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Abstract 

In agitated systems, the phase inversion (PI) phenomenon – the mechanism by which a 

dispersed phase becomes the continuous one – has been studied extensively in an 

empirical manner and few models have been put forward through the years. The 

underlying physics are still to be fully understood. In this work, the experimental 

evidence published in literature is used to train machine learning models that may infer 

the inherent rules that lead to a given dispersion type (O/W or W/O), as well as predict 

the value of the dispersed phase volume fraction at the edge of the inversion point. 

Decision trees, bagged decision trees, support-vector machines and multiple perceptrons 

are implemented and compared. Results show that it is possible to infer an ensemble of 

physical rules that explain why a given dispersion is O/W or W/O, where a strong 

“turbulence constraint” is identified. The intuitive rule that PI occurs at 50% dispersed 
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phase almost never holds. Moreover, neural networks have shown a better performance 

at predicting the PI point than the other algorithms tested. Finally, a theoretical study is 

performed in an effort to produce a phase inversion map with the relevant operating 

variables. This study showed a strong non-linear effect of the impeller-to-vessel size 

ratio, and an asymmetrical behavior of the interfacial tension on the phase inversion 

points. 

Keywords: phase behavior, machine learning, neural network, liquid-liquid dispersions 

Nomenclature 

Greek letters   

γ Interfacial tension N/m 

μ Viscosity Pa·s 

ρ Density kg/m3 

σ Surface tension N/m 

𝜙 Phase volume fraction -- 

Latin letters   

N Stirring speed min-1 

D/T Impeller-to-vessel diameter ratio -- 

D Impeller diameter m 

Subscripts   

c Continuous phase  

d Dispersed phase  

o Oil phase  

w  Aqueous phase  

 

1. Introduction 

In any stirred system containing a dispersed phase (dispersion or emulsion) the set of 

operating conditions may be such that, at a given phase composition, the dispersed 

phase becomes the continuous one and vice versa, a phenomenon called phase inversion 

(PI) (Norato et al. 1998). This particular moment can either be desired or prevented, 

depending on the application. For example, in the transport of heavy oil, water may be 

added in a ratio such that it may become the continuous phase as it flows through the 
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pipeline, so that the dispersion viscosity may drop substantially, improving the transport 

energy costs (Arirachakaran et al. 1989).  

The dispersed phase volume fraction at which PI occurs is usually dubbed the PI point, 

and the effect of the operating variables on its value has been studied empirically for 

several decades (recent reviews by Kumar et al. (2015) or Perazzo et al. (2015) 

summarize them). Yet, the comprehensive understanding of its dynamics is still a 

challenge. When the composition of a given dispersion is changed by adding dispersed 

phase at a constant stirring speed, the coalescence rate of the discrete droplets initially 

increases; this may be compensated by an increase in particle break-up rate – due to a 

variety of possible mechanisms (Liao and Lucas 2009) – and a new state is reached 

where the balance of break-up and coalescence velocities results in a new particle size 

distribution (Castellano et al. 2018). If, on the contrary, the increase in coalescence 

frequency cannot be compensated by particle rupture, then – after a transition period – 

phase inversion will occur. This imbalance between coalescence and break-up is a 

widely adopted mechanism to explain PI in agitated systems, though is not the only one 

(Tidhar et al. 1986; Yeh et al. 1964; Yeo et al. 2002). 

For a given agitation rate, in traditional O/W stirred systems there exists a range of 

phase compositions for which the dispersion structure is not uniquely determined (i.e., it 

may be either O/W or W/O depending on the methodology applied or the initial 

conditions), which is known as the ambivalent range (Ghotli et al. 2013). Figure 1 

shows an example of a typical ambivalent range as a function of the organic phase 

volume fraction (𝜙𝑜) where three zones are clearly identified: zone A refers to organic-

continuous dispersions (W/O), zone B to water-continuous (O/W) and zone C to the 

non-determined, ambivalent range. 

[Figure 1 near here] 
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The upper bound of this range is the locus of organic phase volume fractions above 

which water can no longer be the continuous phase, while it is the opposite for the lower 

bound.  

Few mathematical models have been developed to predict the PI point, the most 

interesting being those by Hu et al. (2005, 2006) or Brauner and Ullmann (2002) for 

traditional O/W systems (the former for stirred tanks and the latter for pipe flow), and 

perhaps a simple rheological model for polymer blends (Mekhilef and Verhoogt 1996).  

The drawback of these models is that they need to make simplifications to reduce the 

physical complexity of the multivariate, nonlinear phenomenon. 

The main obstacle that arises when trying to understand the effect of each variable on 

the PI point is that the experimental conditions vary significantly from author to author, 

so that isolating the weight of each variable is quite complex. For this objective, 

empirical correlations using dimensionless numbers (like Reynolds, Weber or Froude) 

have the advantage of being simple to implement (with traditional regression 

techniques). However, in multivariate and strongly nonlinear phenomena, like the one 

described in this work, these techniques are not quite suitable given the many possible 

functionalities would have to be tested. For this reason, a different approach is essayed 

in this work. 

Generalizing implicit behavior that is difficult to understand at first hand is one of the 

most interesting features of machine learning models (Lee et al. 2018; Raju and Cooney 

1998). As well as empirical correlations, these models can also handle multivariate 

problems and, even if not as straightforward, their implementation is simple enough to 

make them interesting candidates for the PI point prediction. Their main advantage is 

that these algorithms use a subset of the empirical data to “reveal” their underlying 

structure and outperform the prediction capabilities of traditional regression techniques. 
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In this paper, the experimental results of phase inversion measurements in agitated 

dispersions present in literature have been summarized and fed to four different models 

– from heuristic to black-box – in an effort to contribute to the comprehensive 

understanding of the inversion phenomenon. To this end, two types of problems were 

treated: a classification and a regression one. In the first kind, the goal is to predict 

which phase would be continuous at a given composition and operating condition; in the 

second one, to predict the dispersed phase volume fraction at which PI would occur for 

a given operating condition.  

The artificial intelligence methods that are suited for these objectives are supervised 

learning algorithms, which use a portion of the database to adjust its internal parameters 

(known as a “training stage”) and gain generalization capabilities, which may be 

validated with the remainder of the data (a “test stage”). The algorithms implemented in 

this work are described in Section 3. Their main advantages include a fairly simple 

implementation and a reasonable performance in regression problems (Caruana and 

Niculescu-Mizil 2006). In classification problems, it is better to avoid a “class 

imbalance” (a feature of the database by which there are far more registries from a 

given class than from another), since these algorithms many not handle them efficiently 

and special modifications may be required (Nguyen, Bouzerdoum, and Phung 2008). 

Depending on the model, overfitting could be an issue to be aware of. 

Other machine learning models, which are not trained to minimize a prediction error, 

are the unsupervised learning algorithms. Among others, these methods include 

hierarchical clustering, K-means, hidden Markov models, self-organizing (or Kohonen) 

maps, etc. These are mostly used for clustering purposes (in which there are no classes 

or values to be predicted but rather groups into which data is to be separated) and are 

therefore left out of this study, although self-organizing maps may be certainly used in 
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classification problems. A comparative study between supervised and unsupervised 

learning was conducted by Sathya and Abraham (2013). 

 

2. Relevant operating variables 

Determining the phase composition at which PI occurs is not straightforward, since it 

depends on an ensemble of physical properties (phase density, phase viscosity, 

interfacial tension) (Norato et al. 1998), on the geometry used (vessel size, agitation 

speed, impeller type and size, number of baffles, their materials) (Groeneweg et al. 

1998) and even on the initial conditions and the procedure chosen (Bouchama et al. 

2003).  A brief discussion on the effect of these variables on the PI point is offered in 

what follows. A comprehensive review by the authors is available (Maffi, Meira, and 

Estenoz 2020). 

2.1. Viscosity ratio 

As a general rule, observed empirically by several authors (Selker and Sleicher 1965; 

Hu et al. 2005; Colmanetti et al. 2018), the tendency to remain dispersed increases with 

phase viscosity. The damping of particle coalescence is usually a given explanation for 

this behavior (Bazhlekov, Chesters, and Van De Vosse 2000). In literature, this ratio is 

usually defined as the ratio of the dispersed to the continuous phase viscosity. In this 

work, in order to avoid changing the definition for each predictive model, it will be 

defined as 𝑟 =
𝜇𝑜

𝜇𝑤⁄ . Several simplified correlations have been suggested to predict 

the PI curves as a function of this variable only, especially in polymeric systems (Yeh, 

Haynie, and Moses 1964; Jordhamo, Manson, and Sperling 1986; Kitayama, Keskkula, 

and Paul 2001).  
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The effect of viscosity is not only observed as the ratio between the properties of each 

phase. The absolute value of a phase viscosity is also important since it plays a 

fundamental role in the break-up and coalescence frequencies (Alopaeus et al. 2002). 

2.2. Phase densities 

Perhaps the least studied of variables that have an effect on the PI point. Some authors 

explain that its role is only noteworthy at low stirring speeds, when large phase density 

differences require stronger stirring speeds to sustain the dispersion (McClarey and 

Mansoori 1978; Norato, Tsouris, and Tavlarides 1998). Other workers suggest that a 

large difference should favor PI since it increases the local relative velocity of the 

droplets and thus increases the shear stress to which the system is subject to, which in 

turns favors breakage and increases the surface area available to coalescence (Rodger, 

Trice, and Rushton 1956; S. Kumar, Kumar, and Gandhi 1991). 

2.3. Interfacial tension 

Few studies aiming to isolate the effect of interfacial tension on PI are available. Some 

authors argue that a system with lower interfacial tension should be less likely to invert 

(Clarke and Sawistowski 1978; Kumar, Kumar, and Gandhi 1991), thus widening the 

span of the ambivalent region. However, the results found by Reeve and Godfrey (2002) 

challenge that idea: they indicate that the system with lower interfacial tension finds it 

easier to invert from O/W to W/O but harder in the opposite direction. The theoretical 

model derived by Hu et al. (2005) based on a population balance in a two-region vessel, 

agrees with those results. 

A minimization of free surface energy could be expected at the PI point, since this 

would reflect the natural need of the system to invert. However, by measuring 

interfacial area, some investigators found that a minimization of the interfacial energy 
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happened only when inverting from W/O to O/W but not in the opposite case (Clarke 

and Sawistowski 1978; Luhning and Sawistowski 1971). Consequently, they postulate 

that phase energy minimization is not a criterion for phase inversion. In turn, Norato, 

Tsouris, and Tavlarides (1998) propose that a decrease in interfacial tension would 

promote drop breakage and increase film drainage times, which would not favor phase 

inversion.  

It is possible that decreasing interfacial tension may either delay or promote PI, 

depending on the system. Increasing thermodynamic compatibility would favor the 

transition to the inverted system; yet, the increase in particle breakage rate may stabilize 

the dispersion and hinder the inversion. 

2.4. Stirring speed 

A general trend that is satisfied by all dispersions is the asymptotic value of phase 

volume fraction at the inversion point with increasing stirring speed. This has been 

observed consistently in several experiments (Kumar, Kumar, and Gandhi 1991; Reeve 

and Godfrey 2002; Deshpande and Kumar 2003; Quinn and Sigloh 1963) in both batch 

and flow vessels. This asymptotic behavior means that, in very turbulent conditions, 

there exists a controlling mechanism for phase inversion. 

However, increasing stirring speed may have different effects depending on the system, 

as observed empirically by different authors (Arashmid and Jeffreys 1980; Deshpande 

and Kumar 2003).  

2.5. Vessel geometry and material 

Impeller design, its position and inclination, the number and size of the baffles, the 

vessel diameter and its material have all been reported to present an effect on the phase 

inversion point (Kato, Nakayama, and Kawasaki 1991; Guilinger, Grislingas, and Erga 
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1988). A thorough research on these variables was conducted by Deshpande and Kumar 

(2003). The problem when analyzing these variables is that their effect is not clear. A 

wide range of effects are reported, sometimes with opposing results.  

2.6. Selected variables 

Table A. 1, shown in the Supplementary Material, gathers the experimental results of 

both the upper and lower bounds of the ambivalent ranges found in literature for stirred 

O/W systems. After analyzing the physical and geometrical conditions used in each 

investigation, the following set of variables was chosen to be used in this work: 

[Table 1 near here] 

The choice of viscosity ratio may seem unnecessary since it may be built from each 

phase viscosity. However, in the implementation of the regression algorithms, if the 

ratio is deemed an important variable, then it must be fed as such. This viscosity ratio 

has been extensively studied and considered an important variable on PI (Selker and 

Sleicher 1965), but the viscosities of each phase (separately) play a major role on the 

break-up and coalescence rates (Liao and Lucas 2009, 2010); then, the ratio alone does 

not suffice. Regarding interfacial tension, the values shown in Table A. 1 correspond to 

either the ones informed in the authors’ work or – in their absence – to the ones 

predicted by the Girifalco and Good (1957) equation:  

𝛾12 = 𝜎1 + 𝜎2 − 2
4√𝑉1𝑉2
3

√√𝑉1
3 + √𝑉2

3

√𝜎1𝜎2 
(1) 

where V1 and V2 are the molar volumes of phase 1 and 2 respectively. This equation has 

the advantage of being simple enough to be implemented with the available information 

and has been found to provide good results in the simple O/W systems of this study 

(Becher 1987).  
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The effect of temperature is indirectly observed through its effect on the different 

physical properties. If correlations between temperature and phase densities, phase 

viscosities and interfacial tensions were available, this variable could indeed be used in 

the models. 

D/T is chosen as one of the most important geometrical variables because its effect on 

the energy dissipation rate has long been reported (Ghotli et al. 2013), and because other 

parameters are usually not informed by the authors. Moreover, gathered data refer only 

to stainless-steel impellers, ruling out impeller material as a variable.  

 

3. Algorithms 

Four techniques were selected to predict the experimental data presented in Table A. 1, 

namely: a) decision tree, b) bagged decision trees, c) support-vector machine and d) 

feed-forward neural network. A brief overview is of each algorithm is presented in what 

follows. 

3.1. Decision trees 

A decision tree is a classic heuristic model that may be used for both regression and 

classification problems. It is a simple model that may yield good performances with 

little training effort while providing the set of if-then rules inferred from the dataset. The 

complexity of the tree may be adjusted (usually through a “complexity parameter”): 

long trees with a large number of branches may improve the classification or regression 

accuracy, but almost certainly result in a loss of generalization capability, since each 

branch turns to a “particular case” rather than a “general rule” (overfitting). There exists 

an optimum tree size that provides a good balance between accuracy and generalization. 
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The main drawback of a decision tree is its high sensitivity to the training set (high 

variance) (Olaru and Wehenkel 2003). To deal with this issue, bootstrap aggregating 

(bagging) trees were developed. Essentially, this algorithm consists of a number of 

decision trees created in a way that each one has its own train/test subset of the formal 

training set (Breiman 1996). Then, each tree is trained independently of the rest and, 

when presented the formal test set, the outcome is the average of the prediction of each 

tree (for regression problems) or the majority vote (for classification goals). This 

compensates the variance problem but complicates the heuristic nature of the decision 

tree, by which interesting useful rules may be inferred. However, some rule-extraction 

algorithms exist (Deng 2019; Iqbal 2012) that may explain the general rules found by 

the ensemble of trees.  

3.2. Support-vector machines 

The support-vector machine (SVM) is a supervised learning algorithm that may be 

implemented for both regression and classification goals. In the first case, it is designed 

to find the smoothest function whose images lie within a user-defined margin (ε) around 

the data points: 

𝑓(𝑥) = 𝒘𝑇〈𝝍(𝒙𝒊), 𝝍(𝒙)〉 + 𝑏  (2) 

where 𝒘𝑇 is a vector of weights, 𝝍(𝒙) is the non-linear mapping of the input space to a 

higher dimensional space (𝝍(𝒙𝒊) refers to the map applied to the elements in the 

training set), b is the bias, and 〈⋅,∙〉 stands for the dot product. 

To this end, a certain number of training samples that lie outside the desired image 

region are used as pivot points (support vectors) to determine the function that may 

accommodate the majority of the predicted values inside the ε margin region. This 
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results in a constrained optimization problem usually expressed as in equations (3) and 

(4) and solved using Lagrange multipliers. 

max

{
 
 

 
 −

1

2
∑(𝛼𝑖 − 𝛼

∗
𝑖)(𝛼𝑗 − 𝛼

∗
𝑗) 〈𝝍(𝒙𝒊), 𝝍(𝒙𝒋)

〉

𝑛

𝑖,𝑗=1

−𝜀∑(𝛼𝑖 + 𝛼
∗
𝑖)

𝑛

𝑖=1

+∑𝑦𝑖(𝛼𝑖 + 𝛼
∗
𝑖)

𝑛

𝑖=1

  (3) 

Subject to  

∑(𝛼𝑖 − 𝛼
∗
𝑖) = 0

𝑛

𝑖=1

 
(4) 

where 𝛼𝑖 , 𝛼
∗
𝑖
 are the Lagrange multipliers and yi is the i-th element of the target vector. 

𝛼𝑖, 𝛼
∗
𝑖
∈ [0, 𝐶], with C being a regularization parameter that determines the trade-off 

between the flatness of the function 𝑓(𝑥) and error deviation (which is why this model 

is usually referred to as ε-insensitive SVR).  

The non-linear map 𝝍(𝒙) need not be known, since only the dot product 〈𝝍(𝒙𝒊), 𝝍(𝒙)〉 is 

actually computed. Then, kernel functions 𝑘(𝒙,𝒙𝒊) = 〈𝝍(𝒙𝒊), 𝝍(𝒙)〉 are used instead, the 

most frequent being quadratic, cubic or Gaussian. 

In classification problems, the SVM is designed to find a hyperplane that divides the 

dataset in two groups, each containing “only” the set of points belonging to a given 

class. The distance between the plane and the nearest sample points of each set is a 

margin that may be adjusted, and those points lying on the margin are the support-

vectors. The algorithm is also implemented as a constrained optimization problem, 

similar to the one described previously for the regression case, where a classification 

score is defined to represent the distance between an input and the hyperplane defined.    

 

 



 

13 
 

3.3. Neural networks 

Several types of neural networks have been developed over the years (Prieto et al. 2016; 

Schmidhuber 2015). In this work, the neural network model chosen is the standard feed-

forward multilayer perceptron, with one or more hidden layers. The idea behind this 

algorithm is to either classify or predict function values by using a matrix of weights 

(which are tuned to minimize prediction errors) and an activation function, which is any 

form of a sigmoid function that may mimic an “on-off” response in a continuous way. 

This enables the model to behave like the brain neurons, in the sense that each input 

variable (stimulus) produces a different effect (response) on each neuron, ultimately 

resulting in a combined response that produces the output. 

Figure 2 shows a scheme of a traditional perceptron with three layers: the input layer, 

receiving the input variables, a hidden layer, where the effect of each input is combined 

and treated with the chosen activation function, and the output layer, which combines 

the effect of every neuron. In order to shift the result from the (0,0) coordinate, bias 

neurons are also introduced, usually before and after the hidden layer. 

[Figure 2 near here] 

The neural weights may initialize at random and then tuned with different gradient-

descent algorithms, trying to minimize the prediction errors.  

4. Implementation and results 

In the implementation of the previously discussed algorithms, the dataset was divided 

randomly as follows: 70% for training, 10% for validation and 20% for testing. These 

subsets were kept the same throughout the procedure, so that comparing the results 

between each algorithm is done with the same testing set. This is equivalent to feed the 

models with new (unseen) experimental data. The decision trees were coded in R while 
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the SVM and neural networks were programed in Matlab R2019a. A simplified, step-

by-step pseudocode of each algorithm is provided in Supplementary Material. 

4.1. Classification 

In order to build the classification problem, the table of experimental data found in the 

Supplementary Material had to be filtered, since only a fraction of the entries share 

exactly the same operating conditions for both O/W→W/O and W/O→O/W inversions 

(for example, some authors only studied the lower bound of the ambivalent range, or 

used different stirring speeds between the upper and the lower curves). For those data 

points where both inversions have been studied at the same conditions, a clear 

identification of three classes is possible for any phase composition, i.e.: “oil 

continuous”, “water continuous” and “not determined”. Then, for this subset, which 

only contains the upper and lower bounds of the ambivalent range, any number of extra 

points may be added artificially (above, below, and between each curve), to create a 

new database that includes the phase behavior for each case, thus yielding the 

classification problem. Upon inspection, this filtered subset shared the same impeller 

type, number of baffles and equipment material; therefore, they were left out as input 

variables. 

With this subset, 30 extra entries were added (10 for each class), by creating random 

artificial points above, inside and below the ambivalent range for each operating 

condition. Results will be discussed and compared in terms of the confusion matrices 

4.1.1. Decision tree 

A decision tree was trained to predict the phase behavior at a given condition, with a 

default complexity parameter (CP) of 0.01 using the rpart library in R (Therneau and 

Atkinson 2018). An overall accuracy of 81.% was obtained with the testing subset, with 



 

15 
 

the confusion matrix shown in Table 3. A schematic figure of the tree, with its if-then 

rules is depicted in Figure 3. The classes were named O (for oil-continuous), W (for 

water continuous) an ND (for non-determined). The percentages shown in each box 

represent the fraction of data points from the test set that ended in each branch. 

Interestingly, with this complexity parameter, only three variables were used in the 

construction of the tree: 𝜙𝑜, 𝜇𝑜 and D/T. This is so because the algorithm that creates 

the decision tree calculates the weight and entropy of each variable and builds a tree 

following the if-then rules that arise from the dataset. In this case, the algorithm found 

that 𝜙𝑜, 𝜇𝑜 and D/T were the only important variables for the desired complexity. 

[Figure 3 near here] 

Upon optimization of the complexity parameter (which is a measure of how many 

branches, leaves and levels a tree may develop), a trade-off between accuracy and 

complexity (and strong overfitting) must be obtained. The goal is to arrive to a decision 

tree that may explain the problem as accurately as possible but with simple rules 

inferred by the most relevant variables. After analyzing trees with different complexity 

levels, the one shown in Figure 4 was found to be the optimum case, with an overall 

accuracy of 85.7%. Previously disregarded variables are here used in the construction of 

the tree: 𝜌𝑜 and N. This is expected after having increased the complexity of the tree. 

An improvement in both sensitivity and sensibility of the class “water continuous (W)” 

is observed. 

[Figure 4 near here] 

 

The interesting feature of this second tree is that one may infer the following rules to 

determine whether the aqueous or the organic phase would be continuous. The intuitive 

rule (the phase whose volume fraction is above 0.5) almost never holds directly. 
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1. If the organic phase volume fraction is above 70%, it is very likely (87% of cases 

studied) to be the continuous phase regardless of the operating conditions. 

2. The organic phase shall be continuous following the intuitive rule (𝜙𝑜>0.5) only if 

the size of the impeller is at most 40% the size of the vessel. This may imply that a 

rather inefficient mixing (small impeller) is related to the inability of the dispersed 

phase to become continuous, perhaps due to lack of turbulence which produces few 

occluded droplets and deters phase inversion at low holdups.  

3. In contrast, if the organic phase is the one in higher proportion but larger impellers 

are used (D/T>0.4), then it is almost never the continuous phase. The only case 

possible for it to be continuous is to have a very large density difference with the 

aqueous phase (notice the 𝜌𝑜>1398 kg/m3 condition). This again may reflect the 

same effect described in the previous rule: the increase in turbulence provided by a 

bigger impeller – which would promote breakage, coalescence and occlusion 

formation – may be countered by a very high momentum of the continuous phase, 

thus disabling the aqueous phase to become continuous. In all other cases, either the 

aqueous phase is continuous, or the result is undetermined. This effect caused by a 

large density difference was not thoroughly discussed by the original authors 

(Arashmid and Jeffreys 1980; Quinn and Sigloh 1963). 

4. If the aqueous phase volume fraction is above 76% then it will be the continuous 

phase almost without question. There is only one exception that yielded a “not 

determined” case (notice the 0.4>𝜙𝑜≥ 0.045 branch) which, upon verification of the 

dataset, refers to a very particular mixture of kerosene/water with a very low 

interfacial tension (≈10 mN/m) by Arashmid and Jeffreys (1980) and a small 

impeller (D/T<0.4). This means that the effect of poor mixing was countered with a 

very low interfacial tension, which enhanced particle break-up and coalescence to a 
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point that the only way to ensure an aqueous continuous phase is to have an 

extremely high fraction of it. A similar system was also studied by Quinn and 

Sigloh (1963) and, in their analysis, the authors arrived to am analogous 

conclusion, as they observed O/W/O structures in a dispersion that should have 

been water-continuous but was not. Leaving this exception aside, then all 

dispersions with at least 76% aqueous phase will be O/W. 

5. Finally, at an intermediate range of aqueous phase composition (0.76>𝜙𝑤≥ 0.6) the 

organic phase will almost surely be dispersed. If its viscosity is high enough, the 

probability of getting a “not determined” result somewhat increases, but an oil-

continuous phase is never assured. More so, at high stirring speeds the aqueous 

phase is very likely to be the continuous one, since the attenuation of coalescence 

of viscous oil drops will deter the formation of W/O dispersions.  

4.1.2. Bootstrap aggregation (bagging) 

The former inferred set of rules may not be the only one, since different decision trees 

may be obtained varying the train/test subsets. For this reason, a bagging technique was 

implemented with 300 trees (upon verification of the error evolution, this number was 

found to be optimum). All variables were included in the analysis and a rule-extraction 

technique following Deng (2019) was applied. Table 2 summarizes some of the rules 

found by this algorithm across the ensemble of trees. A total of 37 rules were extracted, 

but only the ones with no prediction error and simple enough not to be considered 

“special cases” are shown here. 

 [Table 2 near here] 

In general, the same pattern is observed in this set of rules compared to the ones 

obtained with one tree (some are even repeated, which is a good sign for the tree 
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presented in the previous section): being in a greater proportion is not a sufficient 

condition to be the continuous phase. For instance, the first rule cited in the previous 

section has been extended to 100% accuracy by adding two constraints: low interfacial 

tension and high stirring speed (2nd condition in Table 2). As a general rule, with a 

volume fraction between 50% and 75%, there is a “turbulence constraint” needed to 

ensure that a given phase will be surely continuous. Otherwise, it would depend on how 

the dispersion was prepared and thus end up inside the ambivalent range. 

A clear advantage of the ensemble model is that it outperforms one single decision tree 

in its classification goal (overall accuracy of 93.5%), as observed from the confusion 

matrix shown in Table 3. 

[Table 3 near here] 

4.1.3. Support-vector machine and neural network 

The last two techniques considered in this work are not heuristic. Then, the analysis 

here offered is only related to their performance in their classification goal. For the 

SVM models, three kernels (apart from the simple linear one) were tested, since the 

problem is suspected to be strongly nonlinear and thus a transformation is required to 

generate a hyperplane such that the three classes become separable. The functions in 

question were quadratic, cubic and a radial basis (Gaussian). Their confusion matrices 

are reproduced in Table 4. 

[Table 4 near here] 

The best performance is offered by the cubic kernel, with an overall classification 

accuracy of 92.18%, which is still slightly below the performance of the bagging model. 
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Regarding the artificial neural network, four cases were compared changing the number 

of neurons of the hidden layer. The general rule of thumb states that this number should 

be between the number of predictors and the size of the output vector; i.e., in this case 

between 3 and 9. Thus, networks with 3 to 10 neurons were tested to assess the quality 

of this rule. A scaled conjugate gradient was used as a training algorithm, which was 

performed 20 times to account for the randomness in the initialization of weights.  

Confusion matrices are shown in Table 5: the net with 7 neurons performed slightly 

better than the rest, but almost no difference is observed with the 5 or 10-neuron net. 

[Table 5 near here] 

Comparing the classification performances of all four implemented techniques, it would 

seem that the bagging model resulted in the most accurate one, followed closely by the 

cubic SVM, with the extra advantage of being able to put forward a set of physical rules 

behind the data. This is an interesting result since, in the past few years, this technique 

has left ground for the more sophisticated models, like artificial neural nets. 

4.2. Regression 

All four techniques compared for the classification case can be modified to behave as 

regression models, in this case aiming to predict the dispersed phase volume fraction at 

which phase inversion would occur. Since, as explained in Section 4.1, some of the 

entries of Table A. 1 correspond only to one of the two possible inversions, two 

different models had to be developed for each technique: one to predict the organic 

phase volume fraction at which the dispersion becomes oil-continuous (𝜙𝑜), and another 

one for the opposite inversion case (𝜙𝑤). The following paragraphs describe the results 

obtained with each model. In all cases, the performance is measured with the root mean 

squared error (RMSE). 
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4.2.1. Decision (and bagged) trees  

The number of trees in the bagging models was set to 300, as in the classification 

problem. Results are show in Figure 5 and Table 6, where a comparison with the 

predictions by only one decision tree is offered. As observed, a slightly better 

performance is obtained with the ensemble model for the O/W → W/O inversion but no 

improvement was gained for the opposite case. 

[Table 6 near here] 

[Figure 5 near here] 

 

4.2.2. Support vector regression 

The ε-insensitive SVR model was implemented setting the cost factors (C) and the 

margin of errors (𝜀) as shown in Table 7. A 10-fold cross-validation was performed on 

the training set before running the model, to avoid overfitting. Kernel functions and 

their scale parameters used are shown in Table 8, as well as their performance measured 

by the RMSE. Predicted phase volume fractions are shown in Figure 6. The quadratic 

kernel showed very good fit with both prediction sets (𝜙𝑜 and 𝜙𝑤), outperforming even 

the classic radial basis function. The fact that the kernel that gave better results is 

different from the classification problem is not surprising since the implementation 

algorithm and the dataset are different (as explained in Sections 3.2 and 4.1 

respectively). 

[Table 7 near here] 

[Table 8 near here] 

[Figure 6 near here] 

Like in the classification problem, the bagging model slightly outperforms the SVM 

technique for both inversion curves. 
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4.2.3. Neural networks 

A multiple perceptron with the traditional Levenberg-Marquardt backpropagation 

algorithm (Lv et al. 2018) was implemented, using one or two hidden layers. In all 

cases, the activation function chosen was 𝑓(𝑥) =
2

1+𝑒−2𝑥
− 1. The effect on the number 

of neurons on each layer was analyzed to find an optimum network size. Due to the 

random initialization of synaptic weights, each net was trained and assessed 20 times 

and the best network (based on its performance with the test subset) was chosen for 

each case. 

The performance of each net is summarized in Table 9 and Figure 7, where an 

improvement is observed compared to the SVR and bagging models. Prediction of the 

PI point does not vary substantially with the number of neurons. Standard deviation of 

errors lie around 0.009 for the O/W→W/O inversion point and around 0.004 for the 

opposite case. 

[Table 9 near here] 

[Figure 7 near here] 

A second hidden layer was added to test for any performance improvement, which is 

usual among nonlinear problems. However, no significant change in the RMSE was 

observed compared to the one-layer case. 

[Table 10 near here] 

Therefore, adopting a network with one hidden layer with 20 neurons for the prediction 

of each PI point seems reasonable. 
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5. Theoretical predictions of the ambivalent range 

Considering the good results offered by the neural net with 15 neurons in the hidden 

layer, this model was used to analyze the results of several hypothetical scenarios. The 

goal is to build a phase inversion map with the most relevant operating and geometrical 

variables. A base case was chosen as a representative sample of the dataset, fixing: 𝜌𝑜 = 

800 kg/m3, 𝜌𝑤 = 1000 kg/m3, 𝜇𝑜 = 0.8 cP, 𝜇𝑤= 1 cP (r=0.8), 𝛾= 30 mN/m, D/T = 0.5, 

Rushton turbine, 4 baffles, stainless-steel vessel.  

Figure 8 shows the evolution of the ambivalent range when subject to variations in 

phase viscosity ratio (r), interfacial tension, phase density difference (𝜌𝑜-𝜌𝑤) and D/T, 

as predicted by the model. Some interesting remarks arise from these theoretical 

predictions by the net: 

1. Increasing the phase viscosity ratio – 
𝜇𝑜

𝜇𝑤⁄  as previously defined – widens 

significantly the ambivalent range, especially in the lower section of stirring speeds, 

which is in line with the empirical rule find by several workers (Colmanetti et al. 

2018; Hu et al. 2005; Selker and Sleicher 1965) that states that “the tendency to 

remain dispersed increases with viscosity”. Moreover, the curvature of both bounds 

changes significantly: for higher viscosity ratios, it appears to be easier for the W/O 

dispersions to invert to O/W (lower bound) when increasing the agitation rate, which 

is the opposite tendency at low viscosity ratios. But this is not surprising since the 

ambivalent ranges are plotted as a function of the organic phase volume fraction, 𝜙𝑜, 

and not a generic “dispersed phase”. Then, if the dispersed phase is more viscous 

than the continuous phase, it will need higher agitation rates to be able to invert. 

2. At very low interfacial tensions, the span of the ambivalent range is quite wide, 

especially at high stirring speeds. This is possibly explained by the fact that low 
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interfacial tensions yield almost plane curvatures and so favor the formation of co-

continuous systems (Chuesiang et al. 2018) (with continuous phase entrapment), so 

that the dynamics of drop break-up and coalescence may favor either type of 

dispersion. This effect is particularly enhanced at high energy dissipation rates, 

where the occlusion formation is frequent (thus increasing the effective phase 

volume fraction), especially if the dispersed phase is the aqueous one (Kumar 1996). 

At low rates, the W/O structure is apparently preferred. 

3. Increasing the interfacial tension hampers the previous effect and thus O/W 

structures become more likely (oil drops are far less likely to entrap water droplets, 

as observed by Pacek et al. (1994)), especially if the energy input is not high enough 

to compensate this effect. 

4. A surprising effect is observed regarding the phase density difference: it is not a 

symmetric property, in the sense that two systems owning the same absolute 

difference do not invert at the same composition. Phase viscosity difference could be 

responsible for this behavior, but simulated results indicate otherwise, as observed in  

Figure 9, which shows the simulated inversion curves of two dispersions (O/W and 

W/O) with the same density difference and viscosity ratio. A clear difference is 

observed between both curves, meaning that having the phase density and viscosity 

differences does not imply the same inversion point. Increasing 𝜌𝑜 shortens the span 

of the ambivalent range, implying that both structures are favored. The fact that this 

does not happen when increasing 𝜌𝑤 may be due to the difference in the dynamics of 

the break-up and coalescence processes (and perhaps to the ability to form multiple 

dispersions). 

5. The impeller-to-vessel size ratio is strongly nonlinear and, as it appears, not 

monotone. This parameter has a formidable effect on the mixing efficiency, through 
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the energy dissipation rate. The break-up vs coalescence imbalance is greatly 

affected by the flow patterns throughout the vessel, thus producing different 

dispersion structures. 

[Figure 8 near here] 

[Figure 9 near here] 

 

6. Concluding remarks and perspectives 

The phase inversion ambivalent curves present in literature were simulated with 

different approaches, from heuristic to black-box machine learning models. A decision 

tree with a manageable complexity level was presented, allowing to decide whether the 

aqueous or the organic phase will be the continuous phase under a given condition (only 

valid for stainless-steel, four-baffled vessels equipped with a Rushton turbine). The if-

then rules inferred by the model were analyzed thoroughly and a physical explanation 

for the PI phenomenon is offered. These rules showed that the intuitive explanation for 

PI (reaching a dispersed phase fraction above 50%) almost never holds. A strong 

“turbulence constraint” was identified as a requirement for inversion: if not efficiently 

mixed, phase inversion does not seem to occur. More sophisticated classification 

techniques, like the support vector classifier and the multiple perceptron, which provide 

no heuristic rules, did not offer a differential improvement in the classification goal. 

Among the regression techniques, the neural network multiple perceptron with 10 to 20 

neurons in its hidden layer showed the best results in terms of its fit to the experimental 

data. The number of hidden layers was found not to be an important parameter of the 

model. This powerful tool was used to study the theoretical phase inversion paths for 

different simulated systems. This study showed that the ambivalent range is strongly 

affected by the impeller-to-vessel size ratio, in non-linear non-monotonic ways. This is 
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certainly due to the different flow patterns that are developed when varying the impeller 

size, which exert different energy levels to the fluid and therefore change the break-up 

and coalescence imbalance. Furthermore, simulations showed how decreasing 

interfacial tension may strongly affect the W/O → O/W inversion path but not affect the 

opposite inversion as importantly, which may be related to the possibility of water drops 

entrapping oil phase. Varying the viscosity ratio and the phase density difference 

showed tendencies that are in line with what is observed in literature. 

This model may continue to be perfected as new experimental findings are fed. It would 

be of interest to use it under particularly different conditions where phase inversion 

takes place, like polymer-polymer blends or polymer-solvent mixtures (for example, in 

the high-impact polystyrene manufacture process), where phase viscosities are out of 

range compared to traditional O/W dispersions. Furthermore, it could be extended to 

O/W/surfactant systems, but it would require to fully characterize the structure of the 

surface-active components, as both its concentration and its hydrophilic-lipophilic 

balance (HLB) – or surface affinity difference (SAD) – have a major role in the PI point 

(Sajjadi et al. 2003). If enough information is gathered and used to train the neural 

network model, then a much complete, comprehensive idea of the phase inversion 

phenomenon will be achieved, which may have a major impact on several Chemical 

Engineering fields.  
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Physical properties Geometrical parameters 

• phase densities (𝜌𝑜 and 𝜌𝑤) 

• phase viscosities (𝜇𝑜 and 𝜇𝑤) 

and their ratio (𝑟 =
𝜇𝑜

𝜇𝑤⁄ ) 

• interfacial tension (𝛾) 

• number of baffles 

• impeller-to-vessel size ratio (D/T) 

• type of impeller 

• vessel material 

 

Table 1. Variables chosen to build the models. 
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Condition 

Predicted 

continuous phase 
Frequency (%) 

1 𝜙𝑤>0.75 and D/T>0.4 W 17.5 

2 𝜙𝑜>0.74, 𝛾<50 mN/m and N>700 rpm O 11.1 

3 𝜙𝑤>0.6 and 𝜇𝑜<1.17 cP W 6.1 

4 𝜙𝑜>0.55 and D/T<0.4 O 3.1 

5 𝜙𝑜>0.5 and 𝜌𝑜>1398 O 1.5 

6 𝜙𝑜>0.63 and D/T>0.5 O 1.5 

7 𝜙𝑤 >0.5, r>1.2 and N>1274 rpm W 1 

Table 2. Inferred rules from the ensemble of trees. 
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 Reference 

One tree –  

CP = 0.01 

One tree –  

CP = 0.007 
300 bagged trees 

P
re

d
ic

ti
o
n

  N/D O W N/D O W N/D O W 

N/D 74 7 25 73 5 12 88 3 6 

O 19 91 0 19 93 0 8 95 0 

W 5 0 73 6 0 86 2 0 92 

Table 3. Confusion matrices for decision trees pruned at different complexity 

parameters and a bagging of 300 trees. Test subset is the same for all. 
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 Reference 

Linear SVM Quadratic SVM Cubic SVM Gaussian SVM 
P

re
d

ic
ti

o
n

  N/D O W N/D O W N/D O W N/D O W 

N/D 81 10 12 88 6 12 85 5 5 88 9 8 

O 10 88 1 7 92 0 10 93 0 7 89 0 

W 7 0 85 3 0 86 3 0 93 3 0 90 

Table 4.Confusion matrices for the support vector machine models with different 

kernels. 
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 Reference 

3 neurons 5 neurons 7 neurons 10 neurons 

P
re

d
ic

ti
o
n

  N/D O W N/D O W N/D O W N/D O W 

N/D 75 16 11 86 5 13 83 9 14 81 7 6 

O 13 82 0 8 93 0 8 89 0 11 91 0 

W 10 0 87 4 0 85 7 0 84 6 0 92 

Table 5. Confusion matrices for the neural networks with different hidden layer sizes. 

  



 

36 
 

RMSE of One decision tree 300 bagged trees 

𝜙𝑤 0.0657 0.0712 

𝜙𝑜 0.0637 0.0564 

Table 6. Performance of each decision tree model. 

 

  



 

37 
 

Prediction of C 𝜺 

𝜙𝑤 0.1490 0.01490 

𝜙𝑜 0.1291 0.01291 

Table 7. Parameters used in SVR models. 
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Kernel Type Kernel Function 
Scale 

Parameter 

RMSE 

𝜙𝑜 𝜙𝑤 

Linear 𝑘(𝑥𝑖,𝑥𝑗) =
〈𝑥𝑖, 𝑥𝑗〉

𝜆2
 𝜆 = 0.4135 0.0713 0.0858 

Quadratic 𝑘(𝑥𝑖,𝑥𝑗) = (1 +
〈𝑥𝑖 , 𝑥𝑗〉

𝜆2
)

2

 𝜆 = 0.3495 0.0678 0.0570 

Cubic 𝑘(𝑥𝑖,𝑥𝑗) = (1 +
〈𝑥𝑖 , 𝑥𝑗〉

𝜆2
)

3

 𝜆 = 0.4703 0.0821 0.0695 

Gaussian 𝑘(𝑥𝑖,𝑥𝑗) = 𝑒
−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜆2  𝜆 = 0.9 0.0630 0.0717 

Table 8. Kernel functions tested, their scale parameters and the performance of each 

model as per the RMSE. 
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Number of neurons 
RMSE 

𝜙𝑜 𝜙𝑤 

5 0.0556 0.0591 

10 0.0537 0.0595 

15 0.0532 0.0577 

20 0.0533 0.0590 

Table 9. Performance of each neural network. 
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Neurons in 1st layer 

Neurons in 2nd layer 

2 4 6 8 

𝜙𝑜 

5 0.0554 0.0542 0.0537 0.0543 

10 0.0542 0.0551 0.0539 0.0539 

15 0.0569 0.0537 0.0531 0.0534 

20 0.0541 0.0537 0.0533 0.0539 

𝜙𝑤 

5 0.0585 0.0573 0.0586 0.0601 

10 0.0610 0.0536 0.0596 0.0569 

15 0.0590 0.0591 0.0590 0.0587 

20 0.0581 0.0610 0.0583 0.0592 

Table 10. RMSE of the two-layered neural networks with the test set. 
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Figure captions 

 

Figure 1. Ambivalent range for different pairs of liquids: toluene(O)-

water(W)(Arashmid and Jeffreys 1980) (solid lines), CCl4(O)-water(W)(Arashmid and 

Jeffreys 1980) (dashed lines) and heptane(O)-acetonitrile(W)(S. Kumar 1996) (dotted 

lines). 

Figure 2. Scheme of a feedforward multiple perceptron (taken from Heidari et 

al.(Heidari et al. 2018)). 

Figure 3. Decision tree to decide whether a given phase will be continuous. 

Figure 4. Optimum tree, pruned at a cp of 0.007. 

Figure 5. Prediction of PI points as per the decision tree models. Dashed lines represent 

a margin of ± 0.03, which is considered a suitable error gap. 

Figure 6. Performance of different kernel functions used in SVR algorithms. Test set is 

the same for all kernels. Dashed lines represent a margin of ± 0.03, which is considered 

a suitable error gap. 

Figure 7. Prediction of each neural network with one hidden layer and varying number 

of neurons. Test subset is the same for all and the same for the other models in this 

work. Dashed lines represent a margin of ± 0.03, which is considered a suitable error 

gap. 

Figure 8. PI hypothetical map as predicted by the neural network model. Phase density 

differences are in kg/m3 and interfacial tensions in mN/m. 

Figure 9. PI curves for systems having the same density difference (𝜌𝑐-𝜌𝑑=100 kg/m3) 

and viscosity ratio (𝜇𝑐/𝜇𝑑=1.25). Solid line refers to the inversion from O/W to W/O, 

while dashed line is the opposite inversion. 
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Figure 2 

 

 

Figure 3 
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Figure 4 

 

Figure 5 

 

 

 

 

 

 



 

44 
 

Figure 6 
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Figure 7 
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Figure 9

 


