
Automated detection and quantification 
of reverse triggering effort under mechanical 
ventilation
Tài Pham1,2,3* , Jaume Montanya4, Irene Telias1,2,5,6, Thomas Piraino7,8 , Rudys Magrans4, 
Rémi Coudroy1,2,9,10, L. Felipe Damiani1,2,11 , Ricard Mellado Artigas1,2,12, Matías Madorno13, Lluis Blanch14,15† 
and Laurent Brochard1,2† the BEARDS study investigators

Abstract 

Background: Reverse triggering (RT) is a dyssynchrony defined by a respiratory muscle contraction following a 
passive mechanical insufflation. It is potentially harmful for the lung and the diaphragm, but its detection is challeng-
ing. Magnitude of effort generated by RT is currently unknown. Our objective was to validate supervised methods 
for automatic detection of RT using only airway pressure (Paw) and flow. A secondary objective was to describe the 
magnitude of the efforts generated during RT.

Methods: We developed algorithms for detection of RT using Paw and flow waveforms. Experts having Paw, flow 
and esophageal pressure (Pes) assessed automatic detection accuracy by comparison against visual assessment. Mus-
cular pressure (Pmus) was measured from Pes during RT, triggered breaths and ineffective efforts.

Results: Tracings from 20 hypoxemic patients were used (mean age 65 ± 12 years, 65% male, ICU survival 75%). RT
was present in 24% of the breaths ranging from 0 (patients paralyzed or in pressure support ventilation) to 93.3%. 
Automatic detection accuracy was 95.5%: sensitivity 83.1%, specificity 99.4%, positive predictive value 97.6%, nega-
tive predictive value 95.0% and kappa index of 0.87. Pmus of RT ranged from 1.3 to 36.8  cmH20, with a median of 
8.7  cmH20. RT with breath stacking had the highest levels of Pmus, and RTs with no breath stacking were of similar 
magnitude than pressure support breaths.

Conclusion: An automated detection tool using airway pressure and flow can diagnose reverse triggering with 
excellent accuracy. RT generates a median Pmus of 9  cmH2O with important variability between and within patients.

Trial registration: BEARDS, NCT03447288.
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Background
Patient–ventilator dyssynchrony is often associated with 
poor patient-centered outcomes such as duration of 

mechanical ventilation or mortality [1–4]. The causality 
has not been demonstrated, and it is not clear yet whether 
and when some types of dyssynchrony can directly cause 
harm or discomfort, or whether others are simply mark-
ers of suboptimal ventilator settings or more severe 
underlying conditions. Poor patient–ventilator interac-
tion is, however, a major reason for administering seda-
tion in the ICU, and therefore this phenomenon deserves 
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attention and a more granular description than refer-
ring to dyssynchrony in general [5]. Of major interest, 
reverse triggering (RT) is a specific form of dyssynchrony 
defined by the presence of a respiratory muscle contrac-
tion following a passive mechanical insufflation as if the 
contraction was  “triggered by” the ventilator [6]. It has 
been described in intubated patients receiving  sedation 
under controlled ventilation and seems to be very fre-
quent [7–15]. This phenomenon might constitute a regu-
lar entrainment (phase locking) of the respiratory rhythm 
to periodic insufflation, as described in animals [16, 17] 
and healthy humans [18], but it may also be more irregu-
lar and can even occur in brain-dead patients [10]. When 
the effort generated is strong enough, it induces breath 
stacking, often misinterpreted  to be caused by double 
triggering (in which the same patient’s inspiratory effort 
would trigger the first and second mechanical insuffla-
tion). Reverse triggering could impact patients’ outcomes 
through several mechanisms, such as increased tidal 
volume during inspiration, breath stacking, or through 
pendelluft during the inspiratory phase [14]. On the one 
hand, it can generate diaphragm injury when generat-
ing strong eccentric contractions during exhalation [19], 
but on the other hand, when small, diaphragmatic con-
tractions related to RT could be beneficial by preventing 
muscle disuse and atrophy in sedated patients.

Detection of dyssynchrony in general and RT in par-
ticular is challenging requiring additional physiological 
signals and/or careful attention to the waveforms on 
the ventilator screens and expertise to properly inter-
pret the signals. Additionally, to have an estimate of 
the real burden of dyssynchrony 24/7 inspection of the 
waveforms would be required [20, 21]. The reference 
technique to detect respiratory muscle activity and 
accurately diagnose dyssynchrony needs an esophageal 
catheter or a catheter that captures the electrical activ-
ity of the diaphragm (EAdi). Preliminary data suggest a 
high incidence of frequent RT (> 30%) in patients under 
assist-control ventilation [22].  Automatic machine 
learning techniques that do not require visual inspec-
tion are needed for understanding the phenomenon 
and helping the clinician to optimize patient–ventila-
tor interactions [23]. As the first step of a prospective 
multicenter observational study that aims at establish-
ing the incidence, determinants and consequences 
of various dyssynchronies during early acute hypox-
emic respiratory failure (BEARDS, NCT03447288), we 
developed and validated an automated algorithm to 
detect RT only from ventilator signals, i.e., airway pres-
sure and flow. Some of the authors (JM, RM, LBl) had 
previous experience in developing a dedicated software 
application to detect other types of dyssynchrony (https 
://bette rcare .es/); this platform was used as a starting 

point for the current algorithm. In a pre-validation 
phase, we created, developed and tested algorithms for 
RT based on airway pressure (Paw) and flow (e-sup-
plement). Our main objective was to validate the auto-
matic detection of RT by the software using only Paw 
and flow against a visual assessment of the same trac-
ings by experts having Paw, flow and esophageal pres-
sure (Pes). A secondary objective was to describe the 
magnitude of the efforts generated during RT.

Methods
Definitions
A breath was defined as an insufflation followed by an 
expiration, even if short and incomplete. A respira-
tory cycle started at the beginning of an insufflation and 
ended at the beginning of the next insufflation as shown 
in Fig. 1. If an early second insufflation happened before 
complete exhalation, we counted it as a different breath 
(and labeled it as a stacked breath).

A machine-triggered breath was characterized by the 
absence of patient’s effort before the machine insufflation.

Reverse triggering was defined as an active contraction 
of the respiratory muscles including the diaphragm (using 
esophageal pressure  or EAdi) starting more than 0.1  s 
after the start of a machine-triggered insufflation (Fig. 1); 
also, the maximal Pes deflection (or the EAdi peak) had 
to happen less than 1.5  s after the machine insufflation 
had started. Although the effort starts during insufflation, 
the peak of the effort can still be during insufflation or 
plateau but often takes place during early expiration 
[e-Fig. 1 and e-Fig. 2].We did not incorporate any element 
of regular entrainment as we have observed multiple 
examples where a true entrainment is disrupted and 
becomes complex to recognize. We initially used record-
ings either with EAdi or esophageal pressure tracings to 
develop the algorithms, and only tracings with Pes for the 
validation. We defined a minimal effort before machine 
insufflation to be considered a patient triggered breath as 
being a Pes drop of more than 2  cmH20 as compared to 
baseline or an EAdi > 0.5  µV above the baseline with a 
Paw drop > 0.3  cmH20. For each tracing, the rate of RT 
was defined as the following: sum of all RTs

sum of all breaths
.

Breath stacking was the occurrence of a second insuf-
flation before complete exhalation of the volume insuf-
flated in the preceding breath (Fig. 1 and e-Fig. 3).

An active contraction of the inspiratory muscles (Pes 
negative swing) during the late  expiration phase of a 
patient-triggered breath and not able to trigger a breath 
defined an Ineffective effort during expiration. If this hap-
pened after a machine-triggered inspiration, the maxi-
mal peak deflection had to occur more than 1.5  s after 
the machine insufflation to differentiate ineffective effort 
from reverse triggering.
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Algorithm for detection of reverse triggering
Several methods of digital signal processing and super-
vised machine learning have been combined to detect RT 
events from flow and Paw waveforms depending on the 
mode of mechanical ventilation and the phase of the res-
piratory cycle where the event occurred. These methods 
intended to account for the different ways RT impacts 
on either or  both waveforms. For instance, during con-
stant flow, the impact during inspiration will be mainly 
on Paw, while during pressure controlled ventilation the 
impact will be both on Paw and on flow. In both situa-
tions there may also be an impact on expiratory flow. The 
signals were smoothed to avoid artifactual detections. 
The mechanism that initiated the respiratory cycle was 
automatically detected (i.e., machine/time or patient trig-
gered). The strategies implemented are summarized in 
Fig. 2, and the details regarding the algorithm are given in 
the online supplement.

Validation phase
A training set was based on 20 to 40 minutes  long trac-
ings displaying visually detectable RT; these tracings 
mostly came from a previous study for 9 recordings 
(DIVIP, NCT02434016) and 3 from the BEARDS study. 
The final validation dataset was only based on recordings 
from the BEARDS study (and with no patient used in the 

training dataset). It comprised 20 tracings from 20 differ-
ent patients among the first 109 patients enrolled in the 
BEARDS study and the 1087 tracings available: 4 tracings 
without visible RT, 4 with a low visible rate of RT, 4 with 
a moderate rate of RT, 4 with a high rate of RT and 4 on 
PSV. All patients met the criteria for moderate or severe 
hypoxemic respiratory failure (PaO2/FiO2 < 200  mmHg 
and deep sedation at inclusion) with unilateral injury 
or ARDS. Ventilator waveforms and esophageal pres-
sure were synchronously recorded over the first 7 days 
of mechanical ventilation. We selected 20 patients in 
order to represent a full spectrum of RT occurrence. A 
semiquantitative analysis allowed to classify the tracings 
available (in volume or pressure assist-control mode) 
according to the estimated frequency of RT: (1) no vis-
ible RT; (2) low rate of detectable RT: less than 4 RTs 
per minute; (3) moderate rate of RT: between 4 and 10 
RTs per minute; (4) high rate of RTs: more than 10 RTs 
per minute. We discarded tracings with technical issues 
(excessive cardiac artifacts, leaks, uncertain calibration 
procedure, oscillations impairing the tracing assessment) 
and randomly selected 4 tracings in each category for 
the validation. For the 4 tracings with no RT, we pur-
posely selected recordings collected when the patient was 
receiving neuromuscular blocking agents. Additionally, 
we randomly selected 4 tracings from the 246 recordings 

Fig. 1 Breath count and events classification methods. This figure shows an example of tracing with breath counts, reverse triggering and breath 
stacking. Top waveform (blue): airway pressure (Paw); middle waveform (red): flow; bottom waveform (green):  esophageal pressure (Pes). A breath 
is an insufflation followed by an expiration (even if short and incomplete); nine breaths are present on the figure. There are two reverse triggering 
on this figure, and the second reverse triggering causes breath stacking (definitions in the text).



collected while patients were ventilated in pressure sup-
port ventilation (PSV). Tracings collected during paraly-
sis or PSV acted as a control to ensure that the algorithm 
would not have false positives: RT should not occur in 
these situations because there is either no diaphragm 
contraction (paralysis) or because the patient triggers all 
the breaths and there is no passive insufflation (PSV).

Two researchers (TPh and TPi) visually reviewed 
10  min of each of these 20 selected tracings and cat-
egorized each breath according to the type of trigger 
(machine vs patient), the presence or absence of RT and 
the presence or absence of a stacked breath (early addi-
tional breath during the exhalation phase) using Paw, 
flow and Pes. This assessment was used as the gold stand-
ard for breaths classification.

Independently, and without the Pes signal, the same 
breaths were analyzed by the automatic detection soft-
ware. The results of the visual and automatic detections 
were merged on a spreadsheet to review agreement 

and discrepancies breath by breath. All discrepancies 
were reviewed by a third researcher (RC) blinded to 
the results obtained with visual or automatic detection. 
This step confirmed or infirmed the discrepancies.

Quantification of effort during reverse triggering
One important question regarding the potential risk 
of RT (for the lung or diaphragm) relates to the ampli-
tude of efforts generated by RT. Therefore, we calcu-
lated the muscular pressure (Pmus) of each breath to 
estimate the range of effort generated during RT and 
compare it to the Pmus generated during pressure sup-
port ventilation [24]. We aimed at estimating the range 
of effort that generates a deformation of flow and Paw 
waveforms, as detected by our algorithm. Pmus was 
calculated as the maximum difference between the 
Pes and the chest wall relaxation curve according to 
volume. The latter was calculated using the chest wall 

Fig. 2 Diagram of the diverse methods implemented for RT events detection. This figure shows the step-by-step approach of the automatic 
detection algorithm to detect reverse triggering according to the mode of mechanical ventilation and the time of the RT occurrence. 
MV = mechanical ventilation; PT = patient-triggered breath; MT = machine-triggered breath; VCV = volume-controlled ventilation; 
PCV = pressure-controlled ventilation; PS = pressure support; Paw = airway pressure; ∆Ppeak = variation between the current peak pressure (Ppeak) 
value and the average of the most immediate previous Ppeak values; ∆Pplat = variation between the current plateau pressure (Pplat) value and the 
average of the most immediate previous Pplat values; ∆Ppp = difference between ∆Ppeak and ∆Pplat values; PEF = peak expiratory flow; Prob = RT 
probability values predicted by the logistic regression model; cutoff = optimal probability value for RT event classification; RT insp = reverse 
triggering during inspiration in VCV and PCV modes, and (*) in auto-triggered breaths in PS; RT pause = reverse triggering during the pause; RT 
exp1 = reverse triggering late at inspiration producing airflow deformation at the onset of exhalation; RT exp = reverse triggering during expiration 
occurring within 1.5 s after controlled inspirations; RT BS = reverse triggering producing breath stacking.



compliance measured during passive breaths in the 
same patient. The FluxMed® software was used for 
this calculation. Inspiratory efforts with artifact in the 
Pes signal that prevented from accurate measurement 
of Pmus were discarded (N = 34 in tracings during
assist-control and N = 14 in tracings during pressure
support).

Statistics
Agreement between researchers and automatic detec-
tion for the diagnosis of RT was determined with the 
Kappa statistic [25, 26]. True positives were breaths 
considered as RT both by visual assessment and by 
automatic detection. True negatives were breaths con-
sidered as not being RT both by visual assessment and 
by automatic detection. False positives were breaths 
considered as RT by automatic detection but not by 
visual assessment. False negatives were breaths consid-
ered as RT by visual assessment but not by automatic 
detection. Standard formulas were used to calculate 
sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV) [27, 28]. General-
ized estimating equation was used to compare the mag-
nitude of inspiratory effort for different types of breaths 
considering each patient a cluster.

Sample size calculation: Our primary objective was to 
validate the automatic detection versus visual assessment 
of RT aiming at a Kappa above 0.8 that can be considered 
an almost perfect agreement. To obtain a kappa of 0.85 
with a 95% confidence interval [0.83;0.87] and assuming a 
rate of RT of 20% with an alpha risk of 0.05, 4655 breaths 
were estimated to be necessary [25]. Using 20 record-
ings at a respiratory rate of 20/min, the analysis of 10 min 
would provide approximately 5000 breaths.

Results
Patients and tracings characteristics
The 109 patients included in the BEARDS study had a 
median [IQR] of 12 [9;15] tracings collected and 58 (53%) 
of the patients had at least one of their tracings display-
ing reverse triggering. Tracings from 20 of these patients 
were randomly selected for the validation (e-Fig. 4). The 
main characteristics of these patients are presented in 
Table 1. The tracings used for this validation study were 
collected at a median [IQR] of 3 [2;4] days from inclusion. 
Among the 20 tracings selected, 9 (45%) were in pressure 
assist-control, 7 (35%) in volume assist-control, 4 (20%) in 
pressure support ventilation mode and 4 were collected 
in paralyzed patients. At the time of recording, 8 (40%) 
patients were receiving a vasopressor, 12 (60%) patients 
were sedated with midazolam, 4 (20%) with propofol, 17 
(85%) were receiving an opioid infusion and patients had 

a median [IQR] Richmond Agitation Sedation Scale [29] 
of − 4 [− 5;− 2].

Accuracy of reverse triggering detection
A total of 4509 breaths from the 20 recordings were 
assessed, and 1073 (24%) were considered as RT as 
per gold standard (visual assessment); almost all RTs 
(N = 1070) occurred during controlled ventilation and
only 3 following auto-triggered breaths in PSV. Among 
patients in assisted-control mode presenting at least one 
RT, the rate of RT ranged from 14.8% to 93.3%. The con-
fusion matrix between visual assessment and the auto-
matic detection is shown in Table 2, and the ROC curve 
is displayed in the e-supplement (e-Fig.  5): There were 

Table 1 Patients characteristics. Categorial variables are 
expressed as N (%) and numerical variables as mean ± SD

N = 20

Female Gender 7 (35.0%)

Age, years 65 ± 12

Height, cm 168 ± 10

Weight, kg 79 ± 30

Comorbidities

 Hypertension 10 (50.0%)

 COPD 4 (20.0%)

 Diabetes 6 (30.0%)

 Chronic kidney disease 4 (20.0%)

 Chronic cardiac failure 3 (15.0%)

 Hematologic malignancy 1 (5.0%)

 Immunosuppression 1 (5.0%)

 Chronic liver disease 2 (10.0%)

Cause for intubation

 Hypoxemia 18 (90.0%)

 Hypercapnia 1 (5.0%)

 Shock 2 (10.0%)

 Cardiac arrest 2 (10.0%)

 Surgery 1 (5.0%)

Risk factor for ARDS

 Pneumonia 17 (85.0%)

 Aspiration 2 (10.0%)

 Pulmonary contusion 1 (5.0%)

 Non-pulmonary sepsis 1 (5.0%)

Severity at inclusion

 APACHE III 82 ± 29

 SOFA 9.5 ± 4.0

 pH 7.34 ± 0.09

 PaO2/FiO2 ratio, mmHg 148 ± 42

 PaCO2, mmHg 45 ± 10

Outcomes

 Discharged alive from the ICU 15 (75.0%)

 Discharged alive from the hospital 11 (55.0%)



20% true positive, 76% true negative, 4% false negative 
and 0.5% false positive. Therefore, automatic detection 
achieved a global accuracy of 95.5%, sensitivity of 83.1%, 
specificity of 99.3%, a positive predictive value of 97.6%, 
a negative predictive value of 94.9% and kappa index of 
86.9 [85.1;88.7]. At a tracing level, RT rates (expressed 
as a percentage of all ventilator breaths) ranged from 0 
(patients paralyzed or in PSV) to 93.4%; the median [IQR] 
was 17.0% [0%;43.3%]. Individually, the accuracy ranged 
from 73.8 to 100% (median [IQR] 98.1% [95.5%; 100%]). 
A low accuracy (73.8%) was observed in one patient with 
numerous but very weak reverse triggering efforts (mag-
nitude ~ 3–4  cm  H2O) frequently not strong enough to 
induce a visible deformation on Paw or Flow; this patient 
had been sedated and had no sign of wakefulness.

Range of patients’ effort corresponding to RT
To evaluate the range of efforts generated by RT together 
with its variability, the muscular pressure (Pmus) was 
calculated for each breath in 1047 breaths with RT dur-
ing assist-control ventilation (5 in volume control, 7 in 
pressure control) and was compared to 715 breaths from 
4 tracings during pressure support ventilation includ-
ing 33 expiratory ineffective efforts occurring within 
triggered breaths. RT efforts were separated into those 
inducing breath stacking (n = 206) and those without
breath stacking (n = 841). The results are presented in
Fig.  3. The median [25th–75th percentiles] of Pmus for 
RT was 8.7 [5.6;9.9]  cmH20, ranging from 1.3 to 36.8 
 cmH20. Between- and within-patient variability in RT 
effort was considerable with median values ranging 
from 4.2 to 33.0  cm  H2O and within-patient coefficient 
of variabilities ranging from 5 to 106% (Fig. 4). RT with 
breath stacking corresponded to the highest levels of 
Pmus, while breaths with RT but no breath stacking and 
triggered breaths during pressure support were of simi-
lar magnitude for Pmus. Ineffective efforts during pres-
sure support corresponded to the lowest Pmus. Within 
each tracing, the median rate of RT was 5.5 [4.0;11.0] 
per minute (vs 16.6 [11.0, 20.3] for patient-triggered 
breaths) and the corresponding product of the amplitude 
of RT and rate (Pmus x rate of RT) was 67.3 [49.2;109.0] 

 cmH2O min−1 (vs 172.7 [135.5, 213.2]  cmH2O min−1 for 
patient-triggered breath).

Discussion
We showed that an automated machine learning detec-
tion using only airway pressure and flow tracings was 
able to diagnose reverse triggering with a high specific-
ity, positive and negative predictive values resulting in an 
excellent accuracy. Despite some false negatives, sensi-
tivity remained very good and specificity was strong. In 
this selected set of tracings, RT was present in 23% of 
the breaths and generated a median muscle pressure of 
9  cmH2O with important variability between and within 
patients ranging from 1 to 36  cmH2O.

Accuracy of the algorithm
RT is a phenomenon that has been described recently 
and is very likely underdiagnosed at the bedside [6, 30]. 
Visual detection of dyssynchrony is impractical and chal-
lenging due to clinicians’ lack of time and/or expertise, 
and there is an urgent need for reliable automatic detec-
tion. We reasoned that any diagnostic tool implemented 
for daily practice would require an algorithm that diag-
noses mostly impactful events, i.e., with potential clinical 

Table 2 Agreement matrix

Visual assessment Total

RT No RT

Automatic detection
 RT 892 22 914

 No RT 181 3414 3595

 Total 1073 3436 4509

Fig. 3 Amplitude of Pmus generated during RT with breath stacking 
(RT with BS N = 206), without breath stacking (N = 841), during efforts 
triggering the ventilator in pressure support ventilation (synchronous, 
N = 682) and during ineffective efforts during expiration (IEE, N = 33). 
RT = reverse triggering, BS = breath stacking, IEE = ineffective efforts 
during expiration, ACV = assist-control ventilation, PSV = pressure 
support ventilation



consequences, while avoiding false positives that would 
impair interpretation. The algorithms validated in this 
study fulfill these major conditions by displaying a very 
strong specificity (when a RT is detected, it is actually 
a RT and not a normal breath or an artifact) and a high 
sensitivity (most RTs are detected). The false negatives 
found in this study were reviewed and corresponded to 
weak efforts close to the limits for detection. Modifying 
the threshold for detection of these weak efforts could 
reclassify these breaths as RT but could increase the risk 
of false positive that really needs to be avoided. PPV and 
NPV had very high values in our study but are depend-
ent on the prevalence of the event (The higher the preva-
lence, the higher the PPV and the lower the NPV and vice 
versa). The rate of RT in unselected invasively ventilated 
patients is still unclear, but recent reports mentioned 
high incidence between 25 and 50% (manuscript  in 
revision). Use of these automatic detection algorithms 
will help obtaining a precise quantification of this likely 
underestimated phenomenon.

Continuous assessment and quantification
A major asset of the technique is the possibility to quan-
tify RT continuously with no additional catheter or 

invasive device. Paw and Flow are readily available on all 
ventilators, and the system can communicate and capture 
data from all ventilators for online analysis or subsequent 
review. Continuous assessment of RT is relevant to iden-
tify the changes along the patients’ course of mechani-
cal ventilation and to quantify clusters of dyssynchrony 
that might have an impact on the outcome. It would also 
allow to obtain reliable epidemiologic data and to exam-
ine relationship between RT and treatments or relation-
ship with other biological phenomena in a continuous 
manner. A few other studies have previously evaluated 
the accuracy of automatic detections of some types of 
dyssynchronies [31–34] but only one evaluated RT [35]. 
The latter found excellent algorithm performance but 
only evaluated patients with volume-controlled ventila-
tion for ARDS during a very short period (20 consecutive 
breaths per patient) with only 27% of the breaths of this 
validation study having Pes available for the evaluation by 
a single expert. For the remaining breaths (72.6%) evalu-
ated by a group of 7 experts, they did not reach complete 
agreement in 27% of the breaths and did not have access 
to Pes or EAdi signals to confirm their classification.

Fig. 4 Variability and distribution of the amplitude of inspiratory effort for each patient (indicated by ID number). Amplitude of Pmus calculated 
for each breath during RT and during patient-triggered synchronous efforts on pressure support ventilation for each patient. RT with BS are 
represented with orange triangles, RT without BS are seen in green circles, and those synchronous patient-triggered efforts with violet circles



Efforts generated during RT
This is the first study providing a quantification of the 
muscular efforts exerted during different forms of RT and 
compared to triggered breaths and ineffective efforts. We 
identified a broad range of efforts from almost negligible 
to huge contractions showing considerable between- and 
within-patient variability. Their impact on lung and dia-
phragm may therefore vary considerably. Physiological 
[36–38] and epidemiological [39] data showed that the 
intensity of breathing effort has variable consequences on 
the lung by generating varying levels of stress and strain, 
and on the diaphragm by modifying the risk of disuse 
atrophy versus load-induced injury. In these randomly 
selected tracings, the amplitude of effort during RT 
without breath stacking occurring during assist-control 
modes was similar to that occurring during synchronous 
efforts on pressure support. Interestingly, despite the lev-
els of breathing effort during RT being considerable, they 
are often missed by the majority of clinicians relying on 
standard monitoring techniques to detect the presence 
of breathing effort (e.g., total rate on the ventilator equals 
the set rate). As expected, RT associated with breath 
stacking corresponded to higher levels of efforts, there-
fore being potentially the most injurious for the lung and 
the diaphragm. Additionally, the timing of RT within 
the respiratory cycle (i.e., occurring during inspiration 
or expiration) might also lead to specific mechanisms of 
injury such as eccentric diaphragmatic contractions or 
pendelluft [14, 40]. Other important aspects of breath-
ing effort during RT might also have an impact on the 
lung and the diaphragm such as duration and the overall 
frequency of the events. Results from future study (e.g., 
BEARDS) are needed to provide additional information 
regarding outcome.

Limitations
Our main goal was to evaluate the accuracy of the auto-
matic detection on different types of tracings in terms 
of modes and patient’s effort, and we assessed a large 
number of breaths but in a relatively limited number of 
patients. Our tracing selection included RT rates ranging 
from 0 to 93.3% representing a broad spectrum of clinical 
situations. We evaluated pressure control, volume con-
trol and pressure support ventilation, which are the most 
frequently used modes worldwide [41, 42]. We cannot 
extrapolate the algorithm performances to other modes. 
We arbitrarily limited our definition of RT to patients’ 
efforts that reached maximum intensity within 1.5 s after 
the start of mandatory breath to differentiate RT from 
ineffective effort during expiration. Some patients have 
a fluctuating respiratory drive and intermittently trig-
ger the ventilator. Reverse-triggered breaths usually keep 
the same characteristics of phase lag. We used a simple 

operational definition for RT not taking into account 
entrainment pattern. Entrainment patterns might result 
from different underlying causes and mechanisms. Vali-
dation of an automatic detection of this dyssynchrony 
is the first step to better describe RT and grasp the full 
spectrum of its physiologic mechanism, consequences 
and prevention.

Conclusion
An algorithm for automatic detection for reverse trig-
gering showed excellent performances with usual modes 
of MV. This monitoring tool allows accurate continuous 
assessment and diagnosis of RT which is the first step to 
better understand this phenomenon underlying physi-
ologic mechanism, assess its impact and ultimately pro-
pose treatment to prevent clinical complications.
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