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Abstract. Transportation networks (e.g., river systems or road net-
works) equipped with sensors that collect data for several different pur-
poses can be naturally modeled using graph databases. However, since
networks can change over time, to represent these changes appropriately,
a temporal graph data model is required. In this paper, we show that
sensor-equipped transportation networks can be represented and queried
using temporal graph databases and query languages. For this, we extend
a recently introduced temporal graph data model and its high-level query
language T-GQL to support time series in the nodes of the graph. We
redefine temporal paths and study and implement a new kind of path,
called Flow path. We take the Flanders’ river system as a use case.
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1 Introduction and Related Work

A sensor network [1] is a collection of sensors that send their data to a central 
location for storage, viewing and analysis. These data can be used in various 
application areas, like traffic control and river monitoring. A sensor network 
through which a flow circulates (e.g., data, water, traffic) is called a sensor-
equipped transportation network. These networks are rather stable, in the sense 
that the changes over time are minimal and occur occasionally. For example, the 
direction of the water flow in a river may change due to a flood or a branch may 
disappear due to long dry weather periods. Sensors attached to transporta-tion 
networks produce time-series data, a problem studied in [3], where a formal model 
and a calculus are proposed. In that work, the network is modeled as a property 
graph (a graph whose nodes an edges are annotated with proper-ties) [2] where 
nodes are associated with time series (see also [6]), obtained from the sensor 
measurements. One limitation of the work in [3], is that the model assumes that 
graphs are not temporal, that is, they do not keep track of their history. To 
address this problem, in this paper we propose to use the temporal graph data 
model proposed by Debrouvier et al. [4], denoted TGraph, where nodes and edges 
are labeled with temporal validity intervals telling the period when a node, an 
edge, or a property exists in the graph. Using this model we
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can query the existence or not of a graph object at a certain time instant, the
values of a property measured by a sensor, and even the intervals where the sen-
sor was working. In addition, the model comes with a high-level query language
called T-GQL. TGraph builds upon three notions of paths: continuous, pairwise
continuous, and consecutive. Intuitively, a continuous path (CP) is continuously
valid during a certain time interval. A pairwise continuous path (PCP) is a path
where consecutive edges overlap during a certain time interval. Finally consec-
utive paths (CSP) are paths where the temporal intervals between consecutive
edges do not overlap (typically used for scheduling).

TGraph accounts mainly for connections between nodes, but do not address
nodes associated with time series functions, like it is the case in sensor networks.
For this, in this paper we extend TGraph and T-GQL, and redefine the temporal
path notions to address queries like “List the paths between two sensor nodes J
and A were all temperature measurements are above a value τ , and the interval I
when this occurred,” which cannot be expressed by static graph models. We take
the Flanders’ river system as a use case and consider that some nodes, which
represent river segments, are equipped with sensors while other ones are not. The
model is introduced in Sect. 3. In addition, we redefine the three kinds of paths
mentioned above and introduce the notion of Flow Path (Sect. 4), also showing
how complex queries can be expressed using the extended T-GQL. Section 5
presents the algorithm to compute Flow Paths and describes how T-GQL queries
are translated into Cypher using the underlying graph structure. We conclude
in Sect. 6.

2 Background and Preliminary Definitions

A transportation network TN is a directed graph (N,E), where N is a finite
set of nodes and E ⊆ N × N is a set of directed edges. Under this definition,
we may model networks (e.g., rivers, roads, electrical) in at least two ways: (a)
Segments represented by edges that connect two (geographic) points, modeled
as nodes (illustrated on the left-hand side of Fig. 1); (b) Segments represented
by nodes, and an edge between two nodes A and B indicates that the flow goes
in the direction of the edge; we call FlowsTo the relationship (that is, the edge
type) representing that the flow goes from A to B (Fig. 1, center). Following [3]
we adopted the latter approach. Adding sensors to this network yields the notion
of sensor-equipped transportation network.

Definition 1 (Sensor-equipped transportation network ([3])). Consider
a set T of (possible) time moments and a set V of (possible) measurement values.
A sensor-equipped transportation network SN, is a 4-tuple (N,E, S,TS), such
that (N,E) is a transportation network, S ⊆ N is a set of sensor-equipped nodes
( sensor nodes, for short), and TS : S → P(T × V) is a ( time-series) function
that maps sensors to a set (or sequence) of time-value pairs, ordered according
with their time component (Fig. 1 (right)). ��

In the sequel, we call the networks in Definition 1 sensor networks.
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Fig. 1. Left: a physical transportation network for a river system (segments represented
as edges); Center: representing segments as nodes; Right: a transportation network with
the time series attached to sensor nodes 4 and 11 (segments represented as nodes)

Definition 2 (Temporal property graph [4]). A temporal property graph
is a structure G(No, Na, Nv, E) where G is the name of the graph, E is a set
of edges, and No, Na, and Nv are disjoint sets of nodes, called Object nodes,
Attribute nodes, and Value nodes, respectively. Object and attribute nodes, as well
as edges, are associated with a tuple (name, interval). The name represents the
content of the node (or the type of the edge), and the interval the time period(s)
when the node is (or was) valid. Analogously, value nodes are associated with
a (name, interval) pair. For any node n, the elements in its associated pair are
referred to as n.name, n.interval, and n.value. As usual in temporal databases, a
special value Now tells that the node is valid at the current time. All nodes also
have an (non-temporal) identifier denoted id. ��

A set of temporal constraints hold in Definition 2, and are intuitively explained
next. First, all nodes with the same value associated with the same attribute
node must be coalesced. Analogously, all edges with the same name between the
same pair of nodes, must be coalesced. For nodes, it holds that: (a) An Object
node can only be connected to an attribute node or to another object node; (b)
Attribute nodes can only be connected to non-attribute nodes; (c) Value nodes
can only receive edges from attribute nodes. Attribute nodes must be connected
by only one edge to an object node, and value nodes must only be connected to
one attribute node with one edge. Finally, for intervals: (d) The interval of an
attribute (value) node must be included in the interval of its associated object
(attribute) node; (e) Intervals associated with a value node must be disjoint; (f)
The intervals of two edges between the same pair of nodes must be disjoint.



The model described above comes with a high-level query language denoted
T-GQL. The language has a slight SQL flavor, although it is also based on
Cypher [5], the query language of the Neo4j graph database. The implementation
of T-GQL also extends Cypher with a collection of functions that allow handling
the different kinds of temporal paths. T-GQL queries are translated into Cypher,
hiding all the underlying structures that allow handling a temporal graph.

3 Temporal Graphs for Sensor Networks

The model in Definition 2 must be modified to handle sensor networks: We must
distinguish Object nodes that hold a sensor from the ones which do not. We
call the former Segment nodes. Also a list of time intervals indicates the periods
of time where a segment had a working sensor on it. Properties that do not
change across time are represented as usual in property graphs. We remark that
we work with categorical variables. Also, we assume that there is at most one
sensor per segment, which measures different variables, instead of many sensors
that measure different variables.

Definition 3 (Sensor Network Temporal graph). A Sensor Network Tem-
poral Graph (SNGraph) is a structure G(Ns, Na, Nv, E) where G is the name
of the graph, E a set of edges, and Ns, Na, and Nv sets of nodes, denoted Seg-
ment, Attribute, and Value nodes, respectively. Nodes are associated with a tuple
(name, interval), but in Segment nodes this tuple exists only if the segment con-
tains (or ever contained) a sensor. In this case, name = Sensor, and interval
represents the periods when a sensor worked. They may also have properties that
do not change over the time (called static). An Attribute node represents a vari-
able measured by the sensors, its name property is the name of such variable,
and interval is its lifespan. A Value node is associated with an Attribute node,
its name property contains the (categorical) values registered by the sensors, and
interval the period when the measure was valid. The name property of the edges
between Segment nodes represents the flow between two segments, and interval is
the validity period of the edge. All nodes have a static identifier denoted id. ��

Temporal constraints in the TGraph model also hold for the model in Def-
inition 3 (we omit them here). We use the Flemish river system in Belgium as
a case study. Figure 2 shows a part of the Meuse river modeled as an SNGraph.
There are five Segment nodes, three of which have sensors (the shaded ones, with
id = 120, id = 345, and id = 1200 ), thus, name = Sensor. The static property
riverName in Segment nodes contains the river’s name. The Segment with id =
345 had a sensor between times 20 and 80 and measured two variables: Temper-
ature and pH, thus, there are two Attribute nodes connected to it, one for each
variable, with intervals [25–80] and [20–80], respectively. Note that time intervals
in Attribute nodes are included in the interval of the Segment node, i.e., they
satisfy the temporal constraints. There are two Value nodes for the Temperature
Attribute node, such that between instants 20 and 25 the temperature was Low,
between instants 25 and 27 it was High, and between instants 27 and 80 it went
down to Low again. Finally, FlowsTo is the edge type.



Fig. 2. A temporal graph for a river sensor network (sensor nodes are shaded).

4 Temporal Paths in Sensor Networks

We now redefine the path notions in [4], according with the model in Sect. 3.

Continuous Path in Sensor Networks. Many queries of interest can be answered
using the model of Definition 3. For example: “Starting from a segment, obtain all
the paths and their corresponding time intervals Ti such that the temperature in the
path has been simultaneously High for all nodes in the path during Ti”.The original
“Continuous Path” notion only accounts for the connections between nodes in a
temporal graph, so it must be modified to compute a path restricted to a certain
value of a variable measured by the sensors. The upper part of Fig. 3 shows, for each
sensor node in a river, the temperatures registered during a certain period. Sensor
nodes are denoted by a filled red square. Measures categorized as High (higher
than 10) for the variable Temperature are denoted in red boxes over the registered
measurement. The interval [10:30–11:00), where the value is High for all sensors,
is framed in the figure. The lower part of the figure depicts the SNGraph, showing
also non-sensor nodes. In the definitions next, the following notation is used: (a)
An edge e between two nodes na and nb is denoted e{na, nb}; (b) An Attribute
node is denoted na{n} where n is the Object node connected to na; (c) A Value
node is denoted nv{na} where na is the Attribute node connected to nv.

Definition 4 (SNContinuousPath). LetX be a variable that can take n possi-
ble values x1, x2, . . . , xn during a certain time interval. Consider also an SNGraph
G and a function f(X). An SN continuous path for f(X) (SNCP) with interval T
from node s1 to node sk, traversing edges of typeR, is a structure P (S,R, f(X), T ),
where S is a sequence of k nodes (s1, . . . , sk), such that si ∈ Ns, si.name = Sensor,
and T is an interval such that ∃(a ∈ Na, v ∈ Nv, v{a{si}}) (a.name = X, v.name
= f(X), T =

⋂
i=1,k vi.interval = and T �= ∅). Between a pair (si, si+1) of sen-

sor nodes, a path e1(si, n1, R), e2(n1, n2, R), . . . , ek(nm, si+1, R) can exist, where
np ∈ Ns is a segment node with no sensor. ��



Fig. 3. SN Continuous Path with Temperature = High in [10:30–11:00].

Fig. 4. Simplified SNGraph showing nodes with Temperature = High.

Example 1. Figure 4 depicts a simplified SNGraph where attributes and value
nodes are not shown (R here is FlowsTo). The intervals tell when a High value
of variable Temperature occurred. Filled nodes represent segments with a sensor
and non-filled ones are non-sensor nodes. A query asking for all SNCPs between
nodes 1 and 9, with High temperature values between 09:00 and 12:00, with a
number of sensors between 5 and 7, returns (we use a concise notation, omitting
the variable and the edge type): Path1 = [(1, 2, 3, 8, 9), [09:15–09:45]]; Path2

= [(1, 2, 3, 8, 9), [10:00–11:15]); Path3 = [(1, 2, 6, 7, 3, 8, 9), [10:00–11:00]). ��

Pairwise Continuous Path in Sensor Networks. Requiring a path to be valid
throughout a time interval is a strong condition. A weaker notion of temporal
path that asks for paths where there is an intersection in the intervals of every
pair of consecutive sensor nodes may suffice. This is shown in Fig. 5. There is no
SNCP with Temperature = High that involves the four sensors but the value of
Temperature of the first pair was High during the interval [10:30–11:00), for the
next two segments during [11:15–11:45), and for the last two pairs during [11:30–
12:00). That means, although there is no SNCP between the four sensors, there
is a consecutive chain of pairwise temporal relationships between them, denoted
an SN pairwise continuous path (SNPCP). We omit the formal definition here.

Analogously to the above, we define an SN Consecutive Path (SNCP) as
paths composed of sensor nodes such that, for every pair of consecutive sensors,



Fig. 5. SN Pairwise Continuous Path with Temperature = High.

Fig. 6. Flow Path with Temperature = High.

the value of a function f(X) is the same and the interval of the second period
starts after the first one has finished. We omit the definition here, since SNCPs
are included in the Flow Paths defined next.

Flow Paths in Sensor Networks. Sometimes, considering the paths above sep-
arately does not suffice to capture the characteristics of the flow. This is the
case of an event that is detected by a sensor and may still be happening when
is detected by the next sensor. Representing this situation requires a mixture of
continuous and consecutive paths. Figure 6 depicts a High value of Temperature
detected in one sensor earlier than the first time it is detected in the next one.
Thus, the measurements overlap in the first pair of sensors but not in the other
pairs. We call these paths as Flow Paths.

Definition 5 (Flow Path). Let X be a temporal variable that can take n
possible values x1, x2, . . . , xn during a certain time interval, an SNGraph G,
and a function f(X). An SN Flow Path for f(X) (SNFP) traversing edges
of type R in G, is a structure [S,R, f(X), T ], where S is is a sequence of
pairs (s1, [ts1 , te1 ]) . . . , (sk, [tek

, tsk
])) and si is the i-th sensor node in S, for



1 ≤ i ≤ k, and ∃(a ∈ Na, v ∈ Nv, v{a{si}}) (a.name = X, v.name = f(X),
[tsi

, tei
] = v.interval and T =

⋃
i=1,k vi.interval). For every pair (si, [tsi

, tei
]),

(si+1, [tsi+1 , tei+1 ]), tsi+1 > tsi
holds. Between a pair of sensor nodes (si, si+1), a

path e(si, ni1, R), e(ni1 , ni2 , R) . . . e(nim , si+1, R) can exist, where nip ∈ Ns is a
segment node with no sensor. ��

Example 2. In Fig. 4, a query asking for all Flow Paths starting at node 2 such
that the temperature was High between 09:00 and 13:00, with a minimum of
3 sensors, returns one SNFP (with Sensor nodes 2, 3, and 5): Path1 = [(2, 3,
4, 5, {[09:00–9:45], [09:15–11:45], [12:15–12:45]}] (node 4 is a non-sensor one).
Intervals overlap in segments 2 and 3 but not in segments 3 and 5. ��

We extend T-GQL to address the new temporal paths (note the keywords
Variable and Value below). An example of an SNCP query is: “Maximal time
intervals (and the paths where they occurred) when temperature was High simul-
taneously, between ‘2022-03-10 05:00’ and ‘2022-03-10 16:00’, starting from the
sensor located at segment 3. The number of sensors in the returned path must
be between 3 and 5.” The T-GQL expression for this query reads:

SELECT paths , interval MATCH (s1:Sensor), (s2:Sensor),

paths = SNCP((s1)-[: FlowsTo *3..5]-> (s2),

‘2022-03-10 05:00 ’, ‘2022-03-10 16:00 ’)

WHERE Variable = ‘Temperature ’ AND Value = ‘High’

AND s1.id = 3;

5 Computing the Paths

The T-GQL language is implemented extending Cypher with a collection of pro-
cedures stored in the database’s Plugins folder. T-GQL queries are translated
into Cypher, and there is one procedure for each one of the temporal paths
previously defined. Algorithm 1 describes the computation of the Flow Paths
(Definition 5), the only one we include here for space reasons.

The algorithm receives a temporal graph G, the source and, optionally, the
destination nodes (s and d, respectively), a variable X, a function f , a time
interval Iq and a δ value that limits the time gaps between sensors. It returns a
set of nodes S. To compute the solution, Algorithm 1 builds a transformed graph
Gt, whose nodes contain either the interval when f(X) was valid (if they are
sensor nodes) or the interval of the previous sensor in the temporal graph, and
the edges indicate the nodes reachable from that position. The nodes n in Gt

have six attributes: a reference to the node in the original graph (n.noderef),
a flag telling whether the node is a sensor or a non-sensor one (isSensor), a
time interval when f(X) was valid (interval), the number of sensors in the path
nbrOfSensors), the number of sensors of a path that passes through that node
(length), and a reference to the previous node in Gt, in order to allow rebuilding
the paths after running the algorithm (previous).

After initialization, the algorithm adds the initially transformed graph node
to a queue. This (sensor) node is a six-tuple that contains s, the interval time



Algorithm 1. Compute the Flow paths
Input: A graph G, a source node s, a destination node d, a variable X, a function f(X), the maximum number

of sensors in the path ns (optional), a query interval Iq and δ a period of time.
Output: A set with the solutions S.

Initialize the transformed graph Gt and Q (a queue of Gt nodes)
if (s is sensor node) then

cInterval = f(s.X) nodes)
if (cInterval ∩ Iq �= ∅) then

Q.enqueue((s, cInterval, true, 1, 1, null))
while not Q.isEmpty do

curr = Q.dequeue()
for (curr.node, interval, dest) ∈ G.edgesF rom(curr.node) do

if not(Gt.containsNode(dest.id)) then
if (dest.isSensor() and dest.measures(X)) then

dInterval = f(dest.X)
if (dInterval ∩ Iq == ∅) then

S.add(curr)
continue

end if
if cInterval.start < dInterval.start then

newNode=(dest, dInterval, true, curr.nbrOfSensors + 1, curr.length + 1, curr)
if (dest == d) or (curr.nbrOfSensors == ns) then

S.add(newNode)
end if

end if
else

newNode=(dest,curr.interval, false, curr.nbrOfSensors,curr.length+1, curr)
end if
Q.insert(newNode)

end if
end for

end while
return S

end if
end if

when f(X) was valid for s, 1 as the number of sensors, 1 as the length of the
path so far, and null as the reference to the previous node. An element curr
is iteratively picked from the queue until the queue is empty. There is a node
ni in the temporal graph associated with curr. For each edge outgoing from
ni in G, there is a dest node associated with it. If the dest node is not in Gt

and it is a sensor node, we obtain the interval time dInterval that corresponds
to the times when f(X) is valid for dest, and check that dInterval ∩ Iq �= ∅.
We also check that the start time of dInterval is greater than the start time
of curr. In that case, the path is expanded creating a sensor node newNode
(the flag is true) whose interval is set as dInterval. If dest = d or if we have
reached the maximum number of sensors, newNode is added to S. In case dest
is not a sensor node, the path is expanded with this node as a segment, and the
interval will correspond to the previous sensor in that path (cInterval). When
Q is emptied, the set of nodes in Gt is returned, and the algorithm reconstructs
the paths following the link to the previous node until there is no such node.

Consider the following query, which computes the FPs between 06:00 and
Now with at least five nodes.

SELECT paths MATCH (s1:Sensor), (s2:Sensor),

paths = SNFP((s1)-[: FlowsTo*]->(s2),‘06:00’,‘Now’ ,5)

WHERE Variable = ‘Temperature ’ AND Value=‘High’ AND s1.id=10;

The query translated into Cypher using the underlying temporal graph struc-
ture (Fig. 2) is shown next. The SNFPs are computed using Algorithm 1.

MATCH (o1:Segment{name:‘Sensor ’}),(o2:Segment{name:’Sensor ’})

WHERE o1.id = 10 AND o2.id = 8



CALL consecutive.flowSensor(o1,null ,5,null ,

‘Temperature ’,‘=’,‘High’, {edgesLabel:‘FlowsTo ’,

nodesLabel:‘Segment ’,

attributeLabel:‘Temperature ’, valueLabel:‘High’,

between :‘06:00-Now’, direction:‘outgoing ’})

YIELD path as internal_p1 , intervals as internal_i1

WITH {path:internal_p1 ,intervals:internal_i1} as p

RETURN p.path as ‘path’, p.interval as ‘intervals ’

6 Conclusion and Future Work

We have shown how temporal graphs and temporal graph query languages can
be used to model and query sensor networks. We have extended previous work in
temporal graphs that allow supporting sensor networks. We have also extended
the different notions of temporal paths, and added and implemented the notion
of Flow path, that captures a wide variety of scenarios. The proposal has been
implemented over the Neo4j graph database as a proof of concept, and our next
step is to implement and test this model over large sensor network graphs using
optimization techniques that we are developing, like temporal indices.
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