic simulator, and in the

first clinical trials in Latin America [89]. Considering its advantages, this model will be extended

to include intra-patient variations, which will be explored in two different ways: (i) treating them

as uncertainty, and therefore, covering possible SI variations with a dynamic uncertainty bound,

and (ii) modifying the average structure of the model to include parametric variations in SI. The

next section presents a detailed description of this model and its identification procedure.

3.3 Control-oriented LPV model

The control-oriented LPV model was developed in [22, 57] based on the UVA/Padova metabolic

simulator [81]. It has a low-order structure akin to the one presented in [50], where the input

corresponds to the subcutaneous insulin infusion (in pmol/min) and the output is the glucose

concentration deviation (in mg/dl):

G(s) = k
s + z

(s + p1)(s + p2)(s + p3)
e−15s : (3.1)

An average model was first identified at a glucose concentration g = 235 mg/dl, where the

1800-rule was found to be rendered correct for the nonlinear model. Then, its domain of validity

was extended by allowing parameter p1 to vary with g in order to fit the average Bandwidth

(BW) of the linearized models at different glucose values, keeping all other parameters fixed

(z = 0:1501, p2 = 0:0138 and p3 = 0:0143). The following piecewise-polynomial function was

used to approximate pole p1(g):

p1(g) = ffi1;i g
3 + ffi2;i g

2 + ffi3;i g + ffi4;i with i =

8>>>>>>>>>><>>>>>>>>>>:

1 if g ≥ 300

2 if 110 ≥ g < 300

3 if 65 ≥ g < 110

4 if 59 ≥ g < 65

5 if g ≤ 59

(3.2)

and with coefficient values given in Table 3.1.

In this way, a simple manner of replicating changes in the model’s gain according to the

glucose value was obtained, since the time-varying parameter p1 relates both the BW and DC
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Table 3.1: Parameter values of p1(g) from (3.2).

i ffi1;i ffi2;i ffi3;i ffi4;i

1 0 0 −3:4321× 10−6 4:4706× 10−3

2 0 9:0580× 10−8 −5:3562× 10−5 1:1357× 10−2

3 −4:2382× 10−8 1:1402× 10−5 −9:1676× 10−4 2:5849× 10−2

4 0 1:7321× 10−4 −2:3080× 10−2 7:7121× 10−1

5 0 0 −2:8336× 10−5 1:4083× 10−2

Gain (DCG) of the model.

The average glucose-dependent model (3.1) can then be tuned to a specific subject by ad-

justing parameter k with his/her TDI as follows. For each subject #j , the LPV model at 235

mg/dl is excited with a 1 U insulin bolus and the value of kj is determined so that the glucose

drop matches the one predicted by the 1800-rule (1800/TDIj). Here, it is worth remarking that

parameter kj is time-invariant but specific to each subject.

A state-space representation of the personalized LPV model (defined as LPVg model) is given

by:

ẋ(t) = A(p1)x(t) +Bu(t)

y(t) = Cx(t)
(3.3)

with u and y the insulin delivery and glucose signals, and

A(p1) =

266664
0 1 0

0 0 1

0 −p2p3 −(p2 + p3)

377775+ p1

266664
0 0 0

0 0 0

−p2p3 −(p2 + p3) −1

377775 ;
B =

h
0 0 1

iT
; C = kj

h
z 1 0

i
:

(3.4)

Note that a delay of 15 min should be added to the output and that the LPVg model is affine

in parameter p1, which is an advantageous characteristic for the design of LPV controllers. The

LPVg was compared to the UVA/Padova simulator in in open- and closed-loop by means of the

Root Mean Square Error (RMSE) and the �-gap metric respectively, achieving better fit than

control-oriented models presented previously in this field [21, 50, 65].

Bearing in mind that this model in intended for controller design, the �-gap metric is used

for quantifying the difference between the closed-loop performance of two different loops before

the controller is designed [57]. The performance is quantified by means of a generalized stability

margin, bP1;K . For LTI models, given a controller K and a model P1, both transfer functions,
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this margin is defined by [139, 140] as:

bP1;K =

‚‚‚‚‚‚
24P1

I

35 (1−KP1)−1
h
−K I

i‚‚‚‚‚‚
−1

∞

(3.5)

where larger values of bP1;K correspond to better performance of the feedback system comprising

P1 and K. This performance measure/stability margin is related to the �-gap, ‹�(P1; P2), by the

inequality:

bP2;K ≥ bP1;K − ‹�(P1; P2) (3.6)

with both bPi ;K and ‹�(P1; P2) taking values only in the range [0; 1]. Thus, ‹�(P1; P2) is a mea-

sure of the difference between P1 and P2, with smaller numbers corresponding to P1 and P2

being more similar and ‹�(P1; P2) = 0 only if P1 = P2. The �-gap is defined as:

‹�(P1; P2) =
‚‚‚(I + P2P

∗
2 )−1=2 (P2 − P1) · (I + P ∗1 P1)−1=2

‚‚‚
∞
≤ 1 (3.7)

This metric indicates that any controller K that stabilizes P1 with a margin bP1;K > ˛, is also

guaranteed to stabilize P2 with a stability margin of at least ˛, if P2 is a second model satisfying

‹�(P1; P2) < ˛. In other words, any plant at a distance less than ˛ from P1 will be stabilized by

any controller K that stabilizes P1 with a certain level of performance.

The �-gap can also be interpreted as an uncertainty measure. In this way, the largest model

set that can be stabilized by a controller K stabilizing P0 with bP0;K > ˛ is {P : ‹�(P0; P1) ≤ ˛}
[139, 140]. Note that for its computation, only the plant models are required, and therefore their

closed-loop performances can be compared without having to design the controller.

The �-gap is of particular interest in this work, considering that if P1 and P2 represent alternate

models of the same system (the UVA/Padova model and the LPVg for example), a small ‹�(P1; P2)

indicates that the differences between both models are negligible from a feedback perspective.

3.4 Model (in)validation

As mentioned in Section 3.2, interval models have been used to describe model uncertainty for

analysis and simulation purposes and time-varying parameters have been included in intervals to

reflect how intra-patient variability propagates through the nonlinear dynamics in order to an-

alyze the robustness of a specific control design [59, 66, 95, 116]. Nevertheless, no uncertainty

quantification has been introduced for controller synthesis. In a robust control framework it is

possible to tackle nonlinear/time-varying dynamics and uncertainty, through well-established and

numerically robust techniques. In this regard, robust-control oriented identification deals with

the interplay between identification, uncertainty and worst-case performance.
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Figure 3.1: Model (in)validation setup.

Robust control models describe system uncertainty with both unknown additive signals and un-

known dynamic disturbances. These unknown, but bounded components, lead to a model-set de-

scription [141]. Robust identification techniques allowed to obtain an uncertain model-set in coher-

ence with the robust control methodology to be used. However, the uncertainty bounds were too

conservative. In order to reduce this conservativeness, model (in)-validation appeared as a promis-

ing approach, where a robust control framework was used to determine the minimum levels of ex-

ternal noise and model uncertainty which do not (in)validate the experimental data [86]. The the-

ory for model invalidation was proposed initially in [141, 142] and extented to LPV systems in [143].

The idea behind model (in)validation1 is to verify if a given model is consistent with an

experimental data set (u(tk); y(tk); (tk)) with k = 0; : : : ; N−1, where u(tk), y(tk) and (tk) are

the measures of the input, output, and varying parameter, respectively. In order to accommodate

small differences between the model output and the experimental information, the system is

usually described by a set of models parameterized by a nominal LPV model G(), a (dynamic)

uncertainty bound ∆, and an output disturbance d . For instance, the model set may be defined

as illustrated in Figure 3.1, that is,

G = {G()(1 +W‹(s)∆); ∆ ∈∆∆∆} (3.8)

where

∆∆∆ = {∆ ∈ H∞ : ‖∆‖∞ ≤ ‚} ; (3.9)

W‹(s) is a stable transfer function specifying the uncertainty dependence on frequency, H∞ is

the set of stable transfer functions with suitable dimensions, and ||∆||∞ = sup! |∆(j!)|. On the

other hand, the disturbance is assumed in the set

D = {d ∈ Rr : ‖d‖2=N ≤ dmax} ; (3.10)

with ‖d‖2 =
qPN

0 d(tk)Td(tk). Thus, the objective is to determine whether or not the measured

values can be obtained with the assumed model G(), and the given set descriptions for the noise

and uncertainty.

The relation among signals corresponding to the system description in Figure 3.1 can be ex-

1According to K. Popper [144], a theory can only be falsified or invalidated with certainty, never validated. This
is because future data (that might (in)validate the theory) are not accessible. This also applies to dynamical models
which mimic physical data.
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pressed as:

Tz = TW‹TGTu;

Ty = TGTu + Td ;

Tw = T∆Tz ;

(3.11)

where TW‹ , TG and T∆ are the Toeplitz matrices associated with convolution kernels of G(), W‹

and ∆, respectively. The symbols Tz , Tu, Ty , Td , and Tw , are the Toeplitz matrices associated

with the sequences u, y, d, and w, respectively. The bold letters denote the respective truncated

version of the signals,  = [ T0 : : :  
T
N−1], which are defined as follows:

T =

266666664

 0 0 · · · 0

 1  0 · · · 0
...

...
. . .

...

 n−1  n−2 · · ·  0

377777775
(3.12)

The model set given by G is (in)validated against experimental data provided by vectors u, y,

and , if there exist vectors w and d satisfying constraints (3.8) and (3.10). This is defined as

consistency, and for the model, uncertainty and noise sets are not invalidated by the existing data.

The (in)validation of the model in Figure 3.1 can be expressed as a convex optimization problem.

More concretely, the measures of u(tk), y(tk), and (tk) with k = 0; : : : ; N − 1 are consistent

with the model in Figure 3.1 if the following optimization problem is feasible:

minimize
d;w

‚ (3.13a)

subject to

24T Tu (TW‹TG)TTW‹TGTu T Tw (w)

Tw (w) ‚2I

35 > 0; (3.13b)

24d2
max dT

d I

35 > 0 (3.13c)

where d = y −w − TGu.

In this way, it is possible to find the minimum upper bound on the norm of the uncertainty

∆ ∈ C so that the initial LPV model, G(), is not invalidated by the available experimental

information [u(t); y(t); (t)]. The optimization process either fixes one bound and minimizes the

other, or minimizes a weighted combination of both bounds (‚ and dmax) simultaneously.

The model (in)-validation tools presented in this section are an useful component in the typi-

cally iterative procedure of modeling, identification, design and experimental assessment for con-

trol system development [141]. From an identification perspective, model parameters can be in-

cluded as additional optimization variables and consider the problem of finding the model that de-

scribes the datum with the smallest ammount of noise and dynamic uncertainty; or the problem of
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fine tuning of a model initially estimated by other means, like the robust identification/invalidation

procedure presented in [145]. This framework is adequate for robust controller design methods,

such as H∞ optimal control, LPV or switched (LTI) LPV control.

3.5 Concluding Remarks

In this Chapter, several aspects related to robust control, and how intra- and inter-patient varia-

tions are tackled in control-oriented models are reviewed and discussed. In this regard, it is worth

highlighting:

� Personalized control-oriented models include mostly LTI descriptions that have yet to include

intra-patient variations for control design purposes.

� The most promising approaches that consider intra-patient variations include: (i) personal-

ized model identification allowing SI to be a time-varying parameter in specific cases, and

(ii) intervalar models that include parametric uncertainty that can be used in predictive con-

trol strategies.

� Model (in)validation allows to obtain a robust control model (nominal model with uncer-

tainty bounds) suitable for the design of H∞ optimal control, LPV or switched (LTI) LPV

control techniques that can tackle both dynamic and parametric uncertainties quantitatively.



Chapter 4

Invalidation and Low-Order Model Set

As mentioned in Section 3.2, two different approaches to account for intra-patient variations in

the controller design stage are explored in this work. First, by covering them with a dynamic

uncertainty bound, and second by formalizing them in an LPV model that includes these variations

in a way that allows for the different representations or even real-time estimation of patients SI

daily variability to be coupled with the model.

In this Chapter, the first approach is explored by extending the LPVg control-oriented model

(nominal model) to a set of models to represent uncertain dynamics by means of the invalidation

procedure described in Section 3.4. “Experiments” are obtained from the UVA/Padova metabolic

simulator. Both noise and uncertainty bounds are minimized so that the nominal model with

uncertainty could have produced the data. This procedure provides a quantification of the model

error with respect to this simulator and produces an LPV model set that is amenable to design

robust controllers that take into account several sources of uncertainty, e.g., non-linearities and

variations in SI.

Section 4.1 describes the LPV results of the invalidation procedure carried out over the

LPVg model. Section 4.2 illustrates the use of the model set with the design of a switched LPV

controller that is tested on the in-silico adult cohort of the distribution version of the UVA/Padova

simulator, in comparison to a nominal design. Finally, some concluding remarks are presented in

Section 4.3.

4.1 LPVg model invalidation of synthetic patients

In this section, the model (in)validation tools presented in Section 3.4 are used to test the consis-

tency of the LPVg model presented in Section 3.3 against the noiseless experimental evidence ob-

tained from the UVA/Padova simulator. The output noise bound is thus set at a very small value,

and the optimization problem (3.13) is solved to determine the minimum uncertainty bound ‚.

The experimental data sets [u(tk); y(tk); (tk)] were generated by extensive simulations using
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two types of realistic insulin profiles. The first one represents a correction insulin bolus of the form:

u(t) =

8<: „=Ts ; if t0 ≤ t ≤ t0 + Ts ;

0 otherwise;
(4.1)

where Ts = 5 minutes is the sampling time and „ a random number in the range [0:5; 1:5] U. The

second profile is a basal insulin modulation signal:

u(t) =
nX
k=1

(1 + “)ubffi(kTp) (4.2)

where ub is the basal infusion rate, “ is a random number in the range [−0:5; 0:5], ffi(t) is a

pulse signal of width Tp = 60 minutes and nTp is the total simulation time. This signal mimics

the modulation of the basal insulin infusion rate during a closed-loop test, as the one that will

illustrate these results in Section 4.2. The time-varying parameter, (tk), represents parameter

p1(g) from (3.2), and is computed using the experimental glucose signal, y(tk).

The difference between the experiment and the model during the invalidation process covers

structural and/or parametric uncertainties. The first one involves the different dynamical behaviors

of the system when moving from one glucose value to another. Specifically, this represents different

LTI models moving over a nonlinear dynamical surface. In addition, intra-patient variations are

included as parametric uncertainties in SI. In order to consider this variability, for each in-silico

adult of the distribution version of the UVA/Padova simulator, the nominal insulin sensitivity

(SI;nom) was affected with each one of the factors in the set {0:5; 0:7; 0:9; 1; 1:1; 1:3; 1:5}.
These values were selected according to the clinical findings presented in [49]. Variations in SI

were implemented as changes in the model parameters Vmx and kp3 that represent the peripheral

and hepatic insulin sensitivity, respectively.

To collect sufficient representative information of each in-silico adult, they were excited with

three signals of the form (4.1) and five of the form (4.2). As an example, Figure 4.1 shows the ex-

citation signals and glucose evolution corresponding to the experiments performed on Adult #001

with SI;nom. The upper plots correspond to the input signals and the bottom plots correspond to

the glucose responses obtained with the UVA/Padova simulator and the LPVg model. Bearing in

mind that different insulin sensitivities are used, effects of insulin modulations in a wider range are

considered, at least in nominal conditions. For example, a 1.5 U bolus for SI= 1:5 SI;nom would

be similar to a lower bolus with the nominal SI, or a larger bolus with a lower SI. Moreover,

the range of insulin profiles used in this work was limited in order to guarantee that the glucose

traces, in all cases, remain in the simulator’s domain of validity, i.e., [40, 400] mg/dl.

The model (in)validation discussed above requires a discrete model. Therefore, the discrete

first order approximation of the LPVg model, with a 5-minute sampling time, results:
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Figure 4.1: In-silico experimental results with the insulin bolus test signal (left) and the basal
insulin modulation test signal (right) applied to Adult #001 with sensitivity SI;nom. Insulin
infusion rate (upper) and glucose response (lower) obtained with UVA/Padova simulator

(solid line) with LPV model (dashed line).

x(tk+1) = Ad [p1(tk)] x(tk) + Bd u(tk);

y(tk) = Cd x(tk);

where

Ad [p1(tk)] =

24I + TsA[p1(tk)] 0

BeC Ae

35 ; Bd =

24TsBe
0

35 ; Cd =
h
0 Ce

i
;

Ae =

266664
0 0 0

1 0 0

0 1 0

377775 ; Be =

266664
1

0

0

377775 ; Ce =
h
0 0 1

i
:

The noise signal set was defined in (3.10) with dmax = 0:05, and the uncertainty weight in

(3.8) as:

W‹(s) = 0:2
500s + 1

50s + 1
(4.3)

In model (in)validation, the differences between the experimental data and the model are

“explained”by the model uncertainty ∆ and a noise set bounded by dmax mg/dl. Here, noise-free

results from the UVA/Padova simulator have been used as “experimental data”, reason why such
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a small noise bound dmax was selected. In addition the noise set serves to consider noisy data, but

this bound has no implications in the control design. In next section more realistic noisy scenarios

are considered to test the proposed robust controller, which does not affect the validity of the

uncertain model.

Hence, all differences between the model and the experiment are attributed to non-linearities

and unmodeled phenomena, which can affect stability and performance. Here, W‹(s) is a high-

pass filter because above a certain frequency, uncertainty impedes the stabilization of the closed-

loop. The only designer’s choice is the maximum achievable closed-loop bandwidth (2 × 10−3

rad/min in eqn. (4.3)) which was chosen according to the a priori knowledge on the system,

in order to cover the nominal model’s dynamics. Its magnitude depends on the experimental

knowledge of the system, and is computed as an uncertainty bound ‚ in the set (3.9) which scales

W‹(s) during the controller design. The magnitude depends on the proposed uncertain model,

and in general can be reduced if a more complex model set is used, e.g., higher order. Therefore,

the 20% uncertainty that W‹(s) has at low frequencies is only a starting point, since its actual

magnitude is computed by means of the (in)validation procedure.

The uncertainty bounds ‚ obtained after solving the optimization problem (3.13) for each

data set and for each in-silico adult are summarized in Figure 4.2. Adult #007 has been excluded

because its TDI is not compatible with its SI. In addition, the invalidation tests performed on

this subject have shown a clear inconsistency between model and data, turning it into an outlier

of the set in terms of model uncertainty. The red dots indicate the ‚ for each test and the red

line the worst case bound for each combination of subject-SI. The blue line indicates the worst-

case uncertainty bound ‚ws;j for each adult. This last bound can be used in LPV synthesis tools

for the controller design by scaling the uncertainty weight as ‚ws;jW‹(s). In this way, the model-

set for each subject is described by:

Gj = {G()(1 +W‹(s)∆); ∆ ∈∆∆∆j} (4.4)

where

∆∆∆j = {∆ ∈ H∞ : ||∆||∞ ≤ ‚ws;j} ; (4.5)

The corresponding values obtained in the model (in)validation are listed in Table 4.1.

This modeling strategy can be carried out from real clinical data in a minimally invasive way.

One alternative would be to use the patient’s daily data recorded by the CGM and pump to

invalidate the LPVg model and obtain the patient’s particular model set, considering that the

time-varying parameter (p1) is computed with the CGM readings. In this way a robust controller

can be designed, and tested clinically on the same subject. Using clinical data, which could have

inputs with lower variability and therefore, lower capability to challenge the model (excitability),

will not affect the procedure, since the difference between the clinical data and the model output

is originated by the subject’s individual response, and includes all possible sources of uncertainty
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Figure 4.2: Summary of the uncertainty bounds ‚ obtained for the eight test signals applied to
each in-silico adult with seven different SI. The blue line indicates the worst-case uncertainty

bound ‚ws;j

Table 4.1: Uncertainty bounds for each in-silico adult and each variation in SI. The worst-
case bounds are ‚ws;j .

Adult

SI/SI;nom #001 #002 #003 #004 #005 #006 #008 #009 #010 #011

0.5 1.524 1.735 1.555 1.560 1.484 1.754 1.596 1.598 1.808 1.637

0.7 1.093 1.515 1.194 1.190 1.185 1.530 1.326 1.124 1.502 1.298

0.9 0.791 1.350 1.015 0.934 0.858 1.332 1.318 0.949 1.344 1.282

1.0 0.698 1.479 0.958 0.787 0.696 1.256 1.238 0.822 1.301 1.208

1.1 0.681 2.131 0.948 0.646 0.540 1.196 1.147 0.700 1.218 1.128

1.3 1.566 3.859 1.801 0.552 0.523 1.135 0.989 0.526 1.276 1.431

1.5 3.327 5.694 3.510 0.798 0.791 1.528 0.940 1.197 1.231 2.864

‚ws;j 3.327 5.694 3.510 1.560 1.484 1.754 1.596 1.598 1.808 2.864

(not only in SI). In this way, the model set obtained (which now represents this patient) is the

one to be controlled.

4.2 Switched-LPV robust controller design

The use of the set of models obtained in Section 4.1 is illustrated in this Section designing a

switched-LPV controller. To this end, each subject is represented by the set of models computed in
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Section 4.1, and extending the ideas in [21, 57], a (robust) switched LPV controller is synthesized

based on this set. This design switches between two LPV controllers: K1() that is conservative

and performs slight changes on the basal insulin infusion rate, and K2() that is more aggressive

and is triggered at meal times.

The design of LPV controllers follows similar procedures as H∞ optimal control, but for

time-varying systems. The controller is computed solving a convex optimization problem aimed

at minimizing the L2 gain of the mapping from a generic disturbance w to an output z , i.e.,

minimizing a scalar ” > 0 such that

‖z‖2 < ” ‖w‖2;

where ‖x‖2 =
qR∞

0 xT (t)x(t) dt. Therefore, the design involves selecting w and z according

to the control specifications. In the case of the AP, the structure of weights and signals are

illustrated in Figure 4.3. In this framework, a controller designed to cope with an uncertain system

represented by a set of models, works properly when nominal performance and robust stability are

satisfied.

Here, nominal performance pertains the minimization of two selected variables under a set of

possible perturbations r . Thus, it is achieved by solving the minimization of a gain ¸ > 0 for all

r bounded in L2 such that: ‚‚‚‚‚‚
24ẽ
ũ

35‚‚‚‚‚‚
2

< ¸‖r‖2; (4.6)

where ẽ and ũ are obtained after weighting the glucose error e and the control action u (insulin

infusion) with the following weights:

Wp(s) =
ke
10

10s + 1

5000s + 1
; (4.7)

Wu = ku;j ; (4.8)

respectively. The variable j ∈ {1; 2} corresponds to the controller index in the switching strategy.

−
r

K(ρ)
e

G(ρ)
u

ρ

yδ

Wδ

ỹ

Wp

ẽ

Wu

ũ

z

w

Figure 4.3: Robust LPV control design setup.
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Table 4.2: Results corresponding to the LPV robust controller design for each in silico adult.

Adult #001 #002 #003 #004 #005 #006 #008 #009 #010 #011

‚ws 3.327 5.694 3.510 1.560 1.484 1.754 1.596 1.598 1.808 2.864

ke 0.023 0.016 0.023 0.045 0.050 0.043 0.047 0.046 0.041 0.027

”1 1.081 1.042 1.122 1.281 1.388 1.474 1.423 1.301 1.311 1.129

˛1 0.949 0.982 0.965 0.861 0.849 0.812 0.835 0.887 0.878 0.961

”2 1.014 1.012 1.039 1.078 1.130 1.142 1.138 1.101 1.100 1.045

˛2 0.982 0.988 1.005 0.975 0.993 0.999 0.999 0.997 1.001 1.005

Weight Wp(s) penalizes glucose deviations from the basal value (around 120 mg/dl [146]) and

weight Wu penalizes large changes in the insulin injection. Both weights are the only controller

tunning parameters, and are selected according to the designer’s priorities by adjusting parameters

ke , ku;j . The pole of Wp corresponds to the bandwidth of the nominal model. In this work, these

performance weights have been selected in order to prioritize avoidance of hypoglycemia rather

than the lack of hyperglycemia, considering the short and long term consequences of each state.

Robust stability consists in guaranteeing that the controller stabilizes the closed-loop system

for any possible model in the set (3.8), and therefore stabilizes the underlying uncertain dynamics.

To this end, the controller must be computed in order to ensure ˛ < 1 where

‖ỹ‖2 < ˛ ‖y‹‖2:

Variable ỹ is obtained after weighting y with the uncertainty dynamics (4.3) affected by the worst-

case bound ‚ws corresponding to the particular subject, i.e., ‚wsW‹(s).

Table 4.2 summarizes the controller design results, obtained through the Matlab Robust Con-

trol ToolboxTM. For all subjects, the parameter in Wu was set as ku;1 = 0:5 and ku;2 = 0:07. Note

that ku;2 is significantly smaller than ku;1, and therefore provides a lower weight on the control

variable which in turn produces a more aggressive controller (higher insulin infusion at meal times).

Parameter ke was adjusted for each patient in order to ensure the robust stability condition ˛ < 1.

Notice that by norm properties ˛ ≤ ”, nevertheless forcing ” < 1 might result in a very conserva-

tive controller design. For this reason, the parameter ke for each patient was selected (by trial and

error) according to the gain ˛. From Table 4.2 it is clear that those subjects with higher uncer-

tainty bound ‚ws require lower values of ke , which implies a lower performance, i.e., a worse glu-

cose regulation, given the conservativeness imposed over the controller due to the high uncertainty.

Closed-loop simulations were performed considering the following conditions: (i) the

UVA/Padova distribution simulator; (ii) a meal of 70 g of CHO is ingested at hour 7; (iii) the ag-

gressive controller is triggered exactly at meal time and commands the insulin infusion; (iv) one

hour after meal time, the conservative controller automatically takes over the insulin delivery; and

(v) a CGM and an insulin pump with a delivery resolution of 0.1 U. It is worth clarifying that meal
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Figure 4.4: Closed-loop responses for one in-silico adult to a meal of 70 g of CHO at the
hour 7, using the nominal controller (left) and the robust controller (right). Seven variations
of SI are considered and the same CGM noise is applied in all cases for comparison purposes.
The continuous red lines represent the limits of the 70-250 mg/dl range, the dashed blue
lines indicate the limits of the 70-180 mg/dl range, and the dashed black lines indicate the

minimum and maximum glucose values.

announcement is made only for triggering the aggressive controller, but no information regarding

the carbohydrate amount is required by the controller, and therefore, no pre-meal insulin boluses

are infused.

Figure 4.4 presents simulations of the closed-loop system for one in-silico adult, where each

line corresponds to a particular subject’s SI indicated in Section 4.1. Plots on the right correspond

to the closed-loop system with the robust controller designed as mentioned in this section. Plots

on the left show the closed-loop responses with a nominal controller, i.e., a controller designed

considering only the performance objective (4.6) and not the model set (3.8) (model uncertainty

is excluded) with the same ku;j and ke = 1. Comparing both responses, it can be observed

that the nominal controller is more aggressive than the robust one, applying higher insulin doses.

This result is suitable for SI values close to SI;nom, but not when the SI is far from the nominal

value. This is clear in the case of a more sensitive value as SI= 1:5SI;nom in which a significant

postprandial glucose drop can be observed (minimum blood glucose around 40 mg/dl). On the

other hand, the robust controller is more conservative, using lower insulin values, but produces

a more uniform response for all SI cases (minimum blood glucose around 90 mg/dl). These

results are reasonable from the point of view of robust control theory: a controller that aims for a

particular (nominal) model representation of the patient will show its worst performance when the

model does not match the actual patient. Instead, a robust controller that should manage a set of

models (a more realistic representation of the patient) already considers possible uncertainties in
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Figure 4.5: Left: Control Variability Grid Analysis (CVGA) plots of the closed-loop responses
of all in-silico adults and their SI variations for the nominal (white) and the robust controllers

(blue). Right: Time-in-range plots.

both model’s structure and parameters, and therefore will perform at its best in general, although

in a more conservative fashion.

Figure 4.5 provides the closed-loop results for all in-silico adults in a CVGA (left) and time-

in-range (right) plots. Time-in-range results are computed from the meal time to the end of the

simulation. A comparison is made between the nominal and robust controller designs over all

subjects, including their SI variations. From the CVGA plot, the nominal controller presents a

higher number of subjects in the lower D-zone (nominal: 29%, robust: 1%), indicating risk of

hypoglycemia. Instead, the robust controller is located in the B- and upper B-zones, achieving

a significant reduction in hypoglycemic events, compared to the nominal one. This situation is

also shown in the time-in-range plot, where a significant reduction of time in hypoglycemia (<

70 mg/dl) is achieved (nominal: 2.67% vs. robust: 0.05%, p < 0:05), without significantly

reducing the percentage of time in range [70, 250] mg/dl (nominal: 96.85% vs. robust: 95.48%,

p = 0:108). Although there is a significant reduction in percentage of time in range [70, 180]

mg/dl when the robust controller is used (nominal: 88.75% vs. robust: 82.19%, p < 0:05), time

in range achieved with the robust controller is still acceptable. Hyperglycemic behavior arises as a

consequence of the conservative tendency of the robust controller, coming from a large uncertainty

bound, and therefore, it can be reduced by further refining of the uncertainty bounds by means

of more (and better) information of each patient.
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4.3 Concluding remarks

In this Chapter, an LPV invalidation technique has been applied to a control-oriented LPV model in

order to expand the insulin-glucose description to a set of LPV models. Here is worth highlighting:

� The invalidation procedure can be employed with clinical data. In this way, personalization

can be achieved, and parametric uncertainties different from those related to the subject’s

SI could be accounted for.

� This model-set set is instrumental for robust controller design, which in this work has been

carried out by a switched LPV procedure. The controller design based on this model set

has proved useful when structural and parametric uncertainties appear in the problem.

� An illustrative example presents a robust controller that successfully copes with uncertainties

in the nonlinear dynamics (changes in the glucose values) and variations in SI, as compared

to a nominal design.

� The resulting performance of the controller can be enhanced by using more complex nominal

models which would allow making the model more consistent with the experiments.



Chapter 5

Control-Oriented Model with Intra-patient Variations

In Chapter 4, a model-set that includes SI variations through dynamic uncertainty bounds for each

patient was obtained. This approach “covers” intra-patient variations with bounded uncertainty

that can be taken into account in the controller design procedure.

In this Chapter, an alternative is proposed, embedding SI variations into the model. This

represents a better way of considering these variations in the synthesis stage since the dynamic

effects of intra-patient variations are included in the controller dynamics. In this way, more specific

and less conservative controllers can be designed.

The proposed model is an extension of [57] that includes SI variations while maintaining its low-

order model structure. Intra-patient variability is included using a second time-varying parameter

to the LPV structure. The model now includes intra- and inter-patient variations because it still

preserves the possibility of personalizing it to a particular patient. Moreover, this personalization

is also based on the 1800-rule, through a procedure that can be carried out in real patients in a

non-invasive way.

The Chapter is organized as follows: In Section 5.1 the procedure to obtain the LPV model

with intra-patient variations is presented. Then, Section 5.2 presents the open- and closed- loop

evaluation of the model efficiency. Finally, some concluding remarks are drawn in Section 5.3.

5.1 LPVg with intra-patient variations

Following a similar procedure than [57], an extension of model (3.4) that includes intra-patient

variability is developed, defined as LPVi model. Linearizations of the UVA/Padova model are

obtained for each in-silico adult of the distribution version, from the subcutaneous insulin delivery

(pmol/min) to the subcutaneous glucose concentration deviation (mg/dl) at different steady-state

glucose concentrations g and Insulin Sensitivity Variation Factor (SI;VF) values. To this end, for

each subject and each g and SI;VF, the insulin infusion rate needed to maintain the glucose level

constant was computed. To fully cover all scenarios discussed in [49, 106], parameters Vmx and kp3

of the simulator are modulated by an SI;VF within the range [0:4; 1:7]. Here, SI;VF = SI=SI;nom,
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where SI;nom represents the nominal values of Vmx and kp3 in the simulator.

Figure 5.1 and Figure 5.2 show the average variation of the BW and DCG, respectively, for

LPVg and all in-silico adults linearized at different g and SI;VF values. Note that both bandwidths

and continuous gains coincide exactly at SI;VF = 1.

Figure 5.1: BW of LPVg (smooth surface) and average BW for all in-silico adults from the
UVA/Padova simulator linearized at different g and SI;VF values (gridded surface). The red

dotted line indicates the BW at SI;VF = 1.

Figure 5.2: DCG of LPVg (smooth surface) and average DCG for all in-silico adults from the
UVA/Padova simulator linearized at different g and SI;VF values (gridded surface). The red

dotted line indicates the DCG at SI;VF = 1.
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Bearing in mind that the DCG of model (3.1) is kz
p1p2p3

and that the BW is independent on

k , an extension to model LPVg is proposed by making parameter k dependent on g and SI;VF as

depicted in Figure 5.3. Following this approach, the observed variations of the model’s gain due

to SI changes (see Figure 5.2) can be reproduced, without affecting the previous BW fitting.

SI,V F (t)
k(g, SI,V F )

p1(g)

G

t

g(t)

g(t)

u(t)

LPVi

Figure 5.3: Average LPVi model structure.

In this way, k is used to compensate both inter-patient variations through the 1800-rule and

intra-patient variations by making k change according to a suitable SI profile. The latter could

be a general profile (such as those in [47, 104, 106]) or a profile obtained from clinical data. This

grants flexibility to the selected model structure, so it can be used together with the SI profile

that best suits subject-specific circadian variations in SI, or even considering other factors that

influence SI such as physical exercise or stress [62, 91, 100, 147], which have yet to be included

in control-oriented models [64, 148].

In order to characterize the dependence of parameter k on g and SI;VF, the average DCG for all

in-silico adults linearized at different (g; SI;VF) pairs, i.e., DCGNL(g; SI;VF) is used for determining

kavg as:

kavg (g; SI;VF) =
p2p3

z
p1(g)DCGNL(g; SI;VF) (5.1)

where p1(g) corresponds to the polinomial function given in (3.2). The result was fitted using

the following piecewise polynomial function:

kavg (g; SI;VF) =–1;n + –2;n g

+ –3;n SI;VF + –4;n g SI;VF

+ –5;n g
2 + –6;n SI;VF

2

+ –7;n g
2 SI;VF + –8;n g SI;VF

2

+ –9;n g
2 SI;VF

2 + –10;n g
3

+ –11;n SI;VF
3 + –12;n g

3 SI;VF

+ –13;n g SI;VF
3 + –14;n g

4

with n =

8>>>>><>>>>>:

1 if g ≥ 300

2 if 120 ≥ g < 300

3 if 50 ≥ g < 120

4 if g ≤ 50

(5.2)
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Table 5.1: Parameter values for kavg (g; SI;VF) from (5.2).

n 1 2 3 4

–1;n −7:641× 10−03 5:514× 10−05 8:356× 10−05 −2:011× 10−05

–2;n 9:024× 10−05 −1:186× 10−06 −2:645× 10−06 2:942× 10−06

–3;n 4:785× 10−04 3:262× 10−05 −5:145× 10−05 −1:352× 10−04

–4;n −4:296× 10−06 −6:907× 10−07 8:635× 10−07 7:641× 10−06

–5;n −3:971× 10−07 9:342× 10−09 2:470× 10−08 −1:323× 10−07

–6;n −4:243× 10−05 3:838× 10−06 5:062× 10−06 8:139× 10−05

–7;n 1:225× 10−08 3:270× 10−09 −4:359× 10−09 −1:399× 10−07

–8;n 1:885× 10−07 −3:542× 10−08 −5:847× 10−08 −3:266× 10−06

–9;n −1:966× 10−10 6:014× 10−11 0 2:696× 10−08

–10;n 7:718× 10−10 −3:175× 10−11 −7:066× 10−11 2:400× 10−09

–11;n 5:622× 10−06 −2:428× 10−06 0 −1:458× 10−05

–12;n −1:153× 10−11 −5:211× 10−12 0 8:254× 10−10

–13;n −1:546× 10−08 8:127× 10−09 0 3:713× 10−07

–14;n −5:588× 10−13 3:937× 10−14 0 −1:575× 10−11

FIT 97:11 97:22 15:03 92:75

Parameter values and goodness of fit for each interval are presented in Table 5.1. The goodness

of fit was expressed as a fitting percentage obtained by:

FIT = 100

 
1− ‖kp − k‖2

‖k − k‖2

!
(5.3)

where kp is the predicted value, k the real value and k its mean. Figure 5.4 presents the results

for kavg and its smooth polynomial fitting. Note that as shown in Figure 5.1, there is an abrupt

change at 60 mg/dl. The reason for this discontinuity is that the insulin-dependent glucose

utilization in the UVA/Padova simulator is associated with a risk function that increases when

glucose decreases below the subject’s basal glucose concentration and saturates when glucose

reaches 60 mg/dl. To avoid translating this artifact discontinuity to the glucose output, a smooth

surface was fitted instead, as evidenced in the low fitting coefficient interval n = 3.

In this way, the state-space representation of the average LPVi model is the same as (3.3),

but now with:

A(p1) =

266664
0 1 0

0 0 1

0 −p2p3 −(p2 + p3)

377775+ p1

266664
0 0 0

0 0 0

−p2p3 −(p2 + p3) −1

377775 ;
B =

h
0 0 1

iT
;

C = kavg (g; SI;VF)
h
z 1 0

i
:

(5.4)
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Figure 5.4: Parameter kavg for different values of g and SI;VF (gridded surface) and piecewise
polinomial function kavg (g; SI;VF) (smooth surface).

5.1.1 Model personalization

In Section 5.1, it was shown how k could be used to tackle intra-patient variability. In this Section,

k is tuned to reduce inter-patient uncertainty. This model personalization is carried out similarly

as in [57], i.e., by adjusting the model’s k through the 1800-rule.

For this, a suitable gain k? is found, making the model achieve the same glucose drop as

the one predicted by the 1800-rule when excited with a 1 U insulin bolus at g =235 mg/dl

and SI;VF = 1. Then, kavg is scaled by means of a constant kj , in order to satisfy k? =

kjk
?
avg , where k?avg = −1:822 × 10−5 corresponds to kavg (235; 1). Results are presented in Ta-

ble 5.2. Model personalization is thus achieved by replacing kavg (g; SI;VF) in (5.4) with parame-

ter ks(g; SI;VF) = kjkavg (g; SI;VF).

Table 5.2: Scaling factor kj for each in-silico adult.

Adult TDI [U/day] k? × 10−5 kj

#001 42 -1.7888 0.9818

#002 43 -1.7451 0.9578

#003 52 -1.4343 0.7872

#004 35 -2.1396 1.1743

#005 40 -1.8650 1.0236

#006 72 -1.0343 0.5677

#008 52 -1.4379 0.7892

#009 34 -2.2024 1.2088

#010 47 -1.5919 0.8737

#011 39.9 -1.8864 1.0354

Variations of ks for the average in-silico subject, and the most and least sensitive subjects

are presented in Figure 5.5. Note that the most sensitive subject (Adult #009), whose TDI is
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the lowest, is associated with the highest scaling factor kj , and therefore, higher values of ks .

Moreover, the same subjects, a comparison of the fit accomplished by the personalized LPVi model

to the DCG of the linearized models are presented in Figures 5.6 to 5.8. Note that in each case,

the fit of the personalized LPVi is better than if just kavg is used (average LPVi ), even for the

case when kavg fitting was softened. Additionally, for the average subject, both the personalized

LPVi and the average LPVi coincide, since his/her parameters are considered to be the average

of the in silico population.

Figure 5.5: kavg (gray surface) and personalized ks for the average subject (yellow surface),
Adult #006 (blue surface) and Adult #009 (green surface)
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Figure 5.6: DCG of average LPVi (dotted lines), personalized LPVi (dashed lines) and lin-
earized UVA/Padova model (solid lines) for Adult #006, for sensibilities lower (upper panel)

and higher (lower pannel) than nominal.
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Figure 5.7: DCG of average LPVi (dotted lines), personalized LPVi (dashed lines) and lin-
earized UVA/Padova model (solid lines) for Adult #009, for sensibilities lower (upper panel)

and higher (lower pannel) than nominal.
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Figure 5.8: DCG of average LPVi (dotted lines), personalized LPVi (dashed lines) and lin-
earized UVA/Padova model (solid lines) for Adult #011, for sensibilities lower (upper panel)

and higher (lower pannel) than nominal.

5.2 Results and Discussion

A good simulation model, i.e., one that fits properly the experimental data, is not necessarily

a good candidate to design controllers [86]. Therefore, in this Section, a comparison of both

LPVg and LPVi with respect to the UVA/Padova model is carried out not only for simulation

(open-loop) purposes, but also for controller synthesis (closed-loop). No other models are con-

sidered here, since in [57], it was found that LPVg has lower closed- and open-loop errors than

previous control-oriented models [21, 50, 65].



50 Chapter 5. Control-Oriented Model with Intra-patient Variations

5.2.1 Open-loop comparison

For each of the 10 in-silico subjects of the distribution version of the UVA/Padova simulator, an

insulin bolus of 1 U was applied at different operating points to test the personalized LPVi and

LPVg models in comparison with the UVA/Padova nonlinear simulator. Figure 5.10 presents the

time-responses to a 1 U insulin bolus for multiple SI;VF values at basal glucose concentrations of

120, 180, and 240 mg/dl, for Adult #009 (most sensitive subject), Adult #006 (least sensitive

subject) and Adult #011 (average subject). Variation in parameters p1 and ks for the LPVg and

LPVi models are also depicted.
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Figure 5.9: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl and
240 mg/dl for Adult #011 at different SI;VF values for models LPVg (dotted black line),
LPVi (dashed lines) and the UVA/Padova nonlinear model (solid lines). Top: Glucose drop.

Middle: Evolution of parameter p1. Bottom: Evolution of parameter ks .

Note that a better fit is achieved with LPVi than with LPVg for most SI;VF values. The

reason is that only LPVi adjusts its gain to reflect changes in SI. In addition, it is worth clarifying

that despite the LPVi model is an extension of the LPVg model, its behavior for SI;nom is the

same only at 235 mg/dl as an operating point, i.e., the glucose concentration at which they

were both identified. For other glucose concentrations, the gain adjustment through variation

of parameter ks(g; SI;VF) generates the differences between both models. Moreover, the average

subject presents a similar behavior since it exhibits the average variations captured by parameters

p1 and kavg . However, the model is able to adjust to each patient due to its personalization (see

Figures 5.6 and 5.7), and obtain similar responses to those of the non-linear model for each subject.
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Figure 5.10: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl and
240 mg/dl for Adult #009 at different SI;VF values for models LPVg (dotted black line),
LPVi (dashed lines) and the UVA/Padova nonlinear model (solid lines). Top: Glucose drop.

Middle: Evolution of parameter p1. Bottom: Evolution of parameter ks .
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Figure 5.11: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl and
240 mg/dl for Adult #006 at different SI;VF values for models LPVg (dotted black line),
LPVi (dashed lines) and the UVA/Padova nonlinear model (solid lines). Top: Glucose drop.

Middle: Evolution of parameter p1. Bottom: Evolution of parameter ks .
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For the three LPV models, i.e. the average LPVi , the personalized LPVi and the LPVg , the

RMSE between their time-responses (yp) and the UVA/Padova model (y), for each subject at

each operating point on the (g,SI;VF) grid, was computed according to the following equation:

RMSE =
‖yp − y‖2∆t

nt
(5.5)

where nt is the number of samples in the signals (yp or y) and ∆t the sample time. In order to

capture the complete glucose variation at each point, a number of nt = 1200 points and ∆t = 1

min were selected. In Figure 5.12, average values of the RMSE for all 10 in-silico adults at

different g and SI;VF values are shown. Note that a lower RMSE can be obtained with LPVi than

with LPVg for most glucose concentrations. Considering SI variations, for the least sensitive case

(SI;VF = 0:4), LPVi outperforms LPVg for the whole glucose range. For SI;nom (SI;VF = 1), both

LPV models have approximately the same RMSE, except for glucose concentrations around 90-

180 mg/dl, where the increased sensitivity of the UVA/Padova model is further adjusted by the

variation of the ks parameter in LPVi . For a glucose concentration of 235 mg/dl, similar errors

are observed since, as discussed before, at this point both models are equivalent. For the most

sensitive case (SI;VF = 1:7), LPVi has a similar RMSE as LPVg for g < 140 mg/dl, but at higher

g values the difference in the DCG between both models becomes larger and LPVi provides a

better fit. Moreover, the benefits of model personalization are evidenced, since the personalized

LPVi model achieves smaller errors than the average LPVi in all cases.
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Figure 5.12: Average RMSE between the time-responses of the personalized LPVg (blue
dashed lines), average LPVi (green dotted lines) and personalized LPVi (violet solid lines),
as compared with the UVA/Padova nonlinear model to an insulin bolus of 1 U for different
SI;VF values. Top: most resistant case (SI;VF=0.4), middle: nominal case (SI;VF=1), bottom:
most sensitive case (SI;VF=1.7). Vertical bars are limited by maximum and minimum values.
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5.2.2 Closed-loop comparison

In this case, the �-gap distance [139, 140] between each personalized LPV model and the

UVA/Padova model linearized at different points of the (g; SI;VF) grid is computed. This metric

allows the closed-loop performance of two models to be compared without specifically designing

the controller, which is required for a comparison through the RMSE. As mentioned in Section 3.3,

a smaller ‹� means that the differences between two models of the same system are not important

from a feedback perspective [139]. Figure 5.13 presents the average �-gap for all 10 adults for three

different SI;VF values, obtaining similar results as for the RMSE analysis discussed in Section 5.2.1.
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Figure 5.13: Average �-gap (‹�) between the linearizations of the UVA/Padova nonlinear
model and models LPVg (blue dashed lines), average LPVi (green dotted lines) and personal-
ized LPVi (violet solid lines) for different SI;VF values. Top: most resistant case (SI;VF=0.4),
middle: nominal case (SI;VF=1), bottom: most sensitive case (SI;VF=1.7). Vertical bars are

limited by maximum and minimum values.

5.2.3 Overall comparison

The difference between the RMSE and �-gap obtained with the three LPV models was computed

for all (g,SI;VF) values considered, and all 10 in-silico adults, according to:

‹�;d = ‹�;LPVi − ‹�;LPVg ; RMSEd = RMSEi − RMSEg (5.6)

In this way, negative values of ‹�;d or RMSEd indicate points where the personalized LPVi out-

performs LPVg . For all subjects, RMSE and �-gap differences are shown in Figures 5.14 to 5.18.

Although a definitive improvement over all (g, SI;VF) values with the LPVi model is not obtained,

the reduction is greater in terms of its magnitude than cases where the LPVg outperforms the
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personalized LPVi , where the �-gap difference between both models does not exceed 0.1. This

is clearer in the case of the closed-loop performance (for example, in Adults #001, 002, 008 and

010), which evidences the benefits of including the SI variation in the controller design stage.
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Figure 5.14: RMSEd (top) and ‹�;d (bottom) for Adult #001 (left) and Adult #002 (right).
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Figure 5.15: RMSEd (top) and ‹�;d (bottom) for Adult #003 (left) and Adult #004 (right).
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Figure 5.16: RMSEd (top) and ‹�;d (bottom) for Adult #005 (left) and Adult #006 (right).
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Figure 5.17: RMSEd (top) and ‹�;d (bottom) for Adult #008 (left) and Adult #009 (right).
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Figure 5.18: RMSEd (top) and ‹�;d (bottom) for Adult #010 (left) and Adult #011 (right).

Differences between the average LPVi and personalized LPVi relative to the LPVg are pre-

sented in Figure 5.19. Note that for some subjects both models have approximately the same er-

rors both in open- and closed-loop, but mostly, the personalized LPVi has the same or better per-

formance than the average LPVi . Considering these similarities, a two-sample t-test was carried

out for each in-silico adult, to determine if the LPVi achieved a significant improvement for both

RMSE and �-gap. Differences were computed according to (5.6), with the average LPVi in place

of the LPVg . Test results are presented in Table 5.3, with the percentaje of cases in which the

personalized LPVi outperforms the average LPVi . Note that subjects for whom low (or none)

improvement with the personalized LPVi was achieved, a significant difference was not observed

according to the t-test, and therefore, no detriment on the model’s performance was obtained

through personalization. For the subjects were this difference was significant, the personalized

LPVi was better in over 79% of cases. For the whole in-silico population, despite no difference in

the RMSE of both LPVi models was found, the personalized LPVi presents a better closed-loop

performance. This highlights the relevance of model personalization considering the different dy-

namics that can be exhibit by different subjects.
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Figure 5.19: Percentage of cases of model improvement in terms of the RMSE (RMSEd < 0)
(top) and �-gap (‹�;d < 0) (bottom) obtained with the average LPVi (green dotted lines)
and personalized LPVi (violet solid lines) compared to the personalized LPVg for each in

silico adult of the UVA/Padova simulator.

Table 5.3: Percentage of cases of model improvement in terms of the RMSE and �-gap
obtained with the personalized LPVi compared to the average LPVi . hRMSE or h�-gap equal
to one indicate a significant reduction on the average RMSE or �-gap with the personalized

LPVi , considering a 5% significance.

Adult RMSEd < 0 hRMSE ‹�;d < 0 h�-gap

#001 20.83 0 46.28 0

#002 53.60 0 23.20 0

#003 27.42 0 33.53 0

#004 44.39 0 33.94 0

#005 24.92 0 36.47 0

#006 85.23 1 63.61 1

#008 79.65 1 81.70 1

#009 87.27 0 78.83 1

#010 95.24 1 82.86 1

#011 22.58 0 45.00 0

All 53.60 0 52.81 1

To determine if the average RMSE obtained with LPVi is lower than the one obtained with

LPVg at all (g ,SI;VF) values, a two-sampled t-test was carried out for each in-silico adult. The

same analysis was performed for the �-gap to determine if including the SI variation in the

controller design stage could lead to a better closed-loop performance. Test results for each adult

and the whole population (row ‘All’) are presented in Table 5.4, along with the percentage of
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(g ,SI;VF) values in which an improvement over LPVg is obtained, both in open- and closed-loop.

Table 5.4: Percentage of cases of model improvement in terms of the RMSE and �-gap ob-
tained with the personalized LPVi compared to the personalized LPVg . hRMSE,i or h�-gap;i

equal to one indicate a significant reduction on the average RMSE or �-gap with the person-
alized LPVi , considering a 5% significance.

Adult RMSEd < 0 hRMSE ‹�;d < 0 h�-gap

#001 73.51 1 79.76 1

#002 80.96 0 74.24 1

#003 74.52 1 74.07 1

#004 72.12 1 63.03 1

#005 71.58 1 60.33 1

#006 79.63 1 78.69 1

#008 81.07 1 69.72 1

#009 78.68 1 78.68 1

#010 78.10 1 74.44 1

#011 84.24 1 78.79 1

All 77.39 1 73.82 1

According to Table 5.4, the open-loop and closed-loop metrics show an overall improvement

using LPVi above 73.8%. Take into account that the comparison measures were computed based

on a simulated population and has an average significance. A better and more personalized result

could be obtained by having clinical data from the SI variations for a particular patient.

5.3 Concluding remarks

In this Chapter, a low-order model to design control laws for an AP including intra-patient varia-

tions is obtained from the UVA/Padova metabolic simulator, with a structure amenable for LPV

controller design. Here, it is worth highlighting:

� The model is able to capture: (i) the nonlinear behavior of the glucose-insulin system, (ii)

intra-patient variations related to daily insulin sensitivity (SI) changes, and (iii) the large

inter-subject variability, by personalizing the model based on a priori patient information.

� This model depends on two parameters, p1(g) and ks(g; SI;V F ), which in turn are functions

of the glucose concentration and insulin sensitivity factors, that can be computed in real-

time.

� Model personalization is achieved by only adjusting the values of kj , and not the average

model structure, by using the subject’s TDI, information that is available in real life for each

patient, through a non-invasive procedure.
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� A general average structure that is not dependent on a particular model that describes

changes in SI is obtained, so that it can be used in combination with any real-time SI

estimator.

� The proposed LPVi was compared to the LPVg model without the intra-patient variations

in terms of its open- and closed-loop characteristics, through the RMSE and �-gap, respec-

tively. The proposed LPVi showed better performance with smaller errors, highlighting the

advantages of including SI variations in the model’s structure.



Chapter 6

Control-Oriented Model including hyperinsulinemia

induced insulin resistance.

The delay in subcutaneous insulin absorption may lead to insulin “stacking” when the controller

continues to infuse insulin in response to increasing glucose concentrations. This phenomena,

together with prolonged glucose appearance after meal ingestion, might lead to situations of

Hyperglycemic-Hyperinsulinemic (HGHI), which is associated to impaired insulin action in T1DM

subjects. In Chapters 4 and 5 two different approaches to account for SI variations were considered,

without including the insulin-induced Insulin Resistance (IR) (reduced SI).

Considering the relevance of this phenomenon in closed-loop control, in this chapter the

LPVg model is extended to include the HI effect on SI, so it can also describe the HGHI region,

by adding the patient’s IOB as a model input. First, the effects of HGHI over SI are described

in Section 6.1. The identification procedure is described in Section 6.2, and the identified model

with illustrative simulations that compare the proposed model with the UVA/Padova simulator

are presented in Section 6.3. Finally, some conclusions are addressed in Section 6.4.

6.1 Hyperglycemia/Hyperinsulinemia in T1DM

IR is defined as a decreased biological response to a certain concentration in insulin [149]. This

impairment in insulin action comprises both reduced insulin sensitivity and insulin responsiveness

[150]. Several mechanisms can induce IR by interfering with the insulin signaling cascade, like

hyperglucemia, elevated blood lipids and amino acids, and inherited variations in the signaling

molecules. Additionally, evidences of HI-induced IR had been found in in-vivo studies in T1DM

patients [42].

Glucose concentration plays a role in SI. In severe hypoglycemia, a lower SI is found induced by

increased secretion of counter-regulatory hormones to protect against further decreases in plasma

glucose concentration [42, 151]. Hyperglycemia also contributes to IR [42, 149] which might be

a reflection of hypoinsulinemia, as increased peripheral insulin has been associated with down-

regulation of peripheral insulin receptors [42–46].
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Hyperglucemic/Hyperinsulinemic clamps evidenced decreased insulin response results in lower

glycogen synthesis and increased gluconeogenesis, and thus enhanced EGP [150]. This last fact

was also demonstrated in euglycemic/Hyperinsulinemic clamps, which indicate decreased hepatic

SI in subjects with T1DM. Moreover, hyperinsulinemia appears to increase whole-body and

hepatic insulin resistance via abnormal mitochondrial function and prolonged oxidative stress

[150]. This increased IR is considered a risk factor for development of micro and macrovascular

complications [42, 149].

Designing a control law without considering the expected HI reduced SI might prevent post-

prandial hypoglycemic events, but would increase the risk for postprandial Hyperglycemia (HG).

Therefore, considering this HI-induced reduced SI would allow for a more reliable controller to

be designed. Considering that these effects have not been considered in previous control-oriented

models, next section focuses on developing a low-order model including the effect of HI in SI.

6.2 Model Identification Procedure

In order to characterize the HGHI effects on SI, the identification procedure is repeated to include

the active IOB in the LPVg model’s structure, obtaining a new model, defined as LPVins .

The proposed structure is identified by starting from the linearization of the UVA/Padova

metabolic model around a basal working point representing the steady state of the patient dur-

ing fasting periods. Steady-state glucose concentrations (g ∈ [40; 400] mg/dl) were achieved by

only accommodating the insulin infusion rate. For each particular initial glucose concentration,

the corresponding initial states of the UVA/Padova model were calculated, and the Insulin Infu-

sion Rate (IIR) to maintain that glucose level was determined. Once each glucose concentration

is achieved, HI was induced by increasing the IIR in a way that each patient’s IOB reaches lev-

els in the set {1; 2; 3; 4; 5; 6; 7; 8} U. In order to maintain the steady-state glucose concentration

for HI conditions, a plasmatic dextrosae infusion was computed for each HI level, as in hyperin-

sulinemic clamp methods [112]. Subsequently, for each in-silico adult, a linearized model from

the subcutaneous-insulin delivery (pmol/min) to the subcutaneous-glucose concentration devia-

tion (mg/dl) is calculated for each point of the (g; IOB) grid.

Since an average structure is pursued, instead of insulin infusion values, the IOB will be

computed, because of its physiological significance (active insulin not yet used by the body). The

IOB can be obtained from the past amounts of insulin following a simple model, specific to each

subject, like the insulin compartment model in [152] (used in this work), or other IOB models [153].

Figure 6.1 and Figure 6.2 present the average variation of the BW and DCG, respectively, for

LPVg and all in-silico adults linearized at different g and IOB values.

Note that, for the basal case, both models coincide. For each glucose concentration a sen-

sitivity decrease in HI conditions can be noted, due to the decrease in the constant gain of the
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Figure 6.1: BW of LPVg (smooth surface) and average BW for all in-silico adults from the
UVA/Padova simulator linearized at different g and IOB values (gridded surface). The red
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Figure 6.2: DCG of LPVg (smooth surface) and average DCG for all in-silico adults from the
UVA/Padova simulator linearized at different g and IOB values (gridded surface). The red

dotted line indicates the DCG at basal IOB.

model at high insulin infusions. These differences are more evident at high glucose concentrations

(HG). The decrease in the model’s gain module produces an increase in its BW, which will be

reflected in the LPV model as a variation in pole p1 as a function of both, g and IOB. Therefore,

the LPVins model has the average structure depicted in Figure 6.3



62 Chapter 6. Control-Oriented Model including hyperinsulinemia induced insulin resistance.

IOB p1(g, IOB) G
g(t)

g(t)

u(t)

LPVins

Figure 6.3: Average LPVins model structure.

The BW definition is used to represent the SI variation detected in Figure 6.1, by making

the BW of the proposed LPVins model vary with the subcutaneous-glucose concentration g and

IOB appropriately. As in [57], with variations of parameter p1 the measured BW values can be

reproduced. A decrease in the model’s BW is associated with a decrease in the value of p1, and

as a consequence, an increase in the absolute value of the model’s static gain. Therefore, the SI

variations evidenced in Figure 6.2 would also be described by the p1 variations.

Parameter p1 is computed in order to make the BW of model (3.1) coincide with the BW of

each linearized model in the (g; IOB) grid, through the following equation, considering all other

parameters fixed at the values indicated in Section 3.3:

˛̨̨
j!∗

z + 1
˛̨̨

˛̨̨
j!∗

p1
+ 1

˛̨̨ ˛̨̨
j!∗

p2
+ 1

˛̨̨ ˛̨̨
j!∗

p3
+ 1

˛̨̨ = 10−3=20 (6.1)

The result was then fitted by a piecewise polynomial function:

p1(g; IOB) =¸1;n + ¸2;n g

+ ¸3;n IOB + ¸4;n g IOB

+ ¸5;n g
2 + ¸6;n IOB2

+ ¸7;n g
2
IOB + ¸8;n g IOB2

+ ¸9;n g
2
IOB2 + ¸10;n g

3

+ ¸11;n IOB3 + ¸12;n g
3
IOB

+ ¸13;n g IOB3 + ¸14;n g
4

with n =

8>>>>>>>><>>>>>>>>:

1 if g ≥ 300

2 if 130 ≥ g < 300

3 if 65 ≥ g < 130

4 if 59 ≥ g < 65

5 if g ≤ 59

(6.2)

Parameter values and goodness of fit for each interval are presented in Table 6.1. The goodness

of fit was expressed as a fitting percentage obtained by:

FIT = 100

„
1− ‖p1;p − p1‖2

‖p1 − p1‖2

«
(6.3)

where p1;p is the predicted value, p1 the real value and p1 its mean. Figure 6.4 presents the results
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Table 6.1: Parameter values for p1(g; IOB) from (6.2).

n 1 2 3 4 5

¸1;n 7:278× 10−03 −4:573× 10−03 1:187× 10−01 5:850× 10−01 −6:614× 10−01

¸2;n −6:137× 10−06 1:971× 10−04 −3:814× 10−03 −3:057× 10−02 5:587× 10−02

¸3;n 1:600× 10−03 −2:188× 10−03 7:762× 10−03 4:289× 10−02 7:431× 10−02

¸4;n −6:407× 10−06 4:283× 10−05 −1:218× 10−04 −1:348× 10−03 −4:541× 10−03

¸5;n 5:998× 10−10 −1:184× 10−06 4:005× 10−05 5:376× 10−04 −1:753× 10−03

¸6;n 2:337× 10−04 −3:653× 10−04 −5:392× 10−04 −2:768× 10−04 −4:430× 10−04

¸7;n 1:585× 10−08 −8:068× 10−08 5:528× 10−07 1:071× 10−05 9:266× 10−05

¸8;n −1:132× 10−06 −1:509× 10−06 3:598× 10−06 3:933× 10−06 1:799× 10−05

¸9;n 0 0 0 0 −1:977× 10−07

¸10;n −3:184× 10−11 2:049× 10−09 −1:340× 10−07 −3:145× 10−06 2:444× 10−05

¸11;n 2:594× 10−05 8:247× 10−05 2:849× 10−05 1:221× 10−05 −4:097× 10−06

¸12;n 0 0 0 0 −6:245× 10−07

¸13;n 0 0 0 0 3:199× 10−07

¸14;n 0 0 0 0 −1:275× 10−07

FIT 99.96 99.35 98.99 99.98 95.03

for p1(g; IOB) and its smooth polynomial fitting. Note that a decrease in the model’s BW is

associated with a decrease in the value of p1, and as a consequence, an increase in the absolute

value of the model’s static gain. Also, the higher pole values for HI conditions at each glucose

concentration reflect the expected behavior of reduced SI (since a lower DC gain is achieved).

Figure 6.4: Parameter p1 for different values of g and IOB (gridded surface) and piecewise
polinomial function p1(g; IOB) (smooth surface).

Finally, the average LPVins model with the state-space representation (3.4) can be obtained

by including the glucose-varying parameter p1(g; IOB) into the model structure (3.4).
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6.2.1 Model tuning

As mentioned before, the inter-patient variability is considering by tuning the model to each

patient according to the 1800-rule. Since each patient has a different TDI (TDIj) a 1U insulin

bolus produces a different glucose drop for each Adult #j . Hence, to tune the LPVins model, it

is excited with a 1 U insulin bolus, starting from a glucose concentration g of 235 mg/dl and its

correspondent IIR, and a suitable gain kj is calculated to achieve the corresponding glucose drop

given by 1800/TDIj . The personalized values of gain k for all in-silico adults are presented in

Table 6.2.

Table 6.2: Personalized gain kj for each in-silico adult.

Adult TDI [U/day] kj × 10−5

#001 42 -2.3874

#002 43 -2.2290

#003 52 -1.9426

#004 35 -2.7706

#005 40 -2.3444

#006 72 -1.4160

#008 52 -1.7911

#009 34 -2.7764

#010 47 -2.0022

#011 39.9 -2.4198

6.3 Results and Discussion

In this Section, a comparison of both LPVg and LPVins with respect to the UVA/Padova model

is carried out both for simulation (open-loop) and controller synthesis (closed-loop) purposes. As

in Chapter 5, the comparison is only made with the LPVg considering it has a better fit to the

UVA/Padova model than other previous control-oriented models [21, 50, 65].

6.3.1 Open-loop comparison

For each of the 10 in-silico subjects of the distribution version of the UVA/Padova simulator, an

insulin bolus of 1 U was applied at different operating points on the (g, IOB) grid to test the

three LPV models: (i) the average LPVins , (ii) the personalized LPVins and (iii) the LPVg model

in comparison with the UVA/Padova nonlinear models. Figures 6.5 to 6.7 presents the time-

responses to a 1 U insulin bolus for multiple IOB values at basal glucose concentrations of 120,

180, and 240 mg/dl, for Adults #009 (most sensitive subject), #006 (least sensitive subject) and

#011 (average subject).

Note that the reduced SI is evidenced in the UVA/Padova model at higher IOB levels, and
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Figure 6.5: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl, 240 mg/dl
and 300 mg/dl at different IOB levels for models LPVg (black dash-dotted line), average
LPVins (dotted lines), personalized LPVins (dashed lines) and the UVA/Padova nonlinear

model (solid lines) for Adult #011.

0 5 10 15 20
time [h]

80

85

90

95

100

105

110

115

120

G
lu

co
se

 c
on

ce
nt

ra
tio

n   [m
g/

dl
]

0 5 10 15 20
time [h]

135

140

145

150

155

160

165

170

175

180

0 5 10 15 20
time [h]

195

200

205

210

215

220

225

230

235

240

0 5 10 15 20
time [h]

250

255

260

265

270

275

280

285

290

295

300

3 U
4 U
6 U
8 U

Figure 6.6: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl, 240 mg/dl
and 300 mg/dl at different IOB levels for models LPVg (black dash-dotted line), average
LPVins (dotted lines), personalized LPVins (dashed lines) and the UVA/Padova nonlinear

model (solid lines) for Adult #006.

that this behavior is captured by both the average and personalized LPVins models, and not by the

LPVg model, and this adjustment improves at hyperglucemic concentrations. In this case, despite

differences between the responses of the average and personalized LPVins models, personalization



66 Chapter 6. Control-Oriented Model including hyperinsulinemia induced insulin resistance.

0 5 10 15 20
time [h]

50

60

70

80

90

100

110

120

G
lu

co
se

 c
on

ce
nt

ra
tio

n   [m
g/

dl
]

0 5 10 15 20
time [h]

120

130

140

150

160

170

180

0 5 10 15 20
time [h]

180

190

200

210

220

230

240

0 5 10 15 20
time [h]

255

260

265

270

275

280

285

290

295

300

2 U
4 U
6 U
8 U

Figure 6.7: Responses to a 1 U insulin bolus starting from 120 mg/dl, 180 mg/dl, 240 mg/dl
and 300 mg/dl at different IOB levels for models LPVg (black dash-dotted line), average
LPVins (dotted lines), personalized LPVins (dashed lines) and the UVA/Padova nonlinear

model (solid lines) for Adult #009.

only improves the response of the LPVins for Adult #006.

For the three LPV models, the RMSE between their time-responses (yp) and the UVA/Padova

model (y), for each subject at each operating point on the (g,IOB) grid, was computed according

to (5.5):

RMSE =
‖yp − y‖2∆t

nt
(5.5)

In order to capture the complete glucose variation at each point, a number of nt = 1200 points

and ∆t = 1 min were selected. In Figure 6.8, average values of the RMSE for all 10 in-silico

adults at different g and IOB values are shown. Note that a lower RMSE can be obtained with

LPVins (average and personalized) than with LPVg for most glucose concentrations, and that this

improvement becomes larger as HI increases (higher IOB). In this case, however, it appears that

personalization through parameter k does not provide a large improvement, obtaining very similar

RMSE with the average LPVins than with the personalized LPVins . It is also important to highlight

that close to the basal IOB, the three models present similar errors, since in these cases parameters

p1(g) and p1(g; IOB) are very similar (given their relation through the UVA/Padova model’s BW).

6.3.2 Closed-loop comparison

In this case, the �-gap distance [139, 140] between each personalized LPV model and the

UVA/Padova model linearized at all points of the (g; IOB) grid is computed. Figure 6.9 presents

the average �-gap for all 10 adults for three different levels of IOB, obtaining similar results as in

the open loop comparison.
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6.3.3 Overall comparison

The difference between the RMSE and �-gap obtained with the three LPV models was computed

for all (g,IOB) values considered, and all 10 in-silico adults, according to:

‹�;d = ‹�;LPVi − ‹�;LPVg ; RMSEd = RMSEi − RMSEg (5.6)

Therefore, negative values of ‹�;d or RMSEd indicate points where the personalized LPVins out-

performs the average LPVins or the LPVg .

Differences between the average LPVins and personalized LPVins relative to the LPVg are pre-

sented in Figure 6.10. In this case, as suspected from the average RMSE and �-gap, personal-

ization does not imply a model improvement for all subjects, obtaning cases in which the average

LPVins outperforms the personalized LPVins .
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Figure 6.10: Percentage of cases of model improvement in terms of the RMSE (top) and
�-gap (bottom) obtained with the average LPVins (green dotted lines) and personalized
LPVins (violet solid lines) compared to the personalized LPVg for each in silico adult of the

UVA/Padova simulator.

In order to determine if the differences found between the two models are significant, a two-

sampled t-test was carried out for each in-silico adult, to determine whether the personalized

LPVins represents an improvement or not over the average LPVins . Results presented in Table 6.3

indicate that a significant improvement is achieved with the personalized LPVins for the same

number of cases than those to whom the average LPVins is better. In most cases, no significant

differences are found between these models, both in open- and closed-loop.

To determine if the average RMSE obtained with LPVins is lower than the one obtained with
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Table 6.3: Improvement analysis over the RMSE and �-gap for all in-silico subjects, with
a 5% significance. The

√
marks indicate a significant improvement with the personalized

LPVins , X where the average LPVins is better, and ? where there are no significant differences
between the two models.

Adult RMSEd ‹�;d

#001 ? ?
#002 ? ?
#003

√ √

#004 X X
#005 ? X
#006

√ √

#008
√ √

#009 X X
#010 ? X
#011 X X

All ? ?

LPVg at all (g ,IOB) values, a two-sampled t-test was carried out for each in-silico adult. The

same analysis was performed for the �-gap to determine if including the HI effects in the controller

design stage could lead to a better closed-loop performance. Test results for each adult and the

whole population (row ‘All’) are presented in Table 6.4, along with the percentage of (g ,IOB)

values in which an improvement over LPVg is obtained, both in open- and closed-loop.

According to Table 5.4, a significant improvement in RMSE and �-gap is obtained in above

69% of cases with the LPVins model, except for the RMSE of two subjects. However, further

adjustment of the model, by fitting the gain variations could lead to better results than the

sole representation of the influence of HI trough the pole’s variation, as suggested from the

results presented in Table 6.3. Figure 6.11 presents a comparison of the fitting of the linearized

UVA/Padova models DCG and BW achieved with the personalized LPVins model for the average

subject. Note that the desired fitting of the BW variations is obtained, but further adjustment of

the DCG would be necessary to improve the model’s capabilities.

It must be noted that the validity of the UVA/Padova simulator is not always guaranteed in

this region. However, these results evidence the importance of considering the HI effects over the

glucose regulation dynamics on the controller design stage. Moreover, evidence on HI effects on

glucose turnover during excercise have also been found [150, 154] and overall, HI effects continue

to be studied since they are not fully understood.

Bearing in mind that (i) the effect of HI influences SI, (ii) IOB effects are evidenced both

in BW and DCG of the linearized UVA/Padova model, and (iii) SI effects are observed mostly

in the DCG of the linearized UVA/Padova model, and (iv) further fitting of the DCG is needed,

Figure 6.12 presents a possible model structure that could be explored to fully include the HI effects
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Table 6.4: Percentage of cases of model improvement in terms of the RMSE and �-gap
obtained with the personalized LPVins compared to the personalized LPVg . hRMSE,i or
h�-gap;i equal to one indicate a significant reduction on the average RMSE or �-gap with the

personalized LPVins , considering a 5% significance.

Adult RMSEd < 0 hRMSE ‹�;d < 0 h�-gap

#001 73.3 0 67.9 1

#002 76.5 1 79.8 1

#003 76.9 1 76.3 1

#004 65.6 1 53.3 1

#005 68.4 0 58.7 1

#006 78.9 1 79.5 1

#008 72.2 1 66.5 1

#009 68.2 1 66.7 1

#010 76.4 1 72.3 1

#011 76.2 1 70.7 1

All 73.2 0 69.0 1
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Figure 6.11: DCG (top) and BW (bottom) of average LPVins (dotted lines), personalized
LPVins (dashed lines) and linearized UVA/Padova model (solid lines) for Adult #011, for

different IOB above basal levels.

over glucose regulation. Here, parameters p1(g; IOB) in (6.2) and kavg (g; SI;VF) in (5.2) could

be used together with an SI estimator that, among others, also considers IOB as a parameter.

Moreover, the average structure with p1(g; IOB) could be used in IOB-based safety mechanisms

in order to inform this layer of the effects of insulin stacking.



6.4. Concluding remarks 71

SI,V F (t)
kavg(g, SI,V F )

t
g(t)

g

IOB

p1(g, IOB)

u(t)

G

LPV

SI,V F

IOB

Figure 6.12: Proposed control-oriented LPV model structure

6.4 Concluding remarks

Here a control-oriented model of the HGHI region has been presented, which extends previous

results to variations with glucose and insulin. The latter is represented here by the IOB which

has an important significance for control performance, particularly to avoid hypoglycemic and

sustained hyperglycemic events. Here, it is worth highlighting:

� An average (affine) LPV model is obtained, which allows to include the effect of active

insulin on the patient’s SI. The effectiveness of the model compared to the LPVg evidenced

the importance of including the effects of insulin stacking during the controller-design stage.

� This model would be helpfull during post-prandial periods by informing the continuous

controller of possible increased insulin resistance so it is able to adjust insulin infusion

accordingly, while actively considering past insulin infusions. Moreover, it could be useful

in safety IOB-based mechanisms, giving the controller a more informed effect of the active

insulin in the organism.

� Further research needs to be done in order to obtain more definite results on the inclusion

of the effects of active insulin concentration on glucose regulation and obtaining a more

effective model that considers them.
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Chapter 7

Conclusions and Future Work

This work presented a review of the current challenges in the design of control algorithms for AP,

highlighting the relevance of control-oriented model personalization for improving the performance

of the controller and the inclusion of dynamic and parametric uncertainties, specially related to

variations in SI.

Previous models of intra-patient variability have been developed considering average SI profiles.

In terms of the large inter-patient variability, it is not possible to obtain a single diurnal SI pattern

for the T1DM population as a whole, and therefore, the specific SI variation for each subject

should be considered when designing control algorithms.

The main strategy for model personalization is to adapt the model according to physiological

parameters like CR, TDI or by personalized identification based on historical clinical data. Previous

models do not consider intra-day variations of SI and parametric uncertainty has not been directly

addressed, specially for robust control techniques that would be more suitable for the time-varying

nature of the problem.

Starting from a previously developed LPV (LPVg ) model for the glucose-insulin dynamics, in

this thesis two approaches for including SI variations in control-oriented models are explored:

1. Use of dynamic uncertainty bounds for covering SI variations, obtaining an LPV model set.

This was carried out by means of an invalidation procedure, that allowed to obtain an LPV

model-set that accounts for both dynamic and parametric uncertainties. This model-set

is an essential elemental for robust control design, and was used for obtaining a switched

LPV controller. The controller design based on this model set proved to be advantageous

when dynamic and parametric uncertainties appear in the problem. An illustrative exam-

ple presents a robust controller that successfully copes with uncertainties in the nonlinear

dynamics (changes in the glucose values) and variations in SI, as compared to a nominal

design, where these uncertainties are not considered. In this way, robustness to uncertain

model dynamics or modelling errors, which is an essential feature for AP control, is achieved.

2. Include SI variations into the model structure. In this regard, a low-order model was obtained

from the UVA/Padova metabolic simulator, with a structure amenable for LPV controller
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design. This model depends on two parameters, p1(g) and ks(g; SI;V F ), which in turn are

functions of the glucose concentration and insulin sensitivity factors, that can be computed

in real-time. In this way, the model structure is able to capture the nonlinear behavior

of the glucose-insulin system, intra-patient variations related to SI changes, and inter-

subject variability, by personalizing the model based on a priori patient information. This

is achieved with an average structure that is not dependent on a particular model that

describes changes in SI and therefore, can be used together with any available SI temporal

profile, or even one including other factors that influence SI suitable for the specific subject.

The proposed LPVi showed better performance with smaller errors, both for simulation

and controller design purposes, highlighting the advantages of including SI variations in the

model’s structure.

Additionally, an LPV model including the HGHI induced IR (reduced SI) effects was developed

as an extension of the LPVg . An improvement on the closed-loop performance of the new model

was obtained, evidencing the importance of considering this phenomenon in the controller design

stage. However, future work is needed to improve the simulation capabilities of this model.

After completing this work, the following aspects could be explored towards complementing

the outcome of this thesis:

1. Development of a SI model that is able to reflect its variations due to several factors, like

physical exercise, stress, sleep cycles and active insulin concentrations, that allows the real-

time estimation of the subject’s SI. In this way, not only circadian variations could be

considered, but also slow but consistent changes in insulin needs beyond the scope of a

single day.

2. Development of a complete LPV model that accounts for both SI variations and HI effects,

that allow to condense the results obtained with the LPVi and LPVins models and in turn,

improve controller performance by anticipating these effects inside its structure.

3. The invalidation procedure carried out in Chapter 4 considered the worst case uncertainty

bound for each patient. An LPV uncertainty weight could be developed exploiting the SI

variations. Moreover, this time-varying uncertainty weight can be used together with the

LPVi model as the nominal model in the invalidation procedure. This would allow to obtain

tighter uncertainty bounds for the LPV model family, and possibly better performance of

the controllers designed with this model, in terms of reduction of hyperglycemic events.

4. Extension of the LPVi model and SI models for adolescents and children. These are the

age groups at higher risk of hypoglycemia given their increased activity levels and chang-

ing hormonal systems influenced by puberty (increased growth hormone and sex hormone

secretion). Moreover, the consequences of hypoglycemic events are distinctly different be-

tween adults and children. These factors would need to be addressed for a better and safer

control design for this population.
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D. I. Fotiadis, “Multivariate prediction of subcutaneous glucose concentration in type 1

diabetes patients based on support vector regression,” IEEE Journal of Biomedical and

Health Informatics, vol. 17, pp. 71–81, Jan 2013.



Bibliography 87

[133] D. K. Rollins, N. Bhandari, J. Kleinedler, K. Kotz, A. Strohbehn, L. Boland, M. Murphy,

D. Andre, N. Vyas, G. Welk, and W. E. Franke, “Free-living inferential modeling of blood

glucose level using only noninvasive inputs,” Journal of Process Control, vol. 20, no. 1,

pp. 95 – 107, 2010.

[134] C. Toffanin, A. Sandri, M. Messori, C. Cobelli, and L. Magni,“Automatic adaptation of basal

therapy for type 1 diabetic patients: a run-to-run approach,” IFAC Proceedings Volumes,

vol. 47, no. 3, pp. 2070–2075, 2014.

[135] J. Garcia-Tirado, C. Zuluaga-Bedoya, and M. D. Breton, “Identifiability analysis of three

control-oriented models for use in artificial pancreas systems,” Journal of diabetes science

and technology, p. 1932296818788873, 2018.
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