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Abstract

The purpose of this article is to present a non-hybrid controller for the Artificial Pancreas (AP) problem fo-
cused on long-term clinical trials and home-use applications. It includes physical activity and unannounced
meals. The controller is based on a robust gain-scheduled algorithm with a Linear Parameter-Varying (LPV)
structure. It accounts for the time-varying dynamics of the problem by adapting in real-time according to
measured glucose levels, and allows online fine-tuning during tests and periodic evaluations without the
need of controller redesign. The proposed fully parameterized LPV control adds several features to our
previous results, accounts for the main perturbations of the AP problem and simplifies its implementation.
In-silico tests show that the achieved performance is similar or better than our previous Automatic Regula-
tion of Glucose (ARG) algorithm, tested in two clinical trials, with the addition of the features mentioned
before.
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1. Introduction

The Artificial Pancreas (AP) problem has been given considerable importance in the last decades as a
means of improving the quality of life of Type 1 Diabetes Mellitus (T1DM) patients. A reference of several
world-wide groups working in this problem that have performed clinical trials can be found in [24]. Several
results have been reported in this area which involve detection of meals [21, 31, 14], meals and physical
activity (PA) [2], closed-loop algorithms with unannounced meals [16, 25, 28, 10, 3] and tested in clinical
trials [5, 10, 18, 19]. In general, the time-varying dynamics are not accounted for in the design. More
importantly, these methodologies require a re-design of the controller if changes are produced during the
clinical test.

The group in Argentina, from UNLP and ITBA, has focused on patient’s autonomy, i.e. non-hybrid
algorithms which require the least intervention of the patient, unannounced meals and possibly PA. It has
performed three previous clinical trials, the only ones in Latin America. The first one tested 5 patients
during 36 hours in the Hospital Italiano of Buenos Aires in November 2016 with a platform (DiAs) and an
algorithm from the University of Virginia. In June 2017 a similar test was performed [23, 29] but with a
control algorithm developed locally. The third trial was ambulatory (out-patient) and lasted 6 days with 5
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patients during march 2021 [12]. In the last two trials, the ARG control algorithm was used [7] in conjunc-
tion with a safety layer to minimize hypoglycemia [22], and proved to work properly with unannounced
meals [11]. In the last clinical test, a monitoring platform developed by the UNLP, named InsuMate was
used [13].

The ARG controller is based on a control-oriented model developed by members of this group [8]
which has been used to design a switched LQG controller [7], and combined with the SAFE [22] procedure
to prevent hypoglycemia. This control-oriented model is tuned to each patient by means of his/her Total
Daily Insulin (TDI). The ARG algorithm provided good results in our last two clinical trials, but certain
shortcomings need to be solved.

First, although based on a Linear Parameter-Varying (LPV) control-oriented model, the controller was
designed as a switched LQG control in order to simplify the programming in both, the DiAs and InsuMate
platforms. Therefore, this lacks the continuous time-varying capacity of an LPV control.

Second, during the clinical trials it was observed that, due to changes in the insulin sensitivity and other
parameters as the clinical TDI, a real-time redesign of the controller had to be made to increase performance.
In the case of the ARG, many off-line computations had to be achieved for this purpose, e.g. tuning of the
model to the new TDI, computation of the LQG matrices, model reduction, etc. Hence, a controller that
could be adjusted online according to the patient’s behavior during the test without the need of a re-design,
would be highly convenient. This is particularly important in our future phase-4 trial with patients at home
and during a long period of time.

Third, it is important not only to take into account the meals, but also PA as perturbations to the patient’s
regulation. Recently we have designed a switched LPV controller which meets those needs [6].

In this article, a new algorithm based on LPV control tools is developed so that it can be tuned during
the trials without the need for a controller redesign and also takes into account unannounced meals and
PA. Two additional parameters are added in order to finely adjust the controller to the particular patient
based on information obtained during the clinical trials. A new measure based on variables commonly used
by physicians is also introduced in order to help in the tuning of these parameters. This novel controller
parameterization aims to find the most suitable trade-off between good glucose regulation and low hypo-
glycaemia risk for each patient.

This work is organized as follows. Section 2 describes previous results by the authors and Section 3 the
new LPV control scheme suitable for in-situ tuning. Section 4 presents the main results and the paper ends
with some concluding remarks in Section 5.

2. Previous results

The initial version of the ARG algorithm was based on switched LQG controllers combined with the
SAFE layer. An updated version, which contemplates also PA and based on a purely LPV framework has
been presented in [6]. Figure 1 sketches the AP strategy of the latter algorithm. The core of this strategy
is the switched LPV controller and the SAFE algorithm. The former consists of two LPV controllers:
K1(ρ) more conservative and K2(ρ) more aggressive for situations with high glucose increase rates. Both
controllers are parameterized by a function of the glucose g and switched depending on the controller mode
signal. The SAFE module is basically a safety layer that limits the insulin command produced by the LPV
controller according to the Insulin On Board (IOB) in order to minimize risk of hypoglycemia imposing an
upper limit IOB.

The core system receives two signals besides the glucose measure fed-back by the CGM system. These
additional signals are generated by the Mode Selector according to the patient heart rate (HR), an exercise
announcement manually set by the patient and the hyperglycemia detection signal. With these inputs, the
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Figure 1: Diagram of the AP strategy proposed in [6].

Mode Selector produces two commands for the switched LPV controller and the SAFE module according
to four operation modes:

1. Conservative mode: when the glucose is close to the basal level, the conservative LPV controller
K1 handles the glucose regulation and the SAFE module operates with a limit IOB = IOBs =
IOBb + 40 g/CR, where IOBb is the estimated IOB value at basal input rate and CR is the patient
dependent insulin-to-carbohydrate ratio in U/g.

2. Aggressive mode: is applied when the hyperglycemia detector determines a fast increase in the glu-
cose value. In this mode, the aggressive LPV controller K2 regulates the glucose and the SAFE
module works with the limit IOB = IOBm = IOBb + 55 g/CR.

3. Exercise mode: is triggered a certain instant before the exercise start time manually indicated by the
patient and is maintained for at least 60 minutes. In this mode, the conservative LPV controller K1

regulates the glucose and the IOB used by the SAFE module is set depending on the surface shown
in Figure 2.

4. Post-exercise mode: is set during 8 hours after the exercise in order to minimize the risk of hypo-
glycemia and consists in setting IOB = IOBs whereas the LPV controller is selected according to
the signal sent by the Hyperglycemia Detector.

The purpose of the present article is to fully parameterize this control strategy as a function of easily
determined patient characteristics and thus to be able to adjust the control strategy to the patient without
specific modelings and designs. As observed from the previous description, the only part that must be
designed for a specific patient is the LPV controller, performed previous to a clinical trial. Hence a new
design approach is proposed in the next section. In order to keep the control strategy simple, the switching
is eliminated and only one LPV controller is designed. Thus in the new AP strategy the Mode Selector from
Figure 1 only produces the signal IOB.

3. Fully parameterized LPV control methodology

The patient’s glucose response to an insulin bolus exhibits significant changes among subjects. On the
other hand, the preservation of the patient’s comfort and safety also limits the tests that can be performed
to identify accurate mathematical descriptions. This makes quite difficult to design high performance and
patient-tuned model-based controllers. Therefore, the aim of the proposed strategy presented here is to
design a fully parameterized LPV controller that can be adjusted in-situ for any particular patient during the
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Figure 3: LPV representation of the mapping meal/insulin-glucose

device configuration and subsequent adjustments throughout the clinical trial, without the need to redesign
the controller. This is clearly applicable to a clinical trial situation.

For this purpose, the control-oriented model inspired by [8] and sketched in Figure 3 is used for the
controller design, where m is the meal, u the insulin and g the glucose. The filter F (s) is given by

F (s) =
b0

s2 + a1s+ a0
. (1)

This filter, the zero z and the gain kmi are assumed common for all patients and their parameters can be
obtained as indicated in [8]. Based on results obtained from the distribution version of the UVA simulator,
the following values were obtained: a0 = 0.0129, a1 = 0.017, b0 = 7.1010 × 10−4, z = 0.1501,
kmi = −0.041. The 15 minute delay is approximated as

Gd(s) = e−15s ≈ 0.008

(s+ 0.2)3
. (2)

The operator Gp1 represents the LPV system

Gp1(ρ) :

{
ẋp = −ρxp + q,

v = xp,
(3)
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where the parameter ρ = p1(g) is a piecewise polynomial depending on the glucose g, which models the
bandwidth changes observed in the response at different glucose concentrations [8].

The gain kf models the inter-patient variability and is determined using the 1800/TDI rule as shown
in [8]. For each patient in the UVA simulator, a gain kf is computed such that the control-oriented model
exhibits the glucose drop given by 1800/TDI. Fitting a first order polynomial to these points, the following
expression can be used to adjust the model for a particular patient

kf (θ1) = cTDI,1 θ1 + cTDI,0, (4)

where θ1 is the patient TDI, and cTDI,0 = 2.3327 and cTDI,1 = −0.0228 are constant coefficients.
Assuming that:

F (s) :

{
ẋf = Afxf +Bfv,

g = Cfxf
(5)

(s+ z)Gd(s) :

{
ẋd = Adxd +Bdu,

q1 = Cdxd
(6)

the entire model can be expressed as

G(ρ, θ1) :

{
ẋ = A(ρ)x+Bmm+Buu,

g = C(θ1)x,
(7)

where x = [xTd xp x
T
f ]

T , being xd ∈ R3, xp ∈ R, xf ∈ R2,

A(ρ) =

Ad 0 0
Cd −ρ 0
0 Bf Af

 , Bm =

 0
kmi

0

 , Bu =

Bd

0
0

 ,

C(θ1) =
[
0 0 kf (θ1)Cf

]
.

(8)

The parameter set is defined as

P = {p1,min ≤ ρ ≤ p1,max} × {TDImin ≤ θ1 ≤ TDImax} , (9)

with p1,min = 0.0028 and p1,max = 0, 013 from [8], TDImin = 34 U and TDImax = 72 U, considering
the 11 patients in the UVA/Padova simulator. To sum up, the dynamic mapping meal/insulin-glucose is
described by an LPV model of order 6 and two parameters (ρ, θ1) taking values in the set P .

The previous LPV description is used in the closed-loop setup illustrated in Figure 4 in order to state
the LPV controller design as the following multi-objective problem:

min
K̃∈K(ρ,θ1,θ2)

||T1||2,

subject to ||T2||L2 ≤ 1,
(10)

where K(ρ, θ1, θ2) is the set of stabilizing LPV controllers, T1 denotes the mapping from m to ẽ, T2 the
mapping from r to ũ. The symbol || · ||2 denotes the generalized H2 norm, and || · ||L2 the L2 induced norm.
This multi-objective design aims at minimizing the maximum deviations of the glucose g from the basal
value when a meal (assumed as pulses of carbohydrates) is ingested. Whereas, the control action (insulin)
is bounded and a certain degree of robustness against un-modeled dynamics is ensured.
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Figure 4: Closed-loop setup used for the controller design

The weighting functions in the setup shown in Figure 4 are taken as

Wu(s, θ2) = (ku,0 + (1− θ2)ku,1)
s+ 0.1

s+ 10
, (11)

Wp(s) =
1

100s+ 1
, (12)

kp(θ2) = kp,0 + θ2kp,1, (13)

where ku,0 = 5, ku,1 = −4.5, kp,0 = 10, and kp,1 = 490. The parameter θ2 ranges between 0 and 1. Higher
values of θ2 penalize more the glucose error and less the control action. Therefore, the parameter θ2 will
determine the aggressiveness of the resulting controller.

The plant augmented with the weighting functions (11)-(13) is an LPV system of order 8 with three
parameters: ρ, θ1, θ2. The resulting controller

K(ρ, θ1, θ2) = Wp(s)K̃(ρ, θ1, θ2) (14)

depends on two types of parameters varying at different time-scales1. Parameter ρ is employed to adapt
the controller in real-time according to the current value of the glucose measurement at each time step, as
a typical gain-scheduled LPV controller. On the other hand, parameters θ1 and θ2 tune the controller in
order to adjust it to the patient’s TDI and the desired controller aggressiveness. This tuning can be seen as if
parameter θ1 selects the nominal model and θ2 the model uncertainty bound. These two parameters are set
during periodic device configurations, observing the closed-loop patient’s response, but they do not change
during the normal controller operation. They are used to finely tune in-situ for each patient, without the
need of controller redesigns.

The optimization problem (10) can be efficiently solved with the algorithm introduced in [1] and im-
plemented with Yalmip [15] and SeDuMi [27]. This algorithm relies on matrix Lyapunov functions that,
together with the specifications given by the operators T1 and T2, defines the set of stabilizing controllers
K. In particular, parameter dependent Lyapunov functions permits us to consider the expected parameter
variation rates and thus improves the controller performance. This can be employed to take into account
the different time-scales of the two types of parameters during the controller design. The parameter ρ is
expected to change at each sampling time (5 minutes) but the other parameters may remain constant during

1This factorization is necessary to ease the controller design, see [1] for more details.
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days, until a new manual controller tuning is done. In the framework proposed in [1], this can be considered
using the following parameter dependent Lyapunov functions

X(θ1, θ2) = X0 + θ1X1 + θ2X2, Ẋ(θ1, θ2) = 0,

Y (θ1, θ2) = Y0 + θ1Y1 + θ2Y2, Ẏ (θ1, θ2) = 0.
(15)

By imposing zero time derivatives of these functions, the design procedure takes into account that the
parameters θ1 and θ2 will not change2. The absence of the parameter ρ in these expressions indicates that
this parameter will vary frequently during the controller operation. This consideration helps to improve the
controller performance as it allows us to indicate that θ1 and θ2 will be almost constant compared with the
changes of ρ.

The differential equation to compute the control action at each step-time can be expressed as

K(ρ) :

{
ẋc = (Ac,0 + ρAc,1)xc + (Bc,0 + ρBc,1) e,

u = (Cc,0 + ρCc,1)xc + (Dc,0 + ρDc,1) e,
(16)

where the matrices Ac,0, . . . , Dc,1 are obtained after assigning the particular values of θ1 and θ2 in the
controller matrices. Notice that once the parameters θ1 and θ2 are set during the fine-tuning stage, the
controller only depends on the parameter ρ similarly to the strategy presented in [8]. More details about the
controller expressions and design can be found in Appendix A.

4. Results

The aim of the methodology proposed in the previous section is to produce a controller adjustable to
each patient without extensive tests and complex redesigns, adequate for a clinical trial environment. The
adjustments for the in-situ tuning to each patient will be performed by θ1 and θ2. The first will be modified
according to (4) when the patient’s TDI significantly moves during the test with respect to its clinical value.
The second one graduates the aggressiveness of the controller according to the hyper- and hypoglycemias
of the patient during the trial. As explained before, a single LPV controller designed off-line allows changes
in both parameters during the trial.

In order to evaluate the strategy a representative simulation scenario was analyzed using the distribution
version of the UVA/Padova simulator. The scenario is similar to the one presented in [6]. The patient ingests
three meals:

• 40 g meal at 7 AM,

• 70 g meal at 12 PM, and

• 60 g meal at 7 PM.

At 4 PM, the patient does a 30 min bout of moderate exercise, which is announced to the controller 30
minutes before starting. Here, as considered in [6], intra-patient variations have been treated as uncertainty,
which can be taken into account by an adequate selection of weight Wu [4]. Another alternative, not
considered here, would be to add an extra parameter to the LPV controller, which should measure or estimate
these variations in real time [17]. In the simulations, the LPV controller and the remaining elements in

2Actually it will have very few changes during a complete clinical test.
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Figure 1 were discretized at each sampling time of 5 minutes. In order to obtain realistic results, the insulin
pump quantification errors were also included. The measurement noise was not considered to ease the
comparison of the responses.

Figure 5 shows the glucose and the insulin injected by the pump in case of Patient 11 (average patient).
The thick, black line corresponds to the response when an LPV controller is designed for a model tuned
for the particular patient. That is, the gain kf is determined from the open-loop patient response to 1 U
insulin bolus as indicated in [8] and not using the approximation (4). As this would be the ideal situation,
it is used as the baseline for comparisons. This controller is designed with the same closed-loop setup in
Figure 4 and the weighting functions (11)-(12), with ku = 2.75 and kp = 255. The remaining lines are
the closed-loop evolution obtained with the proposed controller using a grid of 11 values for the parameter
θ2 between 0 (more conservative) and 1 (more aggressive). The gray areas indicate the instant in which
carbohydrates are ingested, whereas the green area marks the period of PA. As mentioned before, besides
the scheduling variable ρ = p1(g), the resulting LPV controller has two parameters to be tuned in-situ: the
gain kf (θ1) and the aggressiveness θ2. The first one is set according to the expression (4) with the patient’s
TDI, 40 U in the case of Patient 11. The numbers in the legend corresponds to the values of θ2. Clearly,
the most aggressive controller (θ2 = 1) reduces the glucose peak but at the expense of a larger drop, which
approaches hypoglycemia. On the other side, the most conservative setting (θ2 = 0) yields a higher initial
glucose peak but the drop is less marked, with a lower risk of hypoglycemia. These results demonstrate that
the proposed controller parameterization enables us to achieve a similar response to the one obtained with
the baseline controller.

The parameter θ2 allows us to set the aggressiveness of the controller according to the insulin sensitivity
of the particular patient. The aim is to achieve a trade-off between a fast glucose regulation to avoid hyper-
glycaemia and a low risk of hypo-glycaemia. As a guide to select this parameter, the following measure,
based on the well-known LBGI and HBGI indices, can be used:

mℓh(Bℓi, Bhi) =

{
1, if LBGI ≥ Bℓi or HBGI ≥ Bhi

wℓ · LBGI + wh ·HBGI, otherwise,
(17)

where the upper bounds are Bℓi = 2.5 and Bhi = 4.5 [26, 30] for a diabetic patient. The weights wℓ and
wh are used to scale the differences between bounds, so that the parameter mℓh does not increase above
unity when LBGI < Bℓi and HBGI < Bhi, defined as the safe region. Therefore wℓ = 0.5/Bℓi and
wh = 0.5/Bhi. The top plot in Figure 6 shows the LBGI and HBGI indices for the Patient 11 in the
UVa/Padova simulator, for several values of θ2. The measure mℓh is shown in the bottom plot in Figure 6
with solid line and square markers. In this case, all values of θ2 are safe, although values between 0.7
and 0.8 will produce lower values of mℓh. Notice that the index mℓh depends on the bounds Bli and Bhi.
Hence, to achieve lower values of LBGI-HBGI [30], these bounds can be set to Bℓi = 1.5, Bhi = 3, e.g.
for non-diabetic patients. In this case, the index mℓh is restricted to a narrower region, as indicated in the
bottom plot in Figure 6 with solid line and triangle markers. In both cases, it can be observed that there is a
minimum suggesting the most suitable value for θ2.

In Figure 7, the closed-loop response under the previously described scenario for 10 patients in the
UVa/Padova simulator3 is presented. The thick, black line corresponds to the median. The top plot shows
the responses using the baseline control tuning, i.e. obtaining kf from an open-loop experiment and using
the weights (11)-(12), with ku = 2.75 and kp = 255, as mentioned before. The middle plot presents the
closed-loop responses with the new controller using θ2 = 0.5. The bottom plot displays the responses

3Adult Patient 7 from the database has an insulin sensitivity that is not coherent with its TDI, hence, it has been excluded.
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Figure 5: Nonlinear simulations of the closed-loop responses for the baseline controller (black line) and the proposed controller
with several settings of the parameter θ2. The gray areas indicate the meal ingestion period and the green area when physical
activity is performed.
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Table 1: Values of θ2 used to obtain the closed-loop responses in Figure 7c

Patient θ2 Patient θ2

1 0.8 6 0.9
2 0.8 8 0.9
3 0.9 9 0.6
4 0.6 10 0.8
5 0.8 11 0.8

Table 2: Average closed-loop results for all in silico adults corresponding to Figure 7. LGBI: Low blood glucose index, HBGI:
High blood glucose index, IQR: Interquantile range, [20].

Baseline
New Control

(θ2 = 0.5)
New Control

(θ2 in Table 1)

Overall Mean Me-
dian IQR Mean Me-

dian IQR Mean Me-
dian IQR

Average blood glucose
(mg/dl)

133.36 130.46 10.85 137.51 135.87 6.69 133.32 131.38 5.55

Coefficient of variation
(%)

24.00 25.00 7.00 25.00 25.00 5.00 24.00 24.00 6.00

% time < 70 mg/dl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
% time in [70, 140] mg/dl 68.16 70.79 16.24 65.75 68.47 13.56 70.12 71.77 11.01
% time in [70, 180] mg/dl 88.08 90.27 8.98 85.09 86.76 7.56 87.61 87.60 6.25
% time > 180 mg/dl 11.92 9.73 8.98 14.91 13.24 7.56 12.39 12.40 6.25
LBGI 0.22 0.14 0.19 0.11 0.11 0.07 0.14 0.13 0.05
HBGI 2.50 2.16 1.10 2.89 2.59 1.03 2.42 2.21 0.57

when the new controller is tuned with a particular value of θ2 selected to achieve a trade-off between
maximum and minimum glucose values by minimizing the value of mℓh(2.5, 4.5). These values are given
in Table 1 and were taken from the grid of values used for Figure 5. Table 2 summarizes the average closed-
loop results corresponding to the simulations in Figure 7 based on the time consensus outcome metrics for
glucose controller’s performances given in [9]. It can be seen that most of the metrics are similar in the
three cases, although the new controller with parameter θ2 tuned to each patient achieves values closer to
the baseline.

The in-situ tuning of this parameter allows the improvement of the closed-loop response, and suggests
a methodology to finely tune the controller for each patient:

1. Configure the controllers as θ1 = TDI (initial clinical value) and θ2 = 0.5.
2. Record the patient’s behaviour during the trial and compute the index mℓh. Based on the information

previously gathered try small changes in θ2 taking into account that an increase of θ2 reduces the
maximum glucose value after meals but also increases the risk of hypoglycemia. Record the glucose
again and recompute mℓh, if the value is lower try to increase θ2, otherwise decrease it. Repeat the
procedure seeking the minimum value of mℓh.

Notice that there is no need to redesign the controller to make these changes. In addition, take into
account that the modifications of these parameters take place very few times during a clinical trial, as
opposed to parameter ρ(g) that may change every 5 min, in accordance with the assumptions in Section 3.
Finally, the parameter modifications are easy to implement by non-technical personnel, e.g. physicians.
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Figure 7: Nonlinear simulations of the closed-loop system for all patients in UVA simulator (except for subject 7) using several
controllers. The gray areas indicate the meal ingestion period and the green area when PA is performed. a) Using the baseline
control tuning, b) new controller with θ2 = 0.5, and c) new controller with θ2 tuned to achieve a trade-off between maximum and
minimum glucose peaks. The thick, black lines indicate the median response.
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5. Conclusions

The high variability of the inter- and intra-patient glucose response makes it difficult to design high
performance model-based AP. Therefore, a new LPV, fully parameterized controller has been proposed
with the aim of improving the online tuning for any particular patient. This tuning can be made during
the clinical trial by simply setting two parameters. The proposed AP scheme has been tested with the
distribution UVa/Padova simulator under meal and PA disturbances. The results showed that the proposed
parameterization is able to achieve similar performance to ideally tuned controllers.
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Appendix A. LPV control design

For an augmented plant

ẋ = A(ρ, θ1, θ2)x+B1(ρ, θ1, θ2)w +B2u,

z1 = C1(ρ, θ1, θ2)x+D11(ρ, θ1, θ2)w +D12u,

z2 = C2(ρ, θ1, θ2)x+D21(ρ, θ1, θ2)w +D22u,

y = C3x+D31w,

defining the mapping T1 : w → z1 and T2 : w → z2, the optimization problem (10) can be translated into
solving a convex problem with the following LMI constraints:

−Ẏ +AY +B2Ĉ+ (⋆) ⋆ ⋆ ⋆

Â+ (A+B2D̂C3)
T Ẋ+XA+ B̂C3 + (⋆) ⋆ ⋆

(B1 +B2D̂D31)
T (XB1 + B̂D31)

T −I ⋆

C2Y +D22Ĉ C2 +D22D̂C2 D21 +D22D̂D21 −I

 < 0,

 X ⋆ ⋆
I Y ⋆

C1Y +D12Ĉ C1 +D22D̂C3 µI

 > 0,

D12 +D22D̂D21 = 0,

with µ = min ∥T1∥2 and

Â(ρ, θ1, θ2) = Â0 + Â1ρ+ Â2θ1 + Â3θ2, (A.1)

B̂(ρ, θ1, θ2) = B̂0 + B̂1ρ+ B̂2θ1 + B̂3θ2, (A.2)

Ĉ(ρ, θ1, θ2) = Ĉ0 + Ĉ1ρ+ Ĉ2θ1 + Ĉ3θ2, (A.3)

D̂(ρ, θ1, θ2) = D̂0 + D̂1ρ+ D̂2θ1 + D̂3θ2, (A.4)

X(ρ, θ1, θ2) = X0 +X1θ1 +X2θ2, (A.5)

Y(ρ, θ1, θ2) = Y0 +Y1θ1 +Y2θ2. (A.6)

The constant matrices Â0, . . . ,Y2 of suitable dimensions are the decision variables to be found.
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The parameters θ1 and θ2 are set during the AP configuration, as a result the functions (A.1)-(A.4) will
depend only on ρ whereas the functions (A.5) and (A.6) will be constant matrices. Therefore, the parameter
dependent matrices in (16) are obtained after substituting these matrices in the expressions:

Ac(ρ) = N−1(Â(ρ)−X(A(ρ)−B2D̂(ρ)C2)Y − B̂(ρ)C2Y −XB2Ĉ(ρ))M−T , (A.7)

Bc(ρ) = N−1(B̂(ρ)−XB2D̂(ρ)), (A.8)

Cc(ρ) = (Ĉ(ρ)− D̂(ρ)C2Y)M−T , (A.9)

Dc(ρ) = D̂(ρ), (A.10)

where M and N are selected to satisfy I − XY = NMT . The controller expressions (16) can be easily
deduced from the previous equations. Further details can be found in [1].
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