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We propose a new goodness-of-fit test for normal and lognormal distributions with unknown parameters
and type-II censored data. This test is a generalization of Michael’s test for censored samples, which is
based on the empirical distribution and a variance stabilizing transformation. We estimate the parameters
of the model by using maximum likelihood and Gupta’s methods. The quantiles of the distribution of the
test statistic under the null hypothesis are obtained through Monte Carlo simulations. The power of the
proposed test is estimated and compared to that of the Kolmogorov–Smirnov test also using simulations.
The new test is more powerful than the Kolmogorov–Smirnov test in most of the studied cases. Acceptance
regions for the PP, QQ and Michael’s stabilized probability plots are derived, making it possible to visualize
which data contribute to the decision of rejecting the null hypothesis. Finally, an illustrative example is
presented.
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1. Introduction

A model of reference in statistics is the normal distribution, which has dominated the landscape of
distribution theory and statistical applications for over 100 years. Today, the remarkable properties
of this distribution are well-known and widely used. Many statistical models and their optimal
properties rely in some way on the assumption of normality. When this hypothesis cannot be
sustained, several alternatives may be undertaken. Among them we can mention: (i) to transform
the data to obtain normality or (ii) to model directly the data by an appropriate distribution for the
random variable (r.v.) of interest. A well-known model that is used as an alternative to the normal
distribution upon non-negative support and positive skewness in several applications, for example



in lifetime analysis, is the lognormal (LN) one, which has cumulative distribution function (CDF)
given by

FX(x) = �

(
log(x) − μ

σ

)
; x > 0, μ ∈ R, σ > 0, (1)

where exp(μ) and σ are its scale and shape parameters, respectively, and �(·) is the standard
normal CDF. The notation X ∼ LN(μ, σ 2) is used in this case. Thus, the r.v. Y = log(X) follows
the normal distribution with mean μ and variance σ 2, which is denoted by Y ∼ N(μ, σ 2). For
more details, see [16, p. 78].

An important topic of statistical application is the analysis of censored data. These kinds of
data are usually found in lifetime studies when the experiment ends before all the units present an
event of interest [2,6–8,14,22]. In particular, when a parametric model is utilized in this context,
it is of interest to have inferential and visual goodness-of-fit procedures to validate this model.

The Kolmogorov–Smirnov (KS) test is a well-known goodness-of-fit method, the statistic of
which is denoted by D. The KS test is based on the comparison between the empirical cumulative
distribution function (ECDF) and a theoretical CDF specified in the null hypothesis (H0). A graph
that allows one to visualize the coherence of the ECDF with a specified theoretical CDF is the
PP plot, so that it can be associated with the KS test. Analogously, empirical quantiles (ordered
observations) can be compared to theoretical quantiles producing the QQ plot. A disadvantage
of the PP and QQ plots is that some of their points are more variable than others. Michael [17]
modified the KS statistics, D, using the arcsin transformation for stabilizing the variance of the
plotted points. The probability plot related to this variance stabilizing transformation is known as
the stabilized probability (SP) plot. A test associated with the SP plot was proposed by Michael
[17], the statistic of which is denoted by DSP.

In goodness-of-fit tests for a completely specified distribution, one can test any continuous
distribution as long as its parameters are known and without loss of generality to suppose in H0

the uniform distribution on [0, 1], which is denoted by U(0, 1). Michael [17] studied the power of
the test based on DSP for a completely specified distribution and proved that this is more powerful
than the KS test for certain distributions in the alternative hypothesis (H1). In the case of censored
samples, modifications of KS and Michael’s tests for a completely specified distribution can be
revised in [5,7,11].

A more realistic situation is presented when the parameters of the distribution specified in H0

are unknown so that they must be estimated. In this case, the distribution of the statistic of the
goodness-of-fit test depends on the parameter estimators, the estimation method, and the sample
size, as well as on the distribution specified in H0. However, when the distribution specified in H0 is
in the location–scale family and these location and scale parameters are estimated by appropriate
methods, the distribution of the goodness-of-fit statistics does not depend on the true values of
the unknown parameters; see [10, p. 102]. Particularly, Lilliefors [9,15] modified the KS test
for testing normality with unknown parameters. Michael [17] proposed this same modification
for DSP. The KS test for normality with unknown parameters can also be modified for censored
data estimating the parameters by means of, for example, the maximum likelihood (ML) method.
Nevertheless, in this case, the ML procedure does not provide analytical expressions for the
parameter estimators so that iterative numerical techniques must be used. For this reason, the
ML method was discarded in the past, so that tests for normality with unknown parameters and
censored data were based on linear estimators, as those proposed by Gupta [12], which are easily
computed and have been shown to be asymptotically efficient [1]. Recently, Sultan and Khaleel
[26] proposed tests for normality and censored data with parameters estimated by Gupta’s method.
They estimated the CDF by the kernel nonparametric method instead of using the ECDF as an
estimator of the CDF.



In this article, we introduce a new test based on DSP for normality with unknown parameters
and right type-II censored data. The parameters are estimated using ML and Gupta’s methods. In
addition, probability plots and their acceptance regions are provided. These regions make possible
to visualize which data contribute to the decision of rejecting H0. The methodology presented
here for right type-II censoring is also valid for censoring to the left and for the LN distribution;
for more details, see Remark 2.2. In right type-II censoring, the uncensored observations keep the
same position that they would have if all the observations were uncensored. This aspect allows us to
construct goodness-of-fit tests for censored data in an analogous way to that with uncensored data.

In Section 2, the new goodness-of-fit test and a modification of the KS test for normality with
unknown parameters and censored data are introduced. The computation algorithm, tables of
critical points, formulas for PP, QQ and SP plots and acceptance regions for these plots are also
presented in this section. In Section 3, a comparison between the powers of the proposed test and
the KS test is presented. In Section 4, for the purposes of illustration, an example of the obtained
results is considered. Finally, some conclusions are drawn.

2. The new goodness-of-fit test for censored data

Let X = [X1, . . . , Xn]� be a random sample of size n from a distribution with CDF F(·). As is
well-known, if Uj = F(Xj ), for j = 1, . . . , n, then U = [U1, . . . , Un]� is a random sample of
size n from the U(0, 1) distribution. If F(·) belongs to the location–scale family with parameters
μ (location) and σ (scale), F(x) = G([x − μ]/σ), and G(·) denotes the central CDF, then we
have

Uj = G

(
Xj − μ

σ

)
and U(j) = G

(
X(j) − μ

σ

)
, j = 1, . . . , n, (2)

where X(1), . . . , X(n) and U(1), . . . , U(n) denote the order statistics from the samples X and U,
respectively. Michael’s statistic is defined as

DSP = max
1≤j≤n

{
2

π

∣∣∣∣∣arcsin

(√
j − 0.5

n

)
− arcsin

(√
U(j)

)∣∣∣∣∣
}

. (3)

The reason postulated by him for defining the SP plot and DSP was based on the fact that, for
U ∼ U(0, 1), the r.v. S = [2/π ] arcsin(

√
U) follows the sine distribution on (0, 1), which is

denoted by SIN(0, 1), whose density is fS(s) = [π/2] sin(πs), for 0 < s < 1. The order statistics
of a random sample of size n from the SIN(0, 1) distribution, denoted by S(1), . . . , S(n), have
a constant asymptotic variance, due to that, as n approaches to ∞ and j/n approaches to q,
Var[n S(j)] approaches to 1/π2, which is independent of q, for j = 1, . . . , n. Michael’s SP graph
is obtained by plotting the points [[2/π ] arcsin(

√[j − 0.5]/n), [2/π ] arcsin(
√

u(j))], for j =
1, . . . , n.

Consider a random sample and the hypotheses H0: “the sample is drawn from a normal
distribution with parameters μ and σ” against H1:“the sample is not drawn from this normal
distribution”, i.e.,

H : F(x) = G

(
x − μ

σ

)
≡ �

(
x − μ

σ

)
versus H1 : F(x) 
= �

(
x − μ

σ

)
. (4)

If the distribution in H0 given in Equation (4) is completely specified, then the expression for DSP

given in Equation (3) can be used with U(j) = �([X(j) − μ]/σ), for j = 1, . . . , n.

Remark 2.1 For testing the hypotheses given in Equation (4) with unknown location (μ) and
scale (σ ) parameters, μ and σ must be replaced by their respective estimators μ̂ and σ̂ . However,



in this case, even when H0 is true, the corresponding Û(j) = F0([X(j) − μ̂]/σ̂ ), for j = 1, . . . , n,
is not an ordered uniform sample and so the distribution of DSP with U(j) replaced by Û(j)

differs from the distribution of this statistic when the parameters are known. The quantiles of the
distribution of DSP based on Û(j) under H0 were obtained by Michael [17] through simulation.

2.1 Modified statistics for censored samples

To contrast the hypotheses given in Equation (4) in the case of unknown parameters and right
type-II censored data, let U(1) < · · · < U(r) = T be the uncensored observations of the censored
(whole) random sample of size n (r ≤ n). In this case, T is an r.v., r is fixed, (n − r) observations
are greater than T , and the proportion of uncensored observations is p = r/n. We propose the
following modification for DSP:

D�
SP = max

1≤j≤r

{
2

π

∣∣∣∣∣arcsin

(√
j − 0.5

n

)
− arcsin

(√
Û(j)

)∣∣∣∣∣
}

, (5)

where Û(j) = �([X(j) − μ̂]/σ̂ ), for j = 1, . . . , r . In this case, the ML estimates of μ and σ are
obtained from

μ̂ = X̄ + λ(p, ξ̂ )[T − X̄] and σ̂ 2 = S2 + λ(p, ξ̂ )[T − X̄]2, (6)

respectively, where

X̄ =
r∑

j=1

Xj

r
, S2 =

r∑
j=1

[Xj − X̄]2

r
, λ(p, ξ) = Y (p, ξ)

Y (p, ξ) + ξ
, Y (p, ξ) = φ(ξ)[p − 1]

�(−ξ)p
,

and ξ = [T − μ]/σ , with φ(·) being the standard normal density. As mentioned earlier, the ML
estimates obtained from Equation (6) must be computed using iterative numerical methods. If
p = 1, then Y (p, ξ) = 0 and so λ(p, ξ) = 0, obtaining thus the ML estimators of μ and σ of
the normal distribution for uncensored random samples. If p < 1, we must first solve a nonlinear
equation in ξ by using iterative numerical methods to obtain ξ̂ , then evaluate λ(p, ξ̂ ), and finally
compute μ̂ and σ̂ 2; for more details about this procedure, see [6,8]. For the KS test, we propose
to modify D using ML estimates for the unknown parameters with right type-II censored data,
i.e.,

D� = max
1≤j≤r

{
2

π

∣∣∣∣j − 0.5

n
− Û(j)

∣∣∣∣
}

+ 0.5

n
, (7)

where Û(j) is defined as in D�
SP given in Equation (5). We call D�

SP and D� modified because they
must be evaluated at the estimates of μ and σ .

2.2 Computation algorithm

For testing the hypotheses given in (4) based on the statistic defined in Equation (5), the following
steps must be done:

(1) Compute the ML estimates of μ and σ , say μ̂ and σ̂ , using Equation (6).
(2) Obtain Ẑ(j) = [X(j) − μ̂]/σ̂ , for j = 1, . . . , r .
(3) Determine Û(j) = �(Ẑ(j)), for j = 1, . . . , r .
(4) Calculate D�

SP, which we denote by d�
SP, by using the observed value of Û(j) obtained in (3).



Table 1. Quantiles of the distribution of D�
SP for a normal distribution under H0 with parameters

estimated by ML method and right type-II censoring for the indicated values of p, n, and 1 − α.

p n d�
SP(0.50) d�

SP(0.75) d�
SP(0.90) d�

SP(0.95) d�
SP(0.99)

0.3 20 0.0497 0.0629 0.0748 0.0825 0.0977
25 0.0469 0.0583 0.0698 0.0772 0.0913
30 0.0462 0.0570 0.0677 0.0744 0.0900
40 0.0426 0.0523 0.0621 0.6888 0.0825
50 0.0404 0.0490 0.0578 0.0638 0.0761
60 0.0382 0.0462 0.0543 0.0601 0.0710
70 0.0362 0.0438 0.0517 0.0568 0.0685
80 0.0350 0.0421 0.0498 0.0546 0.0648
90 0.0337 0.0407 0.0480 0.0528 0.0625

100 0.0328 0.0395 0.0462 0.0506 0.0597

0.6 20 0.0637 0.0770 0.0904 0.0992 0.1178
25 0.0598 0.0719 0.0840 0.0923 0.1107
30 0.0564 0.0680 0.0796 0.0869 0.1020
40 0.0516 0.0617 0.0721 0.0792 0.0943
50 0.0479 0.0573 0.0670 0.0738 0.0873
60 0.0450 0.0537 0.0628 0.0683 0.0812
70 0.0424 0.0508 0.0597 0.0653 0.0769
80 0.0406 0.0484 0.0571 0.0625 0.0742
90 0.0393 0.0469 0.0547 0.0601 0.0711

100 0.0377 0.0449 0.0522 0.0575 0.0691

0.8 20 0.0705 0.0845 0.0983 0.1080 0.1263
25 0.0656 0.0785 0.0909 0.0994 0.1187
30 0.0618 0.0737 0.0855 0.0935 0.1096
40 0.0561 0.6671 0.0778 0.0849 0.1001
50 0.0520 0.0617 0.0717 0.0789 0.0916
60 0.0486 0.0574 0.0669 0.0732 0.0867
70 0.0457 0.5448 0.0633 0.0690 0.0810
80 0.4376 0.0517 0.0602 0.0660 0.7883
90 0.0422 0.0500 0.0579 0.0633 0.0742

100 0.0404 0.0477 0.0556 0.0606 0.0724

(5) Compare d�
SP with the suitable quantile given in Table 1.

(6) Reject H0 at the α level of significance if d�
SP is greater than the (1 − α)th quantile of the

distribution of D�
SP, which we denote by d�

SP(1 − α).

Remark 2.2 Note the following:

(1) An analogous algorithm to that described in steps (1)–(6) must be applied for testing the
hypotheses given in Equation (4) based on D�, which is defined in Equation (7). In this case,
Table 2 must be used for obtaining the suitable quantiles.

(2) Gupta’s estimates can also be used in Equations (5) and (7). In this case, the distributions of
D�

SP and D� are different from those obtained by ML estimation so that the corresponding
quantiles must be estimated. In the case of Equation (5), quantiles for some values of n and
p can be found in [6] and those corresponding to the statistic given in Equation (7) in [10].

(3) D’Agostino and Stephens [10] suggested using the same approximate quantiles of quadratic-
type goodness-of-fit statistics with right type-II censored data for right type-I censoring.
Tests obtained in such a way have an approximate level. They suggested doing so in the
case of a large sample size and p > 0.2. The same suggestion could be used for the
proposed tests because to the best of our knowledge, there are not exact tests available in
this case.



Table 2. Quantiles of the distribution of D� for a normal distribution under H0 with parameters estimated
by ML method and right type-II censoring for the indicated values of p, n, and 1 − α.

p n d�(0.50) d�(0.75) d�(0.90) d�(0.95) d�(0.99)

0.3 20 0.0801 0.0938 0.1094 0.1186 0.1363
25 0.0693 0.0819 0.0961 0.1047 0.1200
30 0.0655 0.0784 0.0913 0.1001 0.1161
40 0.0571 0.0679 0.0799 0.0876 0.1026
50 0.0514 0.0612 0.0716 0.0783 0.0932
60 0.0470 0.0562 0.0658 0.0719 0.0845
70 0.0432 0.0516 0.0606 0.0667 0.0793
80 0.0408 0.0487 0.0572 0.0628 0.0732
90 0.0385 0.0463 0.0545 0.0594 0.0698

100 0.0368 0.0439 0.0516 0.0564 0.0657

0.6 20 0.1104 0.1298 0.1505 0.1643 0.1890
25 0.0988 0.1168 0.1354 0.1472 0.1719
30 0.0901 0.1074 0.1247 0.1361 0.1591
40 0.0789 0.0932 0.1083 0.1177 0.1394
50 0.0707 0.0837 0.0973 0.1069 0.1264
60 0.0648 0.0766 0.0892 0.0973 0.1152
70 0.0600 0.0710 0.0828 0.0909 0.1060
80 0.0561 0.0666 0.0777 0.0852 0.0996
90 0.0534 0.0634 0.0740 0.0809 0.0951

100 0.0506 0.0600 0.0698 0.0762 0.0893

0.8 20 0.1233 0.1452 0.1684 0.1827 0.2120
25 0.1105 0.1298 0.1505 0.1633 0.1936
30 0.1013 0.1191 0.1381 0.1496 0.1743
40 0.0880 0.1041 0.1201 0.1311 0.1531
50 0.0790 0.0929 0.1083 0.1178 0.1395
60 0.0723 0.0853 0.0985 0.1076 0.1260
70 0.0670 0.0791 0.0918 0.1001 0.1159
80 0.0625 0.0742 0.0861 0.0942 0.1106
90 0.0599 0.0707 0.0822 0.0893 0.1059

100 0.0566 0.0668 0.0772 0.0845 0.0997
100 0.0539 0.0635 0.0740 0.0810 0.0956

Table 3. Formulas for constructing the indicated plots with censored data.

Plot Ordinate Abscissa

PP uj = �

(
x(j) − μ̂

σ̂

)
vj = j − 0.5

n

QQ x(j) yj = �−1
(

j − 0.5

n

)

SP sj = 2

π
arcsin

(√
�

(
x(j) − μ̂

σ̂

))
wj = 2

π
arcsin

(√
j − 0.5

n

)

(4) Note that if X ∼ N(μ, σ 2), then −X ∼ N(−μ, σ 2). Thus, for a left censored random sample,
changing the sign of every observation, a right censored random sample is obtained. Then,
the tests proposed in this article can also be used for left type II censored samples from a
normal distribution.

(5) By using the relationship between the normal and LN models given in Equation (1), the
proposed tests can be adapted for testing lognormality.
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2.3 D�
SP quantiles

We have obtained quantiles of the distribution of D�
SP under the null hypothesis given in

Equation (4) by simulation. For several sample sizes (n), proportions of uncensored observa-
tions (p), and levels of significance (α), 10,000 independent samples have been generated. The
quantiles have been obtained for values of n = 20, 25 and from 30 to 100 by 10, p from 0.2
to 1 by 0.1, and α = 0.01, 0.05, 0.10, 0.25, 0.50. (Of course p = 1 leads to the quantiles of the
distribution of D�

SP in the case of uncensored samples.) For reasons of space, only quantiles for
some selected values of n, p, and α are given in Table 1. More complete tables can be requested
from the authors; see also [6].

2.4 PP, QQ and SP plots and acceptance regions using D�
SP

To obtain acceptance regions on PP, QQ and SP plots, the quantiles of the distributions of D�

and D�
SP must be used. Formulas for constructing these plots are shown in Table 3, while Table 4

summarizes expressions for determining the corresponding 100[1 − α]% acceptance regions.
In all the formulas presented in these tables, r is the number of uncensored observations, n is
the whole sample size, j = 1, . . . , r , and �−1(·) is the inverse standard normal CDF. If the r

uncensored observations lie within the constructed regions, then H0 cannot be rejected at the α

level of significance.

Remark 2.3 As mentioned, acceptance regions on PP, QQ and SP plots for single (left or right)
censoring can be analogously obtained as those of the uncensored case. The censored observations
do not appear in the proposed plots so that only the uncensored portion of the observations from
the hypothetical distribution is plotted.

3. Power study

To evaluate and compare the powers of the proposed tests, we have conducted an extensive
Monte Carlo simulation study. As in Section 2.3, 10,000 independent samples were generated for
several sample sizes, proportions of uncensored observations, and two levels of significance. We
have considered two estimation methods (ML and Gupta) and diverse distributions as alternative
hypotheses. The results are summarized in Tables 5–7 and in Figures 1–3. (More complete results
can be obtained upon request or from [6].)This study allows us to draw the following conclusions:

(1) When the ML estimation method is used, as expected, for both proposed tests and for every
distribution considered in H1, the power increases as the sample size increases. When the
proportion of uncensored observations increases, the power increases too for every distribu-
tion except for the U(0, 1) one. In this case, the power function is not a monotone function
of p and this fact will require further studies. Under H0, the empirical power, as expected, is
close to the nominal level. This can be seen in the last row of the panel corresponding to each
value of p in Tables 5–7.

(2) When the ML estimation method is used, the test based onD�
SP is more powerful than that based

on D� for almost all the considered sample sizes, proportions of uncensored observations, and
alternative hypotheses. An exception occurs with the double exponential (DE) distribution,
since here the test based on D�

SP is more powerful only for some values of p and n, although
the differences are small. For the exponential (EXP), U(0, 1) and χ2(4) distributions, the
power of the test based on D�

SP is much greater than that of the KS test, especially for large
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Figure 1. Estimated power of the tests based on D� and p = 0.3 (bold solid line), D�
SP and p = 0.3 (gray

solid line), D� and p = 0.6 (bold dashed line), D�
SP and p = 0.6 (gray dashed line), D� and p = 0.8 (bold

dotted line), and D�
SP and p = 0.8 (gray dotted line) with parameters estimated using the indicated method

for the distribution specified in H1.

p; see Figures 1(c), 2(e) and 3(e), respectively. As p increases, the power of the test based on
D�

SP increases too. In particular, it can be noted for p = 0.8 and for all the considered values
of n. For small values of p and n, both tests are not very powerful, except for the Student-t
distribution with 1 degree of freedom; see Tables 5 and 6 and Figure 2(a). For p > 0.5, both
tests have good power even for n = 20, 25.

(3) The test based on D�
SP with ML estimation is more powerful than the test based on D�

SP with
Gupta’s estimation, specially with sample sizes greater than 30. On the contrary, the test based
on D� with ML estimation turns out to be less powerful than the test based on D� with Gupta’s
estimation, except for the DE and Student-t distributions; see Tables 5 and 7 and Figures 1,
2 and 3.



Figure 2. Estimated power of the tests based on D� and p = 0.3 (bold solid line), D�
SP and p = 0.3 (gray

solid line), D� and p = 0.6 (bold dashed line), D�
SP and p = 0.6 (gray dashed line), and D� and p = 0.8

(bold dotted line), D�
SP and p = 0.8 (gray dotted line) with parameters estimated using the indicated method

for the distribution specified in H1.

(4) The test based on D� is more powerful than the test based on D�
SP when the parameters are

estimated by Gupta’s method for p = 0.3, 0.6, specially with sample sizes less than 50, except
for the DE and Student-t distributions; see Table 7 and Figures 1(b) and 2(b,d).

Remark 3.1 Although there are several tests that have very good power, so that they can be
recommended for using as omnibus tests, as for example those discussed in [3,4,23], they cannot
be associated with graphical procedures. Such procedures, as those based on D�

SP and D�, are
frequently suggested because they allow to visualize which data contribute to the decision of
rejecting the null hypothesis [13,18].



Figure 3. Estimated power of the tests based on D� and p = 0.3 (bold solid line), D�
SP and p = 0.3 (gray

solid line), D� and p = 0.6 (bold dashed line), D�
SP and p = 0.6 (gray dashed line), and D� and p = 0.8

(bold dotted line), D�
SP and p = 0.8 (gray dotted line) with parameters estimated using the indicated method

for the distribution specified in H1.

4. Illustrative example

For the purposes of illustration, we apply the new goodness-of-fit test to a real data set. First,
an exploratory data analysis is performed. Then, by using the ML method, the parameters of the
normal distribution are estimated considering uncensored and censored data. Finally, by using the
proposed goodness-of-fit test, the suitability of the normal model to the data is checked.

The data correspond to life expectancy from birth (in years) of 66 countries. The considered
countries had a minimum of 12 million inhabitants in 2004. (These data were obtained from
former Table 1318 related to vital statistics provided by the U.S. Census Bureau published
in April 2005, now contained in Table 1355. The current link is http://www.allcountries.org/
uscensus/1355_vital_statistics_by_country.html, where also other countries appear.) The data



Table 8. Life expectancy (in years) of the indicated country.

Expectancy Country Expectancy Country Expectancy Country

81.0 Japan 72.0 China 61.7 Bangladesh
80.3 Australia 72.0 Malaysia 61.4 Yemen
80.0 Canada 71.7 Thailand 60.5 Burma
79.5 Italy 71.4 Colombia 59.4 Nepal
79.4 France 71.4 Brazil 58.6 Cambodia
79.4 Spain 71.1 Romania 58.1 Sudan
78.7 Netherlands 71.1 North Korea 58.1 Ghana
78.5 Germany 70.7 Egypt 56.5 Madagascar
78.3 United Kingdom 70.4 Vietnam 50.7 Congo
77.4 United States 70.4 Morocco 50.7 Cameroon
77.1 Taiwan 69.7 Syria 50.4 Uganda
76.7 South Korea 69.7 Iran 48.7 Ethiopia
76.4 Chile 69.6 Philippines 48.4 Cote d’Ivoire
76.0 Ecuador 69.3 Indonesia 48.0 Burkina Faso
75.7 Argentina 69.2 Peru 47.2 Kenya
75.2 Saudi Arabia 68.8 Ukraine 46.5 Nigeria
74.9 Mexico 68.3 Iraq 44.9 Tanzania
74.7 Poland 66.8 Russia 44.1 South Africa
74.1 Venezuela 66.1 Kazakhstan 42.5 Afghanistan
72.9 Sri Lanka 64.1 Uzbekistan 41.2 Malawi
72.7 Algeria 64.0 India 40.9 Mozambique
72.1 Turkey 62.6 Pakistan 39.0 Zimbabwe

Table 9. Descriptive statistics for the life expectancy (in years) of the uncensored data.

Mean Median SD CV CS CK Range Min. Max. n

65.6 69.7 11.9 18.2 −0.725 −0.739 42 39 81 66

Figure 4. Histogram and boxplot for the life expectancy (in years) of the uncensored data.



in Table 8 are displayed in decreasing order with respect to the life expectancy of each
country.

Table 9 presents a descriptive summary of the n = 66 observations of the uncensored sample,
while Figure 4 shows the corresponding histogram and boxplot from which it is possible to note that
the normal distribution is not a good model for describing these data. The proposed goodness-of-fit
test should confirm this fact. From the original data, a left type-II censored sample was generated

Figure 5. 95% acceptance regions based on D� and D�
SP on the indicated probability plots with and without

censoring.



for p = 0.5. A right type-II censored sample was obtained changing the sign of the data. Thus,
we have r = 33 countries with uncensored life expectancy in our sample of size n = 66, with the
highest life expectancy in 2004 and n − r = 33 countries with censored life expectancy. The ML
estimates of μ and σ for the uncensored and 50% censored samples are μ̂ = 65.6 and σ̂ = 11.9,
and μ̂c = 69.9 and σ̂c = 6.2 years old.

For the uncensored sample (using negative values for the life expectancy) Figures 5a–c give
the PP, SP and QQ plots, respectively, with their corresponding 95% acceptance regions. From
these plots, we can confirm that the data do not follow a normal distribution, since several obser-
vations fall outside the 95% acceptance regions derived from D� and D�

SP. The observed values
of D� and D�

SP for H0: “the distribution is N(μ, σ 2)” are: d� = 0.1815 (p-value < 0.01) and
d�

SP = 0.1457 (p-value < 0.01); see Table 10. As expected, both tests reject the null hypothesis
of normality at α = 0.01. We can point out that in the case of the acceptance regions derived
from D�

SP, the observations falling out of these regions correspond to Japan, Australia, Canada,
Morocco, Syria, Iran, Philippines, Indonesia, Peru, Ukraine, Iraq, Russia, Kazakhstan, Congo,
and Ethiopia. In the case of the acceptance regions based on D�, the observations falling out
of these regions correspond to North Korea, Egypt, Vietnam, Morocco, Syria, Iran, Philippines,
Indonesia, Peru, Ukraine, Iraq, Russia, and Kazakhstan. Furthermore, we can note that the points
in the graph do not tend to lie on a straight line, which indicates a bad specification of the postulated
hypothetical distribution, in this case, the normal model.

Remark 4.1 In the PP plots, the straight lines correspond to the acceptance regions of the test
based on D� and the curves to the ones based on D�

SP. For the SP plots, the straight lines correspond
to the acceptance regions of the test based on D�

SP and the curves to the ones based on D�. These
aspects can be corroborated in Table 4 and, in the case of the example data, in Figure 5a,b,e, and f.

For the censored sample (using negative values for the life expectancy) Figure 5d–f give the
QQ, PP and SP plots, respectively, with their corresponding 95% acceptance regions. From these
plots, based on D�, we have no evidence to indicate that the data do not follow a normal dis-
tribution, because all the observations fall inside the 95% acceptance regions. However, for the
95% acceptance regions based on D�

SP, there is one point falling out of these regions, which
corresponds to Japan with a life expectancy of 81 years old. Note that the conclusions using
both statistics differ. Although the true distribution of the uncensored sample is unknown, based
on the evidence of the whole sample, we detect that this model does not correspond to the
normal one and hence the proposed D�

SP leads to a more adequate conclusion. The observed
values of D� and D�

SP for H0: “the distribution is N(μ,σ 2)” based on the 50% censored sample
are: d� = 0.054 (0.5 < p-value < 0.6) and d�

SP = 0.066 (0.01 < p-value < 0.05); see Table 10.
Therefore, the test based on D�

SP rejects H0 at the 5% level of significance, but the test based on
D� does not. This is coherent with the observed behavior of the empirical power of both tests.

Table 10. Quantiles of the distributions of D� and D�
SP for a normal distribution under H0 with

parameters estimated by ML method and right type II censoring for the indicated values of p, n,
and 1 − α.

p n d�(0.50) d�(0.75) d�(0.90) d�(0.95) d�(0.99)

0.50 66 0.0571 0.0678 0.0795 0.0870 0.1018

d�
SP(0.50) d�

SP(0.75) d�
SP(0.90) d�

SP(0.95) d�
SP(0.99)

0.50 66 0.0416 0.0498 0.0584 0.0643 0.0755



Conclusions

In this paper, we have proposed a new goodness-of-fit test for a normal distribution with unknown
parameters and right type-II censored data. In addition, we have compared this test to a modified
Kolmogorov–Smirnov test for censored data. The new test is more powerful than the Kolmogorov–
Smirnov test in most of the cases studied. Both tests can also be applied to left type-II censoring
and to the LN distribution. One advantage of the proposed tests is that they offer the possibility
of drawing acceptance regions on probability plots, where not only the rejection or acceptance
of the null hypothesis can be established, but also the points that make that decision. These plots
can only be obtained for tests based on distances from the empirical distribution function, while
other tests for normality with unknown parameters have acceptance regions that cannot be drawn
on probability plots. The authors are developing an R [21] package to make the obtained results
available on CRAN (http://CRAN.R-project.org/) allowing practitioners to use the proposed tests.
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