
Instituto Tecnológico de Buenos Aires
August 2019

Training an Agent on Brainwaves
Using brain signals as feedback for reinforcement learning

Bartolomé Francisco, Moreno Juan, Navas Natalia, Vitali José

Supervisor: Ramele Rodrigo

Final Project

Computer Engineering

Instituto Tecnológico de Buenos Aires

This thesis was written as a part of the Computer Engineering degree at ITBA.

i

Abstract

The field of Brain Computer Interaction has seen a bloom in the past few years. One of its

applications is the training of systems using signals originated from the human brain. Out

of all the methods used to acquire information from the central nervous system the one

that has gained the most popularity is Electroencephalography (EEG), mainly because of

its effectiveness, low cost and because it is noninvasive.

Event-related potential (ERP) are brain signals that are time-locked to a particular event.

Error-related potential (ErrP) are a particular type of ERP that are directly connected

with error signals. When subjects observe an agent who makes a mistake this potential

can be discerned when analyzing the signals which are directly related with the cognitive

interpretation of an erroneous outcome or decision.

Reinforcement learning is an approach to learning where an agent tries to maximize the

reward obtained while interacting with an unknown environment. It has regained traction

in the field of machine learning ever since 2015 when AlphaGo, a reinforcement learning

algorithm developed by Google DeepMind, was able to beat the world champion for the

complex game Go.

This thesis replicates (I. Iturrate, 2010) and proposes an alternative method to train

reinforcement learning algorithms with ErrP signals, captured through EEG, and validate

the effectiveness of its use in a prototype application.

Keywords – BCI, EEG, ERP, ErrP, Reinforcement Learning

ii Contents

Contents

1 Introduction 1

1.1 Brain-Computer Interface . 1

1.1.1 Signal Acquisition . 2

1.1.1.1 Electroencephalography 4

1.1.2 Signal Processing . 4

1.1.3 Signal Classification . 5

1.1.3.1 Error-Related Potential 6

1.2 Reinforcement Learning . 6

1.2.1 Elements of Reinforcement Learning 7

1.2.2 Q-Learning . 8

2 Materials and Methods 10

2.1 Cognitive experiment . 11

2.1.1 Game details . 11

2.1.2 Experimental setup . 12

2.1.3 Data acquisition . 14

2.2 Signal processing and classification . 15

2.2.1 Signal processing . 16

2.2.2 Classification algorithm selection 18

2.2.2.1 Calibration . 19

2.2.2.2 Comparison . 20

2.2.2.3 Performance . 20

2.2.2.4 Implementation testing . 21

2.2.3 Rewards generation . 21

2.3 Q-Learning . 22

2.3.1 Algorithm implementation . 23

2.3.2 Environment . 23

2.3.3 Testing Implementation . 24

3 Results 26

Contents iii

3.1 Signal Classification . 26

3.1.1 Algorithm Calibration . 26

3.1.1.1 Logistic Regression . 26

3.1.1.2 Multi-layer Peceptron 27

3.1.1.3 Random Forest . 28

3.1.1.4 Support Vector Classifier 29

3.1.1.5 Score Obtained For Optimal Configuration Per Algorithm 30

3.1.2 Algorithm Selection . 32

3.1.2.1 Optimal Algorithm and Configuration Per Subject . . . 37

3.1.3 Classification Results . 38

3.2 Reinforcement Learning . 48

3.2.1 Average steps to goal . 48

3.2.2 Heat maps of Learned Policies . 56

4 Conclusion 59

5 Future Work 60

5.1 Online Learning . 60

5.2 Increase The Number Of EEG Channels 60

5.3 Improve Classification Score . 60

5.4 Explore More Complex Game Models . 61

5.4.1 Non-Deterministic Environment . 61

5.4.2 Robotic Agent . 61

5.5 Try Other Reinforcement Learning Algorithms 61

6 Acknowledgements 62

6.1 Funding . 62

References 63

Appendix 64

A OpenAI Gym FrozenLake Description 64

B Algorithm Selection Configuration 64

iv Contents

B.1 Logistic Regression . 64

B.2 Multi-Layer Peceptron . 65

B.3 Random Forest Classifier . 65

B.4 Support Vector Classifier . 66

List of Figures v

List of Figures
1.1 BCI system architecture. 2
1.2 Sample EEG signal . 4
1.3 Agent interacting with environment (Norvig and Russell, 2009) 7
2.1 Overview of the experimental procedure. 10
2.2 Grid system representation used in cognitive experience. 12
2.3 The standard 10–20, 10–10, and 10–5 electrode montages 13
2.4 8 channels and ground positions used for the experiment described in 2.1.3 13
2.5 Subjects during the experiment. 15
2.6 The power spectral density (PSD) of the measurements of a raw dataset. 16
2.7 The power spectral density (PSD) of the measurements of a raw dataset

after applying a band pass filter of 0.1-20.0Hz. 17
2.8 Example of a dataset showing all event types. 17
2.9 Example of a dataset showing only further and closer event types. 18
2.10 Grand average signal values of all epoch types of a measured dataset. . . 18
2.11 Grand average signal values of ’move closer’ epoch types of a measured

dataset. 19
2.12 Grand average signal values of ’move further’ epoch types of a measured

dataset. 19
2.13 Dataset experiment representation. 22
3.1 Logistic Regression Algorithm Calibration 27
3.2 Multi-layer Perceptron Algorithm Calibration 28
3.3 Random Forest Algorithm Calibration 29
3.4 Support Vector Classifier Algorithm Calibration 30
3.5 Score Obtained With The Optimal Calibration Per Algorithm Per Subject 31
3.6 Algorithm Classification: Subject 1 . 32
3.7 Algorithm Classification: Subject 2 . 33
3.8 Algorithm Classification: Subject 3 . 33
3.9 Algorithm Classification: Subject 4 . 34
3.10 Algorithm Classification: Subject 5 . 34
3.11 Algorithm Classification: Subject 6 . 35
3.12 Algorithm Classification: Subject 7 . 35
3.13 Algorithm Classification: Subject 8 . 36
3.14 Algorithm Classification: Noise . 36
3.15 Classification results: Subject 1 . 39
3.16 Classification results: Subject 2 . 40
3.17 Classification results: Subject 3 . 41
3.18 Classification results: Subject 4 . 42
3.19 Classification results: Subject 5 . 43
3.20 Classification results: Subject 6 . 44
3.21 Classification results: Subject 7 . 45
3.22 Classification results: Subject 8 . 46
3.23 Classification results: Noise . 47
3.24 Average steps for each subject . 53
3.25 Average steps using Q-Table trained with one experience per subject. . . 53
3.26 Average steps using Q-Table trained with noise. 54

vi List of Figures

3.27 Average steps using Q-table trained with experiences from one subject, but
classified with a classifier trained with data from other subject 55

3.28 Heat maps . 58

List of Tables vii

List of Tables
A.1 Frozen Lake Grid Representation . 64

1

1 Introduction

The effectiveness of today’s human–machine interaction is limited by a communication

bottleneck as operators are required to translate high-level concepts into a machine-

mandated sequence of instructions (Thorsten O. Zander and Gramann, 2016). This thesis

tackles directly this problem by exploring the use of brain signals as an interface between

human and computer, overcoming this limitation by enabling the control of the system

without explicit communication from the user.

Using reinforcement learning with reward signals based on brain activity, recorded by an

EEG-based BCI system during the task execution, in order to train an agent has been

explored in previous research. The paper (I. Iturrate, 2010) has successfully demonstrated

that a robot can be controlled by obtaining the reward from brain activity generated while

observing the robot solving a task. The present project applies a similar process for making

a virtual agent improve its performance using electroencephalography (EEG) signals as

feedback for a reinforcement learning algorithm. The idea is that subjects observing a

simple simulated system can train such system using only error-related potentials (ErrP)

that can be identified in their brain signals. The detection of ErrP signals has been

explored in the publication (Ferrez, 2007) which describes the methods that are used in

order to identify this specific potential from EEG signals.

In recent years reinforcement learning has seen a come-back. This is mainly because of

DeepBrain’s AlphaGo who was the first to reach superhuman proficiency in challenging

domains, when it won the complex game Go against several world champions. In 2015

AlphaGo won 5 matches against 3-times European Champion, Mr Fan Hui. AlphaGo then

went on to compete against Mr Lee Sedol, winner of 18 world titles and considered to be

the greatest player until then, and won 4 out of 5 matches in 2016 (David Silver, 2017).

1.1 Brain-Computer Interface

The human brain consists of millions of neurons which control human body behavior

relative to internal/external motor/sensory stimuli. Understanding cognitive behaviour of

the brain can be done by analyzing either signals or images from it. Human behavior,

2 1.1 Brain-Computer Interface

such as eye movement, lip movement and so on, are related to specific signal frequency

patterns which help understand functional behavior of the complex brain structure.

A Brain-computer interface (BCI) is a system that measures central nervous system (CNS)

activity and converts it into articial output that replaces, restores, enhances, supplements,

or improves natural CNS output and thereby changes the ongoing interactions between

the CNS and its external and internal environment (Wolpaw and Wolpaw, 2012).

Figure 1.1: BCI system architecture.

A BCI system can be used to control an external device using only brain signals that

can be collected with some method of signal acquisition. The architecture is described in

Figure 1.1. It has the following 5 main components:

1. An experiment that triggers the subject’s desired brain activity.

2. A signal acquisition device that captures the brain data which is digitized and

then transmitted to a computer device for processing.

3. A signal processing step which applies necessary filters to eliminate noise and

artifacts and that builds a feature in order to distinguish the signals characteristics.

4. A signal classification module which infers the information.

5. An application system that uses the generated information to affect some external

device.

1.1.1 Signal Acquisition

A neural interface is the hardware device used to detect, digitalize, and transmit brain

signals measurements. BCI systems can be non-invasive or invasive and can be used to

1.1 Brain-Computer Interface 3

control different types of effectors (e.g., computer cursor, switch, robotic arm), so their

design and functionality varies. The design and functional requirements of a particular

BCI are driven by the BCI’s intended use and its intended target population. Neural

interfaces must be safe, signals must have enough information to support its use, the

interface must be reliable and the degree of invasiveness must be as limited as possible

(Wolpaw and Wolpaw, 2012). The measuring technique determines the most important

taxonomic differentiation in BCI, according to the methodology that is applied to extract

the information from the CNS (Ramele, 2018).

BCI neural interfaces currently fall into the following major classes:

• Electroencephalographic (EEG): Non-invasive method that allows reading

electrical activity of the brain. Described in further detail in section 1.1.1.1.

• Electrocorticographic (ECoG): Electrode arrays that are positioned in the brain

surface through invasive surgery, with moderate information from small localized

sets of neurons and synapses. Signals are believed to reflect mainly synaptic and

other source activity occurring over a substantial portion of the depth of local cortex.

• Miniaturized Microelectodrode Arrays: Micro-electrode arrays that are

inserted into the cerebral cortex through invasive surgery, that record neuronal

action potentials from individual. Measures local field potentials (LFPs) that are

recorded within brain (usually cortical) tissue and mostly reflect current sources

related to synaptic activity.

• Magnetoencephalography (MEG): Non-invasive technique for reading magnetical

activity in the brain by using sensitive magnetometers. Electrical activity in the

brain generates minuscule magnetic fields. It is usually used as a compliment of

EEG.

Invasive methods require complex craniotomy surgery. Out of the non-invasive methods

EEG is more widely used compared to MEG, mainly because EEG is inexpensive and

simple, instead MEG is expensive, cumbersome and is only used in research settings.

4 1.1 Brain-Computer Interface

1.1.1.1 Electroencephalography

Electroencephalography (EEG) is a method for visualizing and recording the electrical

activity of the brain in a non-invasive manner with relatively low information. It uses

electrodes placed along the scalp to measure the voltage fluctuations of the electrical

pulses that result from the activity of the brain cells. Each electrode is called an EEG

channel. The variation of the potential difference measured from each channel is displayed

as peaks and troughs in a line graph as seen in figure 1.2. It is currently the most used

method for gathering information because its simple, non-invasive and inexpensive.

Figure 1.2: Sample EEG signal obtained from (g.Nautilus, g.Tec, Austria) displayed as
a peaks and troughs in a line graph from eight channels

1.1.2 Signal Processing

The purpose of a BCI is to detect and quantify characteristics of brain signals and

to translate these measurements into the desired device commands. The brain-signal

characteristics used for this purpose are called features. Feature extraction is the process of

distinguishing the pertinent signal characteristics from extraneous content and representing

them in a compact and/or meaningful form, amenable to interpretation by a human or

computer(Wolpaw and Wolpaw, 2012).

Before the feature extraction step, a signal pre-processing step is applied. This step

1.1 Brain-Computer Interface 5

enhances the relevant aspects of the signals by preemptively eliminating known interference

or irrelevant information (Wolpaw and Wolpaw, 2012), such as noise and artifacts that

contaminate the signal. The difference between noise and artifacts is that noise is caused

due to background neurological activity where artifacts are not i.e. eye blinks. This

decontamination can be done by applying different filters to the signals such a a band-pass

filter or a frequency filter depending on the signal characteristics that are expected to be

collected.

The feature extraction step consists of identifying and extracting the important features

that make the signals distinct and separate them from irrelevant information in order to

build a feature vector made out of various measurements that identifies the signals at the

desired moment. After the feature vector is generated, the signals should be classified and

transformed into an appropriate command for device control.

1.1.3 Signal Classification

The features described in 1.1.2 represent indirect measurements of the user’s intent

and they must be translated into appropriate device commands that convey that intent

(Wolpaw and Wolpaw, 2012). This is done with a model that processes the feature vector

at a given time and outputs the recognized command. In order to identify a command

the model should be trained so it knows what a given feature vector represents.

There are some events that trigger an specific kind of EEG signals that can be detected and

acted upon. These are called event-related potentials (ERP). They are voltage fluctuations

in the ongoing electroencephalogram that are time-locked to an event (Kappenman and

Luck, 2011). The events that trigger ERP signals could be perceptual, cognitive or motor

events, in response to an activity that reflects the brain activity (Ferrez, 2007) and a model

can be made to detect them. Error-related potentials (ErrP) are a type of of ERP and

are the kind of signals that this project is interested on. This type of signal is describen

in futher detail in section 1.1.3.1.

6 1.2 Reinforcement Learning

1.1.3.1 Error-Related Potential

ErrP are signals that occur as a response when a subject observes a mistake being made

during a task. There are three type of ErrP signals, response ErrP, feedback ErrP and

observation ErrP. Response ErrP is measured after 100 ms following the erronueous

response. Feedback ErrP is measured 250 ms following presentation of a feedback that

indicates that there has been a mistake. Observation ErrP result from the observation

errors made by an operator during tasks where the operator needs to respond to stimuli

(Ferrez, 2007).

1.2 Reinforcement Learning

Reinforcement Learning is a learning method that is based on the concept of learning

from interaction, it automates goal directed learning and decision making. It assigns a

numeric reward to every action dependant on a particular state with the objective to

maximize said reward. Which actions are better are not directly indicated, instead the

learner must discover which are the actions that yield the most reward. This is done

by synthesizing a mapping function between situations and actions by maximizing a

performance measurement of the desired behavior. Hence, a reinforcement signal provided

by the reinforcement function (RF) evaluates the entered situation relative to the desired

behavior. After this, the agent receives either positive or negative reinforcements according

to the utility i.e. desirability of the situation entered as a consequence of the performed

action (Juan Miguel Santos, 1999).

The agent must exploit what it already knows and explore new states. When choosing

actions that the agent has chosen in the past and have yielded prizes it is exploiting

its previous experiences, but it also needs to explore new options in order to be better

experienced in the future. If not, it might not be learning some crucial information of

other states which might actually yield higher rewards. The agent must try a myriad of

actions and progressively prioritize those that have appeared to be the best in the past

(Andrew Barto, 2018).

Reinforcement learning allows, at least in principle, to bypass the problems of building an

1.2 Reinforcement Learning 7

explicit model of the behavior to be synthesized or a meaningful learning base needed for

supervised learning (Juan Miguel Santos, 1999).

1.2.1 Elements of Reinforcement Learning

The two main elements of reinforcement learning are the environment and the agent.

Apart from those, the other four main elements are a policy, a rewards system, a

value function and a model of the environment.

The agent is an en entity capable of perceiving its environment and react accordingly in a

rational way through effectors, which implies trying to maximize a given result or reward.

The interaction between the agent and the environment can be seen in figure 1.3.

Figure 1.3: Agent interacting with environment (Norvig and Russell, 2009)

The policy is the mapping of the action that an agent is supposed to take at a given

state. It might be a table or simple function, but it might also be more sophisticated

computation methods. They are usually stochastic, with probabilities for each action.

The reward system determines the goal of the problem, in each step the environment sends

the agent a number called the rewards, which corresponds to the value that the agent is

trying to maximize. These values are used to determined the optimal policy, when an

action is followed with a low reward then the chances of a policy outcome determining

that action in the future will become lower. On the other hand, if the reward is higher

then the chances of choosing the given action are higher.

The value function determines the accumulation of rewards given an action and a state.

It will tell what is good in the long term, not immediately based upon one action. This

is used because one action might seem better than another in the immediate step but

8 1.2 Reinforcement Learning

when reaching the final goal, another action might have yielded a greater accumulation

of rewards. By avoiding to choose the action with the highest immediate result the

state reached might have better rewards in the next steps. The value is calculated and

re-calculated from the sequences of observations made by an agent in its lifetime. This

differs from rewards, which are provided directly by the environment.

The model of the environment mimics the environment’s behaviour, and allow inferences

to be made about how the environment will behave.

1.2.2 Q-Learning

Q-Learning is a model-free reinforcement learning. In order to represent rewards, a matrix

is used, where rows correspond to all the possible states, and columns correspond to all

possible actions. This matrix is known as the Q-Table. The reward for an action given a

state is the value that can be found for said row and column. In each iteration a value is

chosen by picking the action that will maximize the reward for the current state. On each

iteration the new Q value is obtained by the following function:

Q(st+1, at+1) = Q(st, at) + α[R(st, at) + γMax(s, a)−Q(st, at)] (1.1)

The function takes the current Q value and adds another term. α represents the learning

rate, a number between 0 and 1, that determines the proportion of exploration vs.

exploitation. When α equals 0 the agent doesn’t learn at all and when it equals 1 it only

considers the most recent term. γ represents the discount rate, that is a number between

0 and 1 (0 ≤ γ ≤ 1), and determines the importance of future results. When γ equals 0

then it will consider only the most recent rewards, instead if it equals 1 it will consider

the longer term higher results. R(st, at) corresponds to the reward obtained when passing

from state st to st+1 by taking action at. An episode of the algorithm ends when the

reached state (st+1) is a terminal state.

1.2 Reinforcement Learning 9

The following pseudo-code describes the algorithm used to train the Q-table.

input : step size α ∈ (0, 1], small ε > 0

Initialize Q(s, a), for all s ∈ S, a ∈ A(s), arbitrary except that Q(terminal, ·) = 0

for each episode do
Initialize S

while S not terminal do
Choose A from S using policy derived from Q (e.g., ε− greedy)

Take action A, observe R, S ′

Q(S,A)← Q(S,A) + α[R + εmaxaQ(S
′, a)−Q(S,A)]

S ← S ′

end

end
Algorithm 1: Q-Learning (off-policy TD control) for estimating π ≈ π∗

10

2 Materials and Methods

The project consists of collecting signals from a person’s brain while they are watching a

game where the agent has knowledge of the way it’s played but not how to win it. Hence,

the agent can learn using the person’s feedback to get better at the game. This section

describes the process of obtaining the person’s brain signals and how they are used to

make the agent improve it’s performance.

Figure 2.1: Overview of the experimental procedure.

The experimental procedure is summarized in Figure 2.1. The core of the procedure is the

retrieval of the subject’s brain activity. This process is called brainwave session. In order

to fetch this data, subjects use a wireless digital EEG device during the experiment. Once

the subject has the headset on, a set up procedure is executed as described in Section

2.1.3 using a program called g.NeedAcceess to do an impedance check and to visually

inspect the EEG signals in order to check if it’s correctly applied. Subsequently, the

OpenVibe Acquisition Server program is launched and configured. This program is part

of the OpenVibe platform (Yann Renard and ecuyer, 2010) and has the responsibility

of receiving the signals data from the headset and stimulus information from the game

and transfers it to the OpenVibe Designer application. After this step, the Game and

the OpenVibe Designer programs are launched and configured to communicate with

the previously mentioned acquisition server. Once the subject is ready the computer is

2.1 Cognitive experiment 11

positioned in front of them and the brainwave session starts. A brainwave session consists

of several experiences, each of them being a game run, and it uses a pseudo-random

function to determine the agent’s movements. The system is described in more detail in

Section 2.1.1 and the brainwave session in Section 2.1.3. Once the experimental procedure

is done, the game states and the signals data with the stimuli channel information of

each run is stored. For each run, the signals and stimulus information are then passed to

the classification module that uses them to train the classifier. The classification step is

covered in detail in Section 2.2. After this step is complete, the game movements and the

trained classifier are used to update a Q-Table for each experience. Lastly, the calculated

Q-Table is used to test if the agent has boosted its performance while playing the game.

This module is explained in Section 2.3.

2.1 Cognitive experiment

This section details the game system characteristics, the brainwave session process and

the retrieval and analysis of the generated data from the subjects interaction with the

system.

2.1.1 Game details

The system consists of a 5x5 grid where there are two lights, one representing the current

position of the agent, and the other one representing the goal, shown in figure 2.2. The

objective of the system is for the agent to reach the goal. The light representing the

goal remains static at the bottom-right position of the grid, while the one representing

the position of the agent always starts at the upper-left position of the grid. The grid

is represented by circular spots with a black background. The agent’s position has a

blue light, the goal position has a green light, and the rest of cells are represented with

grey spots. When the agent reaches the goal, the position where the agent and the goal

are located turns red, showing that the experience has ended. There are four possible

movements that the agent can perform: it can go upwards, downwards, towards the left

and towards the right, as long as the move doesn’t make the agent leave the grid. The

movement direction is selected randomly and is executed once every 2 seconds. When

12 2.1 Cognitive experiment

the experience ends, there is a pause of 5 seconds before the next experience starts. The

experience is designed for it to be evident whenever there is an error (when the agent

moves away from the objective) so the subject can notice it immediately after the stimulus

is presented, possibly triggering a cognitive response.

(a) Initial state of the grid. (b) Final state of the grid.

Figure 2.2: Grid system representation used in cognitive experience.

2.1.2 Experimental setup

For the brainwave sessions, subjects are recruited voluntarily. They are given a consent

form with questions regarding their health (previous health issues, particular visual

sensitivity, etc.), habits (sleeping hours, caffeine consumption, etc.), as well as an approval

petition to collect the required data. The brainwave sessions are performed with 8 subjects,

5 males and 3 females, average age 25.125 years, standard deviation 1.54 years, range of

22-28 years. All subjects have normal vision, are right-handed and have no history of

neurological disorders.

After the form is filled out, a short description of the brainwave session is given to the

subject. They are only told that the objective of the agent is to reach the goal and the

four movements that the agent can make. When this concludes, the subject is introduced

to the wireless digital EEG device (g.Nautilus, g.Tec, Austria) that they have to wear

during the brainwave session. It has eight electrodes (g.LADYbird, g.Tec, Austria) on

the positions Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8, identified according to the 10-20

2.1 Cognitive experiment 13

Figure 2.3: The standard 10–20, 10–10, and 10–5 electrode montages. The 10–20
montage is indicated by the 21 electrodes shown as black circles. The 10–10 montage
consists of the 21 electrodes of the 10–20 montage plus 53 additional electrodes indicated
in gray. The additional electrodes of the 10–5 montage are indicated by the black dots
and the open circles.(Wolpaw and Wolpaw, 2012)

Figure 2.4: 8 channels and ground positions used for the experiment described in 2.1.3

International System, with a reference set to the right ear lobe and ground set as the AFz

position. The electrodes contact points are adjusted applying conductive gel until the

impedance values displayed by the program g.NeedAccess are within the desired range.

This process takes between 10 and 15 minutes. After this step, the subject is instructed

14 2.1 Cognitive experiment

to close their eyes and the same program is used to check the live channel values so that

there are no dead ones and the expected values are displayed for eye movements or muscle

chewing.

Once the headset is correctly applied, the OpenVibe Acquisition Server program is launched

and configured with with a sampling rate of 250Hz and a 50Hz notch filter is applied to

filter out power line noise as well as an additional bandpass filter between 0.5Hz and 60Hz.

Data is handled and processed with the OpenVibe Designer platform using 8 channels

for the brain data (one channel per electrode) and an additional channel for the stimuli.

When everything is connected, the subject is seated in a comfortable chair in front of a

computer screen. The brightness of the screen is set to the maximum setting to avoid any

visual inconvenience in which the subject can not distinguish the components of the game

that appear on the screen.

2.1.3 Data acquisition

The data is collected in two brainwave sessions of up to three experiences each. The

amount of experiences executed varies depending on the level of fatigue suffered by the

subject. After all sessions have concluded, the subject is given another form in which

they give feedback of the sessions to check if they found them boring and if they had no

difficulty concentrating or understanding it.

The output of each experience is a file in the BrainVision 1 format containing the

information of the 8 channels and the stimuli channel. Each channel contains all the

samples taken (at 250 Hz) on that given channel throughout the brainwave session. As

explained before, 8 of those channels correspond to each of the electrodes of the headset,

while the other one corresponds to the stimuli given. Four types of stimuli can be discerned:

the start of the experience, the end of the experience, a correct action (when the agent

moves closer to the objective), and an incorrect action (when the agent moves further

from the objective). All these stimuli are called events, and each of them has a specific

numeric value that identifies them. Every other sample that does not correspond to an

event has 0 as value.

1Link to BrainVision MNE documentation: https://martinos.org/mne/dev/manual/io.htmlbrainvision-
vhdr-vmrk-eeg

https://martinos.org/mne/dev/manual/io.html##brainvision-vhdr-vmrk-eeg
https://martinos.org/mne/dev/manual/io.html##brainvision-vhdr-vmrk-eeg

2.2 Signal processing and classification 15

In order to control the classification of the events, noise signals are created and classified,

in order check the obtained results. The classifier is expected to perform poorly using this

kind of signal. This in turn would result in the agent not improving (or even decreasing)

its performance. This noise signals are generated using the OpenVibe Designer platform

and are random values between 0 and 1 with a uniform distribution. The epoch size,

sampling frequency, and number of channels is the same as in the experiences conducted

with the subjects.

Figure 2.5: Subjects during the experiment.

2.2 Signal processing and classification

The goal of this module is to build a classifier that is able to identify whether the action

taken by the agent is an error or not. It is developed in Python using the MNE environment

(A. Gramfort, 2013), which is a package designed specifically for processing EEG and

MEG data, and the machine learning library Scikit-Learn.

Many classification methods are considered. The best classifier is selected based on a

calibration and selection procedure that is further explained in sections 2.2.2.1 and 2.2.2.2.

After an optimal algorithm and a configuration are selected, a classifier is trained for each

subject and then epochs from their experiences are classified. These classifications are

then used by a reinforcement learning algorithm to train the agent. This last algorithm is

explained in detail in section 2.3.

https://mne-tools.github.io/0.11/index.html
https://scikit-learn.org/stable/

16 2.2 Signal processing and classification

2.2.1 Signal processing

This step consists of processing the collected signals in order to train a classifier that can

decide whether an error potential is triggered or not. Firstly, the output of a brainwave

session is read and a band pass filter of 0.1-20.0Hz is applied to the signal, as seen in

Figure 2.7. Samples that correspond to the start of an event are tagged using the data

from the stimuli channel.

Figure 2.6: The power spectral density (PSD) of the measurements of a raw dataset.

After the data is loaded and tagged, epochs are extracted from the raw data. Epochs

consist of all the sample points that take place between the start of the event and 2

seconds later (time for each action to take place), resulting in 500 samples per channel, as

the sample frequency is 250 Hz.

Samples that do not correspond to an epoch are not used. Also, epochs referring to the

start or finish of the experience are excluded. This is done because the start and the

end of the experience doesn’t involve the agent taking an action, thus giving signals that

should not be considered in the classification process.

2.2 Signal processing and classification 17

Figure 2.7: The power spectral density (PSD) of the measurements of a raw dataset
after applying a band pass filter of 0.1-20.0Hz.

Figure 2.8: Example of a dataset showing all event types.

In this way, the raw data of an entire brainwave session is processed into an array of

experiences where each element is an array of epochs tagged with a number specifying if

the epoch corresponds to an action that made the agent move further from the goal (hit)

or an action that made the agent move closer to the goal (no hit). The ErrP is expected

to be found in hits. To get the data ready for classification, the stimuli channel is removed

in order to classify the signals using only the EEG data and a mne.decoding.vectorizer 2

2Link to vectorizer documentation: https://mne.tools/dev/generated/mne.decoding.Vectorizer.html

https://mne.tools/dev/generated/mne.decoding.Vectorizer.html

18 2.2 Signal processing and classification

Figure 2.9: Example of a dataset showing only further and closer event types.

Figure 2.10: Grand average signal values of all epoch types of a measured dataset.

function is applied to transform the data into a single array sample. Lastly, this data is

used by the classification module as information to train and test a classifier.

2.2.2 Classification algorithm selection

Different classification algorithms are compared in order to find the one which is best

suited for the problem at hand. These are: logistic regression, support vector classifier,

random forest, and a multilayer perceptron. In order to choose the ideal algorithm, each

one is individually calibrated in order to find the best parameters and then they are

2.2 Signal processing and classification 19

Figure 2.11: Grand average signal values of ’move closer’ epoch types of a measured
dataset.

Figure 2.12: Grand average signal values of ’move further’ epoch types of a measured
dataset.

compared between themselves. Two calibration plots are used to compare the different

algorithms and parameters, as seen in section 3.1.2.

2.2.2.1 Calibration

The classifier calibration process consists on finding the set of parameters that yields

the best results when classifying. This technique is called hyperparameter optimization.

The selected approach for this optimization is grid-search, which performs an exhaustive

20 2.2 Signal processing and classification

search through an specified set of parameters for a given classifier. The process begins by

splitting the data into train and test (60% and 40%), where only the training subgroup is

used for the grid-search calibration. For scoring each configuration, a process of k-fold

cross validation is performed to ensure generalization capability of the training data. Each

configuration is scored 10 times, and the average of them is taken as the final score of

the configuration. The configuration with the best score is selected for each classification

technique.

2.2.2.2 Comparison

Once the best configuration for each classification technique is calculated, the resulting

classifiers are trained using the training samples and then compared against each other.

With these results, the optimal configuration is used in subsequent tests. For this

comparison, the remaining test data from the initial split is used (40% of the original data

set).

2.2.2.3 Performance

When the optimal classifier is found and built, it is trained for each subject and

tested. When classifying, a confusion matrix is calculated alongside a receiver operating

characteristic (ROC) curve to show the performance of the classification.

A confusion matrix provides a visual way of assessing the classifiers performance and

how well it classifies particular labels. It shows the percentage of events with a certain

predicted label that actually belong to that group, and the percentage of events with a

predicted label that belong to the other classification group. This is shown for each of the

two possible labels (hit and no hit). This type of graph is helpful to identify both type of

classification errors:

• Type I Error: Samples are classified as positive when they are actually negative.

(Top-right of confusion matrix)

• Type II Error: Samples are classified as negative when they are actually positive.

(Bottom-left of confusion matrix)

2.2 Signal processing and classification 21

A ROC curve shows the rate of false positive classification versus the rate of true positive

classification. If the curve is above the identity function, the classifier is considered to

perform better than a pure chance classifier. In contrast, if the curve is below the identity

then the classifier is under-performing. It should be noted that in that case, the classifier

could be modified to give the inverted prediction, resulting in a good classifier. This is

why the desired result is a curve that maximizes the distance to the identity.

These results can be seen in section 3.1.3.

2.2.2.4 Implementation testing

In order to validate that the classifier implementation works according to expectations,

a sample data set is used. The sample data-set used is the one provided in (Spüler and

Niethammer, 2015b). The paper describes an experiment where the subject has to play a

simple video game (depicted in Figure 2.13). The subject uses the right thumbstick of a

gamepad to control the angle in which the cursor moves on the screen. The task consists

on avoiding collisions of the cursor with blocks dropping from the top of the screen with

a constant speed. The speed of the falling blocks is set to a level so that the game is

challenging and the agent collides with a block from time to time. In case of a collision,

the game continues for 1 second and then stops. The delay of 1 second is introduced to

make sure that the reaction measured in the EEG originates from the subject recognizing

the collision (outcome error) and not from the game stopping or restarting. To study the

execution error, which is happening when the interface delivers erroneous feedback, the

angle of the cursor movement is modified for the duration of 2 seconds. The degree of

modification is randomized (45°, 90°, 180° to either the left or the right side). The time

between two execution errors is randomized to be between 5 and 8 seconds. (Spüler and

Niethammer, 2015a).

2.2.3 Rewards generation

The set of experiences of each subject is split into training and testing, so that the results

of the classification can then be used to improve the performance of the agent. After

training the classifier, the testing experiences are classified. Then, for each experience a

22 2.3 Q-Learning

Figure 2.13: Dataset experiment representation.

reward file is generated. For this purpose, game states files, which are submitted by the

game when an experience takes place, are used. These files contain an ordered list of the

states of the game throughout an experience. With this file and the classification of the

test data of an experience, a reward file is submitted. This file specifies a reward for each

movement in the game, based on the classification of the event that corresponds to that

movement. The reward can either be -1 when the event is classified as a hit or 0 when it

is classified as a no hit. The accuracy of this rewards depends on the performance of the

classifier. This reward file is used by the Q-Learning algorithm to improve its performance,

as detailed in section 2.3.

2.3 Q-Learning

A Q-Learning algorithm is used to train the agent. It is developed in Python and uses

the OpenAI Gym toolkit. Gym is a toolkit for developing and comparing reinforcement

learning algorithms. It makes no assumptions about the structure of an agent, and is

compatible with any numerical computation library, such as TensorFlow or Theano.

https://gym.openai.com

2.3 Q-Learning 23

2.3.1 Algorithm implementation

The Q-Table is initialized with zeros, unless a preexisting Q-Table is passed as a parameter.

In order for the agent to learn from the feedback generated by the subject, the Q-Table

is not used to determine the action to take at a given state. Instead, the policy which

determines which action to take in a particular state is given by the steps taken from

the brainwave session results. This allows to train the Q-Table based on the subject’s

feedback from the movements the agent took, which are chosen pseudo-randomly, while

executing the brainwave session. The previously mentioned feedback is not explicit as

it comes from the interpreted brain signal data, which is collected while the agent is

executing the brainwave session and then each action is classified as an error or not. This

implies that the reward is determined by the subject’s brain activity. This is covered in

further detail in 2.3.2.

While using the previously mentioned step function, the Q-Table is updated in each

iteration. This is done following the Equation 2.1.

Q(state, action)← Q(state, action)+α[reward+γ∗Max(state, action)−Q(state, action)]

(2.1)

After the algorithm finishes iterating through all the training episodes, the Q-Table is

saved. Each experience is one trainingEpisode.

2.3.2 Environment

The environment is the representation of the game mentioned in 2.1.1. It defines the

game’s states and actions and keeps track of the current state. It determines the next

state given the current one and an action, and decides the corresponding reward.

The Gym library provides an easy way of developing an environment. It only requires

the implementation to inherit from Gym’s class Gym.Env. The main methods that have

to be implemented are step, reset and render. Reset resets state to the initial position

and sets the amount of steps to zero. Render prints the matrix representing the state to

24 2.3 Q-Learning

simple output. The step function iterates from one state to the next. The implementation

returns four variables:

• Observation (object): agent’s observation of the current environment, the current

state of the environment.

• Reward (float): Reward returned after previous action takes place.

• Done (boolean): Indicates if the state reached is a final state, if step is called again

after this state has been reached, calls will return undefined

• Amount of steps (integer): Amount of steps since the beginning of the experience.

The custom environment developed is called MentalChaseEnv. In this implementation

the actions and rewards are given by the rewards file mentioned in 2.2.3. This implies

that the environment is in charge of reading the next state from the file and passing the

reward as a parameter to the reinforcement learning algorithm.

2.3.3 Testing Implementation

In order to test that the algorithm mentioned in 2.3.1 is working correctly, a similar

algorithm is developed with a different step function. In this implementation the Q-Table

is used to determine which action should be chosen given a state. In this case the action

is chosen greedily with some noise, as shown in equation 2.2.

action←Max(sort(Q[state, :]+random(actionSpace)∗ (1/(iterationStep+1)))) (2.2)

This version of the Q-Learning implementation is first tested using one of the available

environments in OpenAI Gym, FrozenLake− v0. This environment is further described

in the apendix section A.

After this test, a custom environment called ChaseEnv is developed and used to test the

Q-Tables that are trained using MentalChaseEnv.

For this environment the step method receives the action as a parameter, and evolves the

state depending on it.

https://gym.openai.com/envs/FrozenLake-v0/

2.3 Q-Learning 25

The reward function is calculated based on the current distance to the goal, if it has

increased compared to the previous step then the rewards is negative, if not it returns

zero. In order to test how the Q-Table is trained when the accuracy is not perfect the

reward function doesn’t always return the correct reward. It calculates a random number

between 0 and 1, and if it is larger than the accuracy then it will return 0 even if it should

return -1 as the reward.

The reward function is described in algorithm 2.

reward← 0

if currentDistanceToGoal > previousDistanceToGoal then

reward← −1

else if random.uniform(0, 1) < accuracy then

return reward

else

return 0

end
Algorithm 2: Reward Calculation for ChaseEnv

26

3 Results

3.1 Signal Classification

3.1.1 Algorithm Calibration

The first step in order to be able to find ErrP signals is to choose the most efficient

algorithm, and the proper calibration. In order to do this different parameters are

tested for a set of algorithms and for each individual subject. Initially a sub-selection of

experiments is used to define a subset of parameters to test with, and then all the data is

tested with this subset of parameters.

3.1.1.1 Logistic Regression

For the logistic regression algorithm the parameters that are tested are C and the Solver.

The C parameter is the inverse of the regularization strength. The values this parameter

can take are 0.001, 0.01, 0.1, 1 and 10. The solver parameter refers to the algorithm that

is used in the optimization problem, the ones that are tested are lbfgs and saga. The

different configurations that resulted as optimal for subjects can be seen in the apendix

section B.1.

Logistic Regression

Subject Score Configuration Number

1 0,672 5

2 0,639 6

3 0,631 4

4 0,626 4

5 0,610 1

6 0,594 2

7 0,588 3

8 0,524 6

3.1 Signal Classification 27

Figure 3.1: Logistic Regression Algorithm Calibration

3.1.1.2 Multi-layer Peceptron

For the multi-layer perceptron the tested parameter is α, which refers to the regularization

term parameter. This parameter can equal 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8,

10−9 or 10−10. The configurations that resulted optimal for subjects can be seen in the

appendix Section B.2.

Multi-layer Perceptron

Subject Score Configuration Number

1 0,591 2

2 0,625 3

3 0,591 3

4 0,627 1

5 0,520 3

6 0,600 3

7 0,605 1

8 0,621 2

28 3.1 Signal Classification

Figure 3.2: Multi-layer Perceptron Algorithm Calibration

3.1.1.3 Random Forest

When testing the random forest classifier the parameters that are tested are the maximum

amount of features and the criterion. Regarding the maximum amount of features the

parameter values that are tested are auto and log2. This parameter refers to the number

of features that are considered when looking for the optimal split. Regarding the criterion

the ones that are tested are gini and entropy. This is the criterion that is used in order to

qualify the quality of a split. These are the only two options for this parameter, gini refers

to the Gini impurity and entropy to the information gain. The possible configurations

that resulted optimal for subjects can be seen in the appendix section B.3.

3.1 Signal Classification 29

Figure 3.3: Random Forest Algorithm Calibration

Random Forest

Subject Score Configuration Number

1 0,511 1

2 0,633 2

3 0,594 1

4 0,601 1

5 0,594 1

6 0,585 3

7 0,593 3

8 0,605 3

3.1.1.4 Support Vector Classifier

In the support vector classifier the parameter that is tested is C, which is the penalty

parameter of the error term. The possible values C can take are 0.001, 0.01, 0.1, 1 and 10.

The configurations that resulted ideal for subjects can be seen in appendix section B.4.

30 3.1 Signal Classification

Figure 3.4: Support Vector Classifier Algorithm Calibration

Support Vector Classifier

Subject Score Configuration Number

1 0,554 2

2 0,633 2

3 0,571 2

4 0,566 2

5 0,569 2

6 0,592 2

7 0,620 2

8 0,590 1

3.1.1.5 Score Obtained For Optimal Configuration Per Algorithm

Figure 3.5 shows the score for each algorithm for each subject using the optimal

configuration.

3.1 Signal Classification 31

Figure 3.5: Score Obtained With The Optimal Calibration Per Algorithm Per Subject

32 3.1 Signal Classification

3.1.2 Algorithm Selection

In order to select the best algorithm to use when training, another comparison is made

between algorithms. In this instance the comparison is made for each test subject, using

the optimal set of parameters for each algorithm, which where found in the previous

subsection. This comparison consists on validating the percentage of samples correctly

classified for a given prediction probability. For instance, a well calibrated classifier would

classify correctly 60% of the samples that were classified with a prediction probability of

0.6. This gives a sense of how reliable the classifier is when giving a prediction probability.

Also, a comparison regarding the amount of samples classified given a prediction probability

is made, to see how many samples are classified with a very high or low level of confidence.

Figure 3.6: Algorithm Classification: Subject 1

3.1 Signal Classification 33

Figure 3.7: Algorithm Classification: Subject 2

Figure 3.8: Algorithm Classification: Subject 3

34 3.1 Signal Classification

Figure 3.9: Algorithm Classification: Subject 4

Figure 3.10: Algorithm Classification: Subject 5

3.1 Signal Classification 35

Figure 3.11: Algorithm Classification: Subject 6

Figure 3.12: Algorithm Classification: Subject 7

36 3.1 Signal Classification

Figure 3.13: Algorithm Classification: Subject 8

Figure 3.14: Algorithm Classification: Noise

3.1 Signal Classification 37

3.1.2.1 Optimal Algorithm and Configuration Per Subject

Looking at figures 3.6 to 3.14 it can be seen that Logistic Regression is the most consistent

classifier regarding classification confidence. Table 3.1.2.1 shows the optimal configuration

and algorithm per subject. Given this results, Logistic Regression is the algorithm selected

to continue with further analysis.

Optimal Algorithm And Configuration Per Subject

Subject Algorithm Configuration Number Score

1
Logistic

Regression
5 0.594

2
Logistic

Regression
6 0.672

3
Logistic

Regression
4 0.594

4
Multi-Layer

Perceptron
1 0.627

5
Random Forest

Classifier
1 0.594

6
Logistic

Regression
2 0.631

7
Logistic

Regression
3 0.639

8
Logistic

Regression
6 0.626

38 3.1 Signal Classification

3.1.3 Classification Results

Figure 3.15 to Figure 3.22 show the Confusion Matrix and ROC curve for each test subject

and 3.23 shows them for a classifier trained with a noisy signal.

Looking at the confusion matrix, the percentage of samples classified as a hit that are in

fact not a hit (false positive) is consistently low for every subject. In most cases Type I

error tends to be lower than Type II error for all subjects.

It can be seen that for most subjects the ROC curve is above the identity function,

meaning that the classifier performs well enough when classifying the subject’s data.

The ROC curves corresponding to subject 5 and 6 are very similar to the identity function,

meaning that the rewards originated from those classifiers are expected to have a less

meaningful impact when training a Q-Table.

Lastly, it should be noted that when classifying a noise signal, the confusion matrix shows

a higher percentage of Type I error compared to the subject’s classification.

3.1 Signal Classification 39

(a) Confusion Matrix: Subject 1. A hit represents the player moving away from the goal

(b) ROC: Subject 1

Figure 3.15: Classification results: Subject 1

40 3.1 Signal Classification

(a) Confusion Matrix: Subject 2. A hit represents the player moving away from the goal

(b) ROC: Subject 2

Figure 3.16: Classification results: Subject 2

3.1 Signal Classification 41

(a) Confusion Matrix: Subject 3. A hit represents the player moving away from the goal

(b) ROC: Subject 3

Figure 3.17: Classification results: Subject 3

42 3.1 Signal Classification

(a) Confusion Matrix: Subject 4. A hit represents the player moving away from the goal

(b) ROC: Subject 4

Figure 3.18: Classification results: Subject 4

3.1 Signal Classification 43

(a) Confusion Matrix: Subject 5. A hit represents the player moving away from the goal

(b) ROC: Subject 5

Figure 3.19: Classification results: Subject 5

44 3.1 Signal Classification

(a) Confusion Matrix: Subject 6. A hit represents the player moving away from the goal

(b) ROC: Subject 6

Figure 3.20: Classification results: Subject 6

3.1 Signal Classification 45

(a) Confusion Matrix: Subject 7. A hit represents the player moving away from the goal

(b) ROC: Subject 7

Figure 3.21: Classification results: Subject 7

46 3.1 Signal Classification

(a) Confusion Matrix: Subject 8. A hit represents the player moving away from the goal

(b) ROC: Subject 8

Figure 3.22: Classification results: Subject 8

3.1 Signal Classification 47

(a) Confusion Matrix: Noise. A hit represents the player moving away from the goal

(b) ROC: Noise

Figure 3.23: Classification results: Noise

48 3.2 Reinforcement Learning

3.2 Reinforcement Learning

3.2.1 Average steps to goal

Figure 3.24 shows the average amount of steps it takes to reach the goal as the Q-Table is

progressively trained using the reward information obtained for each subject. Each point

corresponds to the average amount of steps it takes for the agent to reach the goal for a

specific Q-Table in 200 iterations. The first point represents the amount of steps it takes

to reach the goal for a Q-Table that hasn’t been trained at all, where movements are

decided randomly. The next point corresponds to the amount of steps it takes to reach

the goal using a Q-Table trained with one experience, and so on.

The results show that as the Q-Table is progressively trained the average amount of steps

decreases, meaning that the agent learns. However, the rate at which it learns varies per

subject, certain subjects have more effective experiments than others, for example results

for subject 1 (fig 3.24a) show faster learning than those of subject 8 (fig 3.24h).

In the case for subject 5 and 6, the reward information obtained from the brainwaves

is not enough to train the agent effectively. Figures 3.24e and 3.24f show no apparent

learning, as the amount of steps to reach the goal doesn’t decrease when trained. Both

subjects have less recorded data from the sessions in comparison to the rest of the subjects.

In particular, subject 5 has less recorded experiences, so it is respective graphic shows the

amount of steps for an empty Q-Table and for a Q-Table trained with only one experience.

These results are consistent with fig. 3.19b and fig. 3.20b, which show that the signal

classification for these subjects hasn’t been particularly successful. The average steps

result for these subject are similar to that of fig. 3.23b which is constructed from noise,

so the generated Q-Table would be similar to one generated with noise.

Figure 3.25 shows how the amount of steps evolves when training a Q-Table with one

experience of each subject progressively, excluding subject 5 & 6 which showed poor results.

Using experiments from different subjects the agent still improves its performance, showing

that the reinforcement learning algorithm is independent from the subjects. Considering

that the agent is trained from a file containing rewards, the only thing that is relevant

when training is that this file is correctly constituted. If the signal classification is correct

3.2 Reinforcement Learning 49

then when training the Q-Table different subjects can be used.

Figure 3.26 shows the average amount of steps for Q-Tables that are progressively trained

with noise. It shows that in this case the agent doesn’t learn, since the amount of steps

doesn’t decrease as the Q-Table is trained, whereas when using the Q-Tables that are

trained with the subjects experiences the amount of steps does decrease. This shows that

is very likely that in the other cases the agent learns in fact by the rewards produced by

reading the signals from the person.

In order to test if the information obtained from brainwaves for a subject can be used

to classify signals from other subjects, which is called transfer learning (Jayaram, 2015),

game data collected from the brainwave sessions of certain subjects is classified with

classifiers trained from other subjects. The results are shown on figure 3.27. In figure

3.27b the results correspond to the experiments from subject 1 classified using a classifier

trained exclusively with data from subject 3 (two of the subjects that show the best

results), where the next one shows the results of the subject 1 experiments classified with

the classifier of subject 3. Both graphics show similar results from those of figure 3.26,

where noise is used. In both cases, the amount of steps for the agent to reach the goal

does not decrease from those of the initial empty Q-Table, which means that the agent is

unable to learn with data classified by a classifier corresponding to other subject. This

means that the experiment is not suited for transfer learning.

50 3.2 Reinforcement Learning

(a) Average steps using Q-table trained with the results of subject 1

(b) Average steps using Q-table trained with the results of subject 2

(c) Average steps using Q-table trained with the results of subject 3

3.2 Reinforcement Learning 51

(d) Average steps using Q-table trained with the results of subject 4

(e) Average steps using Q-table trained with the results of subject 5

52 3.2 Reinforcement Learning

(f) Average steps using Q-table trained with the results of subject 6

(g) Average steps using Q-table trained with the results of subject 7

3.2 Reinforcement Learning 53

(h) Average steps using Q-table trained with the results of subject 8

Figure 3.24: Average steps for each subject

Figure 3.25: Average steps using Q-Table trained with one experience per subject.

54 3.2 Reinforcement Learning

Figure 3.26: Average steps using Q-Table trained with noise.

3.2 Reinforcement Learning 55

(a) Average steps using Q-table trained with experiences from subject 8 classified with
a classifier trained with data from subject 6

(b) Average steps using Q-table trained with experiences from subject 1 classified with
a classifier trained with data from subject 3

Figure 3.27: Average steps using Q-table trained with experiences from one subject, but
classified with a classifier trained with data from other subject

56 3.2 Reinforcement Learning

3.2.2 Heat maps of Learned Policies

Figure 3.28 shows three heat maps, each one corresponding to 50 cumulative experiences

with a specific Q-table. The state of the player has higher frequency on red cells, and

lower on yellow ones. The first heat map, 3.28a, shows the results using an empty Q-table,

hence, the movement of the player is always random. An oscillation with centre on row 2

and column 2 can be seen, where frequency lowers as cells are further from the oscillation

centre. The average amount of actions taken to reach the goal is 78.56. The second

map, 3.28b, shows the results of using a Q-table trained with the results from subject

3. The map shows that the frequency values on each cell are more even, than those in

the previous map. However there is a peak on row 3 column 4, which could be caused by

a classification error or by a tendency to explore certain states that were not explored

during the experience. It can also be seen that the states that correspond to the lower-left

section of the matrix are not explored, as the Q-table seems to consider moving to those

states as a negative action. The average amount of actions taken to reach the goal is

43.08, which shows a substantial improvement.

Figure 3.28c shows the results of using a Q-table trained with the results of both subjects

2 and 3. The average amount of actions taken to reach the goal is 8.32, which is almost

the optimal, 8. In this map a path from the starting point to the goal can be seen, which

shows a tendency to learn one specific path. This tendency can only be explained by

classification errors that lead to penalizing certain paths more than others, as a perfect

classification would lead to an equality on the probabilities between choosing two actions

that bring the player closer to the goal. The yellow cells can be explained by the probability

of choosing a random action, which makes always the process non-deterministic, thus

opening a possibility to take an alternative path.

The last heat map, fig. 3.28d, shows the results of using an optimal Q-table. This means

that the Q-table always chooses the best action to take for a given state. The results

contrasts with those of fig.3.28c, as it does not show a dominant path, instead, they

appear to be more evenly distributed. The cells closer to the starting point and goal are

more common than the further ones (cells on the up-right and down-left), as those are

included in more possible optimal paths.

3.2 Reinforcement Learning 57

(a) Empty Q-table

(b) Trained Q-table 1

58 3.2 Reinforcement Learning

(c) Trained Q-table 2

(d) Optimal Q-table

Figure 3.28: Heat maps

59

4 Conclusion

The present research work set out to validate if ErrP signals could be used to train an

agent using reinforcement learning. The collected data show that ErrP signals can in fact

be classified and used to train an agent effectively.

When classifying, the better performing classifier is Logistic Regression. One important

aspect of the classification results is the low percentage of false positives, meaning that it

is not common that the agent learns that an action is wrong when in fact it is an action

that takes it closer to the goal. On the other hand, the percentage of false negatives is

generally higher, but this is not a serious issue since missing out on learning that an action

is wrong does not lower the performance of the agent, but only means it will take more

experiences to learn a correct path.

Once ErrP signals are identified they can be used to train a reinforcement learning

algorithm. However, this can only be achieved by generating a specific classifier for each

subject and using it for giving rewards for the corresponding subjects. Results show

that training a classifier with data of one subject, but using it to classify the events of

experiences of another subject does not lead to an improvement on the performance of

the agent, concluding that the experiment is not suited for transfer learning. Despite that,

the rewards generated from different subjects can be used to train the same Q-Table to

improve its performance.

Brainwave sessions have a low amount of experiences in order to reduce fatigue from the

subjects. However data suggests that longer sessions are required in order to reach better

classification scores, since more data is available in order to train the classifier. It can be

seen that subjects with the largest amounts of data have the best classification. This can

also be achieved designing a bigger game system that generates more samples with every

session.

Finally, this research verifies that brain signals can be used as an interface between human

and computer enabling the control of the system without explicit input from the user.

60

5 Future Work

There are potential areas that could improve the presented methodology and other which

could be an interesting complement to what has been achieved. These are presented as

follows:

1. Online learning

2. Increase The Number Of EEG Channels

3. Improve Classification Score

4. Explore More Complex Game Models

5. Try Other Reinforcement Learning Algorithms

5.1 Online Learning

In the current implementation the experiment has to end in order to use it to train a

Q-Table. A more useful implementation should do the training at the same time as the

experiment takes place.

5.2 Increase The Number Of EEG Channels

The version of the used EEG cap has 8 channels. For the used agent the information that

could be gathered sufficed, but it would be interesting to use other additional channels

to see if the classification score that is obtained can be increased, as more valuable data

could be obtained from them. There are up to 64 channels in the same type of EEG cap.

5.3 Improve Classification Score

The classification methods used sufficed for detecting the ErrP in the brainwaves collected,

but more complex classification methods could be used in order to increasing the

classification score. This way, less false positives could affect the training of the agent.

5.4 Explore More Complex Game Models 61

5.4 Explore More Complex Game Models

The reason why the designed agent was chosen was that the subject that was examining

the agent had to be able to easily distinguish whenever a mistake was being made. If the

agent had been playing a game of chess for example, then the subjects should have been

proficient playing the game in order to identify whenever the agent didn’t make the right

move.

5.4.1 Non-Deterministic Environment

It would be interesting to experiment within a more complex environment, such as a

non-deterministic one. The possibilities given in this kind of scenarios is richer as the

decision making is much less obvious. Some ideas considered include making the goal

move, which would transform the experiment much more into a chase rather than a goal,

and making a competitive environment such as a chess with simpler rules.

5.4.2 Robotic Agent

Initially the plan was to use a robotic agent, it could either be a robotic hand playing

some sort of game or a more simpler modification to the existing agent using a robot,

that would to have to go through a given path, but would choose it’s direction at random.

Because of complications that arose during the implementation this couldn’t be achieved

but it would be an interesting future work.

5.5 Try Other Reinforcement Learning Algorithms

For the given agent the Q-Table reinforcement learning algorithm sufficed, but in case

that a more complex agent has been modeled, then it would be relevant to test other

types of reinforcement learning algorithms.

62

6 Acknowledgements

First and foremost we would like to extend our candid appreciation to our tutor, Dr.

Rodrigo Ramele, for his assistance, guidance, and expertise during the whole process of

this thesis.

This project would not have been possible without the cooperation of ITBA University and

several individuals. We would like to extend the deepest appreciation to the robotics and

artificial intelligence department, to Dr. Juan Miguel Santos, the head of the laboratory,

who lent us all the necessary materials and installations in order to be able to carry out

the experiments. We also would like to thank the subjects who volunteered and were key

to the development of this project.

Finally, we would like to thank everybody who supported us during these last months

and years, our friends and families, without whom this would have never been possible.

6.1 Funding

This was possible thanks to the grant ITBACyT-15 issued by the ITBA University.

References 63

References

A. Gramfort, M. Luessi, E. L. D. E. D. S. C. B. R. G. M. J. T. B. L. P. M. H. (2013).
MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience, Volume 7.

Andrew Barto, R. S. S. (2018). Reinforcement Learning: An Introduction. Cambridge,
MA : The MIT Press.

David Silver, Julian Schrittwieser, K. S. I. A. A. H. A. G. T. H. L. B. M. L. A. B. Y. C.
T. L. F. H. L. S. G. v. d. D. T. G. D. H. (2017). Mastering the game of go without
human knowledge.

Ferrez, P. (2007). Error-related eeg potentials in brain-computer interfaces.

I. Iturrate, L. Montesano, J. M. (2010). Robot reinforcement learning using eeg-based
reward signals.

Jayaram, V. (2015). Transfer learning in brain-computer interfaces.

Juan Miguel Santos, C. T. (1999). Exploration tuned reinforcement function.

Kappenman, E. S. and Luck, S. J. (2011). Erp components: The ups and downs of
brainwave recordings.

Norvig, P. and Russell, S. (2009). Artificial Intelligence: A Modern Approach. Prentice
Hall Press Upper Saddle River.

Ramele, R. (2018). Histogram of gradient orientations of eeg signal plots for brain
computer interfaces.

Spüler, M. and Niethammer, C. (2015a). Dataset description: Error-related potentials
(errps) during continuous feedback.

Spüler, M. and Niethammer, C. (2015b). Error-related potentials during continuous
feedback: using eeg to detect errors of different type and severity.

Thorsten O. Zander, Laurens R. Krol, N. P. B. and Gramann, K. (2016). Neuroadaptive
technology enables implicit cursor control based on medial prefrontal cortex activity.

Wolpaw, J. and Wolpaw, E. W. (2012). Brain-Computer Interfaces: Principles and
Practice. Oxford University Press.

Yann Renard, Fabien Lotte, G. G. M. C. E. M. V. D. O. B. and ecuyer, A. L. (2010).
Openvibe: An open-source software platform to design, test and use brain-computer
interfaces in real and virtual environments.

64

Appendix

A OpenAI Gym FrozenLake Description

The agent controls the movement of a character in a grid world, representing a frozen

lake. The agent can only walk over some of the tiles of the grid, while others lead to

the agent falling into the ice water. Additionally, the movement direction of the agent

is uncertain and only partially depends on the chosen direction, since the agent might

slip, causing it to go in an undesired direction. The agent is rewarded for finding a path

that reaches a goal tile. The episode ends when you reach the goal or fall in a hole. You

receive a reward of 1 if you reach the goal, and zero otherwise. The grid can be seen in

the table A.1, where S represents a starting point, which is a safe spot, F represents a

frozen surface which is also safe, H represents a hole where if you land on you lose and G

represents the goal, which is the point where you ultimately want to reach.

S F F F
F H F H
F F F H
H F F G

Table A.1: Frozen Lake Grid Representation

B Algorithm Selection Configuration

Different parameters are tested in order to choose the best configuration for each algorithm

for each experiment subject. Some parameters are kept constant per algorithm, these are

specified, and the ones that aren’t are described in each different configuration.

B.1 Logistic Regression

• penalty = l2

• max-iter = 300

B.2 Multi-Layer Peceptron 65

Logistic Regression

Configuration Number C Solver

1 0.001 lbfgs

2 0.01 saga

3 0.1 saga

4 1 lbfgs

5 1 saga

6 10 lbfgs

B.2 Multi-Layer Peceptron

• solver = lbfgs

• max-iter = 100

Multi-Layer Perceptron

Configuration Number α

1 1e-09

2 0.0001

3 0.1

B.3 Random Forest Classifier

• n-estimators = 1000

Random Forest Classifier

Configuration Number Max Features Criterion

1 log2 entropy

2 log2 gini

3 auto gini

66 B.4 Support Vector Classifier

B.4 Support Vector Classifier

Support Vector Classifier

Configuration Number C

1 0.001

2 10

