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INVERSA DE COMPORTAMIENTOS EMERGENTES

EN SISTEMAS MULTI-AGENTE

by
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Abstract

Each time a problem needs to be solved using a multi-agent system two questions

must be answered about the agents involved:

1. What sensing capability must each of them have?

2. Which individual actions must each agent have for solving the problem effi-

ciently?

Answering each of these questions is a difficult matter when solving a problem.

When sensing capability and behaviors are known, the problem to be solved is

only one of the possible emergent behaviors of the multi-agent system. The pur-

pose of this thesis is to find a method to discover what the answer to each question

is in order to obtain a given emergent behavior. That is, it aims to solve a prob-

lem with a group of simple agents with very low communication among them. To

achieve this objective, the sensing capability of each agent is modeled by a pa-

rameterized function, finding the value of these parameters using an optimization

technique such as Genetic Algorithms. After obtaining these values each agent

is thoroughly trained using Reinforcement Learning to obtain the appropriate in-

dividual behaviors. This thesis proposes a method to obtain both, the sensing

capability and the corresponding behavior for each agent in a swarm to reach the

wished emergent behavior within the group of pattern formation problems. That

is to say, solving this kinds of problems using the ant-robotic paradigm.

vii



Resumen

Cada vez que se necesita resolver un problema utilizando un sistema multi-agente

se deben responder dos preguntas respecto de los agentes involucrados en el mismo:

1. ¿Qué capacidad de sensado debe tener cada uno de ellos?

2. ¿Qué acciones individuales debe tener cada agente para resolver el problema

de manera eficiente?

Responder cada una de estas preguntas es una tarea dif́ıcil cuando se está

resolviendo un problema.

Cuando se conocen la capacidad de sensado y los comportamientos, el prob-

lema a ser resuelto es solamente uno de los posibles comportamientos emergentes

del sistema multi-agente en cuestión. El propósito de esta tesis es encontrar un

método que permita descubrir cuál es la respuesta a cada una de las preguntas

anteriores, en orden de obtener un comportamiento emergente dado. Es decir,

poder resolver un problema con un grupo de agentes simples con muy baja co-

municación entre ellos. Para alcanzar este objetivo, la capacidad de sensado de

cada agente es modelada con una función parametrizable, encontrando el valor

de estos parámetros usando una técnica de optimización, tal como Algoritmos

Genéticos. Después de obtener estos valores, cada agente es entrenado utilizando

Aprendizaje por Refuerzo para obtener los apropiados comportamientos individ-

uales. Esta tesis propone un método para obtener tanto la capacidad de sensado

como los comportamientos que debe tener cada agente en un enjambre para al-

canzar el comportamiento emergente deseado, dentro del grupo de problemas de

formación de patrones. Es decir, resolver esta clase de problema utilizando el

paradigma ant-robotic.
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Symbols and Abbreviations

Abbreviations

ANN: Artificial Neural Network

Avg: Average.

ObIndBe: Obtain Individual Behaviors.

ObSenPar: Obtain Sensing Parameters.

PSO: Particle Swarm Optimization

Std: Standard deviation.

Symbols

ε global: Control when explore or exploit for all configurations.

ε individual: Control when explore or exploit a configuration.

εij: Control when explore or exploit a configuration for each agent.

α: Learning rate.

γ: Discount factor.

β: Closeness. Sensing parameter value that measures closeness among agents.

δ: Density. Sensing parameter value that measures the density of each layer.

δ1: Density of the first layer.

δr: Density of layers except layer nearest the agent who is sensing.

θ: Aperture. Sensing parameter value that indicates the aperture angle.

ν: Expansion. Sensing parameter value that indicates the sensing area.

ρ: Scope. Sensing parameter value that indicates the sensing radius.

µ: Expected value.

σ: Variance.

S: Set of reachable states.

s: A particular state.

A: Set of possible actions that an agent can perform in a particular state s.

a: A particular action.

Q: Matrix of rewards. It has a reinforcement per action per state.
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r: A particular reward.

FR: Reinforcement function.

Conf : Number of configurations.

Limitα: Ceiling to start decreasing the parameter α.

topε: Ceiling to start decreasing the parameters ε individual.

threshold config : Determines when a configuration is considered saturated.

threshold action: Determines when an action is considered saturated.

Q percentage: Value to consider a pair (s, a) for exploration.

Q(st, at): Reinforcement matrix.



Chapter 1

Introduction

Driving vehicles in formation [29], enclosing a prey [3, 33, 37], forming rescue teams

and patrols [2, 8, 9, 20] or transporting heavy elements [15, 17], are all problems

that require joint work. Some of these problems are typically distributed and

others can be solved in a distributed way, although that is not its essence. An

example of this is the problem of transporting heavy objects. This problem can be

solved using a specialized single agent or with a swarm (group) of simple agents

that are unable to perform the task individually but reach the goal due to the

interaction among them. When a single agent is used, if it fails for any reason,

the job can not be performed. However, if the problem is solved with a swarm

of simple autonomous agents with low communication among them, the task can

always be solved even if a few agents fail to do the job. Task achievement is due

to two reasons: the number of agents exceeds the requirement of the task or it is

possible to add agents because of low-cost.

When a swarm of agents is used it is essential to answer the following questions:

1. Can agents act in an autonomous way or do they need to be coordinated in

a central way?

2. Must all agents have the same capabilities or must different types of agents

be used to solve the problem?

3. Must each agent know how to solve the whole problem or may the problem

be solved by the interaction of many or all of the agents in the swarm?

In the first question when a central coordination is implemented, if it fails, it

is impossible to solve the problem. But, when the problem is accomplished by a

swarm of autonomous and redundant agents, even if some of them fail, the whole

3
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task can be completed successfully. This may be possible because either the agents

are enough to solve the whole problem, or the failed agents can be easily replaced

by new ones. This is known as fault-tolerance. Fault-tolerance is necessary to

minimize the following problems:

1. The cost involved when it is impossible to complete the task, and

2. The cost of building self-sufficient fully specialized agents.

The second question addresses agents capabilities. It is necessary to define

what kinds of actions agents will be able to perform. These actions depend on

the stimulus received and it is named behavior or policy. When all agents act

in the same way in response to the same stimulus, it is said that the agents are

homogeneous. Furthermore, if each agent or subgroups of agents may behave

differently from one another, it is said they form a swarm of heterogeneous agents.

For example, if the problem consists in forming a cluster of agents without any

special geometry in an enclosed space in any place, the problem can be solved

with a group of homogeneous agents (see Section 5.1). However, if the problem is

to create a formation (see Sections 5.2:5.3.2), as rescue groups or patrols, at least

two different types of behavior will be needed.

The third question is answered by designing a multi-agent system that com-

plies with the ant-robotic paradigm [11], which emphasizes the virtues of massive

parallelism of many simple agents (as in the case of ants in nature) with limited

sensing capability and low precessing capacity, but with the ability to interact

with the environment in which they act. These systems must include the follow-

ing characteristics:

• Each agent has incomplete information or a limited number of capabilities

for solving the problem and a limited view,

• There is no overall control system,

• The data is decentralized, and

• The processing is asynchronous.

All these points are taken into account in this thesis.
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The term ant-robotic is often used to denote distributed robot systems that

use indirect interaction strategies through the environment.

This thesis proposes a method to obtain both, the sensing capability and the

corresponding behavior of agents to solve pattern formation problems. In other

words, solving this kinds of problems using the ant-robotic paradigm.

Research within swarm robotics includes self-organization. An interesting sub-

problem of self-organization is pattern formation [5]. The term pattern formation

in literature is used in at least two different ways. Firstly, to define an area of

study within multi-robot systems that covers distinct aspects of patterns such

as the establishment, maintenance and reconfiguration of patterns. Secondly, to

report the natural phenomenon of flocking whereby loose or deformed geometric

patterns emerge, and not necessarily strict geometric patterns [1]. In this thesis,

the first usage of the term is adopted. That particular formation to be achieved

is an emergent behavior of the multi-agent system.

Before starting the description of the thesis itself, it is necessary to clarify

some terms. There is a fundamental difference between “training” and “learning”.

According to Merriam-Webster Encyclopedia Britannica, “training” is defined as:

“the skill, knowledge, or experience acquired by one that trains.” While “learning”

is defined as: “Knowledge or skill acquired by instruction or study.”. Notwith-

standing, “training agents to solve a problem” or “allowing agents to learn how

to solve a problem” will be used interchangeably, as both influence the behavior

of the agent.

The scope of the experiments is restricted to pattern formation, both with or

without specific geometric shapes, within finite-dimensional discrete toroid.

These problems could be used to enclose a prey, build rescue patrols or set

special formations of agents. In particular, experiments are performed on a discrete

toroid, whose dimension is set at the beginning, and with a focus on two types of

problems:

1. Grouping or clustering agents anywhere in the toroid.

2. Obtaining a specific shape anywhere in the toroid (i.e. square, triangular or

diagonal).

The first formation is useful to prove that it is not necessary to train all agents

involved in the multi-agent system but only a minimum number, and then, it is
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possible to replicate the sensing capability and behaviors learned by these agents

to the rest of the agents in the system.

The second part of the experiments, involving geometric shapes, is carried out

to verify that differentiation of behaviors is necessary among the agents involved.

The complexity of the problem is given by several constraints, namely:

• The environment is sensed partially.

• Performance measure is global (i.e., it is the emergent behavior to achieve).

• Agents operate independently.

• They have low communication among them. In general, the communication

is given by the change in the environment.

• They move in random order. The movement of the agents is not controlled by

any central agent, and they can all move simultaneously in different random

sequences.

Learning is accomplished applying the Q-learning technique [27]. To achieve

this it is necessary to determine what sensing capability each agent or group of

agents need to reach the goal. To this effect a five parameter sensing function

is defined (see Section 4.1). Genetic Algorithms [13, 10] are used to find the

best settings for these parameters in each problem. The fitness function used

is the performance achieved by the swarm with each set of parameters encoded

in the chromosome (see Section 4.3). If the required behavior is homogeneous,

then all the agents can use the same sensing capability; but if the task requires

heterogeneous agents, then different sensing parameters are needed to solve the

problem.

Agents used here are autonomous without any clock or central coordination

to determine the order in which they move. Furthermore, they are inexpensive

and with rudimentary movements (they can move forward one position, rotate 90◦

clockwise or rotate 90◦ counterclockwise, see Chapter 5). An agent is considered

inexpensive if it can be built with simple low-cost sensors and it is computationally

cheap. For example, kilobots [25] are a US$14 micro-robot and it takes 5 minutes to

assemble. This a low-cost robot designed to test algorithms for groups of hundreds

or thousands of them.
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From now on, the terms agent and robot will be used interchangeably.

When an agent decides to perform an action, the environment changes for

all agents involved in the multi-agent system. Therefore, the agent must sense

the environment again the next time it decides to act. This process is repeated

by each agent in a random manner, causing the system to be purely stochastic.

During the learning process, agents are based on utility. A utility-base agent is

one that is able to decide which sequences of actions can lead to a faster, safer or

cheaper completion of the task, depending on the chosen criteria. After learning

each agent behaves as a simple reactive agent [26].

Es interesante reformular el objetivo de la tesis de la siguiente manera: se quiere

encontrar una capacidad de sensado para los agentes involucrados en el sistema

multi-agente que permita resolver el problema de formacin de patrones, de manera

tal que tenga un bajo nmero de configuraciones posibles pero que a su vez minimice

el aliasing perceptual conflictivo y que permita encontrar los comportamientos de

los agentes de manera tal de resolver algn problema de formacin de patrones en

un toroide discreto de dimensiones finitas que sea un comportamiento emergente

del sistema, de manera eficiente utilizando el paradigma ant-robotic.

Es necesario destacar que esta tesis no es una simple aplicacin de Aprendizaje

por Refuerzo y Algoritmos Genticos.

La contribucin realizada es la posibildad de parametrizar la capacidad de sen-

sado de manera tal de encontrar los valores de forma automtica y con una cantidad

de posibles necesarias para los agentes en el sistema con, la caracterizacin del alias-

ing perceptual conflictivo y la modificacin de la tcnica Q-learning introduciendo

exploracin dirigida de manera tal que permita tratar con aliasing perceptual pre-

sente cuando la capacidad de sensado es minimal, tan conflictivo a la hora de

resolver un problema.

It should be pointed out that this thesis is not a simple application of rein-

forcement learning and genetic algorithms; in fact, the development is based on

these algorithms because they are known to work optimally in the resolution of

a wide variety of problems. What is new is the parameterization of sensing ca-

pability (see Section 4.1.1), the characterization of conflictive perceptual aliasing

(see Section 4.1) and the modification introduced in how Q-learning technique

explores the space of possible actions. The modification introduced, named action

directed exploration (see Section 4.2.2.1), allows treating the conflictive perceptual
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aliasing, which is very problematic when solving a problem, that appears when a

minimal sensing capability is used.

The rest of the thesis is structured as follows, Chapter 2 presents previous

studies. Chapter 3 defines concepts used here. Chapter 4 is devoted to theoretical

explanation of this thesis together with the introduction of the proposed methods.

Chapter 5 introduces new key concepts related to agent behaviors (essential for

a complete understanding of the thesis), as well as the experiments and results.

Finally, Chapter 6 presents conclusions and future research.



Chapter 2

Background

Following, some research focused on the discovery of different emergent behavior

of collections of agents will be reviewed.

It has been impossible to find sensing characterization in the sense presented

in this thesis. In general, work on multi-agent systems is based on the discovery

of emergent behavior with groups of agents whose ability to sense and / or act is

known in advance.

In this sense, Panait and Tuyls [21] present the dynamics of multiple agents

trained with Reinforcement Learning from the perspective of evolutionary game

theory. The authors introduced the concept of lenient agents “who ignore low

rewards due to actions chosen by teammates that are poor matches to the agent’s

current action”. In particular, lenience is important at the beginning of the game,

where agents have not yet identified their best moves. To allow agents to disregard

poor actions of other agents, it is necessary to have enough information about

them, including the actions they are taking. Agents use Boltzmann exploration to

pick actions, which control probabilities with a temperature variable. The authors

demonstrated that straightforward extensions of Q-learning to multi-agent systems

fail to reach the optimal policy in fairly simple domains.

In this thesis, agents learn how to proceed in each situation using an algorithm

based on a straightforward application of Q-learning for a single agent. The pro-

posed algorithm (see Chapter 4) has many differences with respect to the original

Q-learning algorithm. One of these differences is the use of a reinforcement ma-

trix for each agent and not a joint matrix. Agents have very low communication

among them and therefore cannot base their decisions on actions taken by other

agents. Instead, agents are allowed to explore low-visited states, using action di-

rected exploration (see Section 4.2.2.1), even when the learning is in an advanced

9
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stage. This would avoid premature convergence and is a way to implement le-

nience indirectly, i.e. without knowing the actions taken by other agents. The

results shown in Chapter 5 confirm that it is possible to use an algorithm based

on the direct application of Q-learning for a single agent to train a group of agents

in a multi-agent system.

Berezhnoy [4] presents a multi-agent environment form with two different

groups of agents in a virtual two dimensional plane. The objective is to deter-

mine if any behavior that emerges from the interaction among the agents exists.

The multi-agent system proposed is a well-known game named ”Warmers and

Chillers”. In this game each cell has two values, the normal temperature and the

local temperature. There are two types of agents:

• Agents which always try to reach areas of the board with higher temperature

to heat the atmosphere by generating heat. (Warmer agents)

• Agents which try to go to cold places, lowering the temperature of the sur-

roundings. (Chiller agents)

Agents move around the board raising or lowering the temperature of the

environment around them. The sensing capability of each agent is inversely pro-

portional to an agent’s degree of satisfaction. An agent is satisfied when it reaches

its objective; that is to say, a warmer agent is more satisfied if he can raise the

temperature around him and vice versa. There is no central control; agents act

and move in random order on the board. The grouping of two distinguishable

types of agents was the emergent behavior achieved (i.e. warmer agents together

and separately, the group of chiller agents). That is, the emergent behavior is

achieved by the interaction of agents whose nature is known in advanced.

In this thesis, the aim is to discover what type of agent should form the multi-

agent system to achieve a desired emergent behavior, such as making a cluster

(see Section 5.1). The grouping problem is one of the possible emergent behaviors

sought (see Sections 5.2 and 5.3). Agents are trained to obtained not only the

behavior but also the required sensing capability in order to reach the formation

desired. A minimum number of agents is trained replicating the knowledge learned

to the rest of the agents in the multi-agent system.

Quinn et al. [24] present homogeneous agents controlled by an Artificial Neural

Network (ANN), where the sought emergent behavior is grouping moving robots;
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namely, a flock. It is important to highlight that they only use three agents in their

experiments. The ANN architecture and parameters are found using Evolutionary

Algorithms. All the robots use the same ANN, which runs in a central computer.

They have infrared sensors allowing them to detect proximity of other agents. The

robots start in random positions with one condition: each robot must detect at

least one of the others. There are different tasks needed to keep the flock of three

agents. In particular, the agent who is leading the flock has to walk backwards,

while the other two have to keep watching the head of the flock. ANN is trained

to perform any of these subtasks. As all agents use this common network and are

indistinguishable, although they do not perform all the subtasks for which they

would be trained, they are considered homogeneous agents anyhow. With these

characteristics in mind it is easy to explain fault tolerance.

In the case of the thesis presented here it is possible to work with both homo-

geneous and heterogeneous agents. If the agents are heterogeneous the flock can

be achieved by having a moving distinguishable agent where the desired emergent

behavior consists in reaching it; as happens when a prey is enclosed. If enclosing

is impossible, the prey acts as a distinguishable agent making the swarm be in

continuous movement. When the prey is removed, the agents meet somewhere in

the board and remain there forming a cluster. There is no limit to the number of

agents involved. The behavior and sensing capability are learned by each agent.

Chapter 6 shows that fault tolerance can be overcome by using both homogeneous

and heterogeneous agents. In addition, there is no restriction on the pattern to

be reached, it can be geometric or not.

Peter Wavish [32] focuses his research on answering how to exploit the emer-

gent behavior in the design of multi-agent systems. The method was devoted to

design individual agents maintaining the symbolic representations of the emergent

behavior, which can then be used as a basis for building higher-level behaviors.

In his work the designer has an important role during the construction of the

symbolic behaviors. The solution presented in his paper is to create and maintain

explicit symbolic representations of the emergent behaviors by coupling them to

other symbolic behaviors within the agent. He stands that, while most of the work

on Artificial Intelligence is based on the explicit representation of knowledge, his

work is based on the explicit representation of behavior. He argues that the activ-

ity of an agent must be given by its interaction with the environment and not by
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a process of reasoning occurring only in the agent. To deal with this he designed

two programming language, ABLE (Agent Behavior LanguagE) and RTA (Real

Time ABLE), both based on PROLOG. In RTA the set of possible behaviors is

finite and is determined at compile time. Agents are represented by the RTA

compilers asynchronous digital logic circuits, where behaviors are implemented as

registers, logical operators as logic gates, and delays as monostables. To test the

programming language he simulate a world with six robots. In this world one of

the robots (the dog) has to herd the remaining five robots (the sheep) towards

a movable shepherd. The world also contains stones that can be seen as obsta-

cles. Each robot can move in any of eight directions, and has two kind of sensing,

corresponding to sight and touch. Both types of sensing are divided into eight

sectors. In each sector, the agent senses either the presence or the absence of an

object. In the case of sight, what the robot can distinguish can be predetermined.

The only robot that constructs its behavior is the dog, the remaining agents have

their behavior preset. Eventually, the dog can distinguish whether he is trapped

between rocks, or surrounding the sheep to guide them to the stable. With this

to types of symbolic behavior Wavish states that more complex behavior can be

construct. There is no proof with more than one agent.

The main difference with the thesis presented here is that in this case the

agents are trained to achieve the necessary performance to meet the desired emer-

gent behavior. The behavior obtained is neither a symbolic representation nor

an internal representation. The agent senses the environment and acts based on

what it believes. Moreover, the sensing capability of each agent involved in the

multi-agent systems is learned using the proposed algorithms (see Chapter 4).

The works of Suzuki and Yamashita [28] and Gordon et al. [12], was reviewed

together because the work of Gordon et al. is based on Suzuki and Yamashita’s

work. Suzuki and Yamashita have investigated a number of geometric pattern

formations in a plane with a multi-agent system. They present algorithms to group

agents in a single point in a finite number of steps. All agents execute the same

algorithm and they are indistinguishable. They move at random sequences of time.

Each agent is a mobile processor with infinite memory and a sensor for detecting

the positions of other agents. They can be either active or inactive, unpredictably.

They are allowed to occupy the same physical space, avoiding the problem of

handling collisions. Each agent, with its infinite range of visibility, must observe
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the remaining agents in the system in order to solve the problem. If the algorithm

used is oblivious, the new position is determined only by the observed positions

of the remaining agents at that time. Otherwise, the algorithm is non-oblivious,

and the new position may also depend on the observations made in the past.

The authors claim that the agents can converge to a certain geometric pattern

if all agents handle the same coordinate system. If not, the task is impossible

to complete. They show that the formation problem for a point can be solved

by a non-oblivious algorithm with two or more agents, but when the algorithm

is oblivious they need three or more agents. They state that the problem with

two agents and a oblivious algorithm is unsolvable, arguing that it is due to the

stochastic environment given by the asynchronism of the agent’s movement. The

other problem presented is that agents cannot break the symmetry that exists in

their initial distribution. The only solvable formations are: a point and a regular

n-gon. Only deterministic algorithms are used to determine where agents need to

move. They uphold that it is impossible to use a Markovian algorithm to make

two agents go to the same point.

Gordon et al., [12], investigate the problem of gathering a swarm of multi-

ple robotic agents on the plane using very limited local sensing capabilities. The

gathering problem is defined as the problem of getting agents on the plane into a

point or small region. The problem is under the ant-robotic paradigm so agents

are anonymous, homogeneous, with low communication and limited sensing capa-

bilities. They use real robots made from LEGO parts and very simple sensors not

providing distance measurements. The proposed algorithm always converges to

a small dense cluster while retaining mutual visibility among agents. The world

consists of the infinite plane with n agents living in it. At discrete time steps each

agent may be either active or inactive, in the same sense proposed in [28]. Agents

do not have any control over the random scheduling of its activity times. When

they are active, they sense the environment, process some calculations and option-

ally they move to another point into the plane within a defined distance. They

have a predefined distance to detect other agents. They are allowed to occupy

the same physical space, avoiding the problem of handling collisions. Contrary to

the work of Suzuki and Yamashita [28], Gordon et al. guarantee asynchronicity

among agents arguing that this allows agents to achieve asymmetrical shapes.

With respect to the thesis presented here, the homogeneity of agents depends
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heavily on the problem to be solved. Whereas, building cluster assemblies (see

Section 5.1) does not need a behavior differentiation, building square, triangular

or diagonal shapes (see Sections 5.2 and 5.3) does. In the former, homogeneous

agents can be used; but in the latter, it is necessary to distinguish at least two

different types of behaviors, so the agents are heterogeneous and they learn the

necessary behaviors to complete the task using the proposed algorithm in this

thesis (see Chapter 4). These learned behaviors can be used to solve any problem

whose objective is to achieve the same grouping pattern used during training

without retraining. Because it is possible to learn homogeneous and heterogeneous

behaviors there is no restriction with the targeted geometric pattern formation,

it can be symmetrical or asymmetrical. It is also possible to learn a stochastic

behavior to achieve the desired goal and there is no limit in the minimum number of

agents needed to reach the objective. Even though the formation needs n agents

only a minimum number of them require training. Once trained, the learned

knowledge will be replicated in the remaining agents that are needed to achieve

the pattern. In this work, only one agent can be in one position. In order to

make the solution more realistic, superposition is not allowed. In the scope of this

thesis, the learning process is in fact reached with a Markovian algorithm [27] in a

finite number of steps, with both homogeneous and heterogeneous agents, further

explained in Chapter 5.

In the work of Huaxing Xu et al., [36], a solution to a pattern formation

problem inside a grid is presented. Agents involved in the multi-agent system

are homogeneous, cooperative, indistinguishable and non positional. They have

two working modes: they can explore the grid or disperse in it. A pheromone

mechanism is used to message communication and coordination among agents.

Initially, the grid is subdivided into sub-areas with some cells marked as part

of the goal. The agents are uniformly assigned within each sub-areas; namely,

all the sub-areas have agents within them. During the exploration mode, agents

explore the sub-areas where they have been assigned to distinguish the presence

of any marked cells, and identify if any of them are free; i.e., marked cells without

agents on them. When all cells are occupied by agents or there are no marked

cells in that sub-area, the agent communicates the situation to the other agents

via pheromones, and uses PSO to detect the closest sub-area with free marked

cells. Once the agent knows the sub-area with free marked cells it starts working
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in dispersion mode to find the marked grid where to stay, in order to achieved the

general goal.

In this thesis a minimum amount of agents in the multi-agent system go

through a learning stage. After this stage it is possible to:

• Replicate the knowledge learned by agents to the rest of the agents in the

multi-agent system.

• Achieve the wished pattern anywhere within the discrete toroid regardless

of its size.

• Train homogeneous and/or heterogeneous agents.

• Obtain both kinds of policies, deterministic or stochastic.

Agents are indistinguishable and positional. They must occupied a specific

place within the pattern. For example, if the triangle shape is considered a pyra-

mid, the agent which is at the top should be someone experienced and with a

specific body type. If the same shape is considered an attacking formation, the

agent at the top position should be someone who knows how to manage the group.

Genetic algorithms are used during the learning stage to obtain the best sensing

capability for each type of agents involved in the multi-agent system to solve the

proposed problem.

Dimarogonas and Kyriakopoulos, [7], are interested in decentralized planning,

specifically in decentralized conflict resolution in air traffic management and the

field of micro robotics, where a team of autonomous micro robots must cooperate

to achieve manipulation precision in the sub micron level. Decentralization is

given, primarily, in that each agent knows only his own destiny, but not the

destiny of the remaining agents. The workspace is bounded and spherical. The

sensing capabilities of each agent are limited to a circle of specified radius around

it, so only spherical agents are considered. Consequently, each agent knows the

position and/or the velocity of every agent within its sensing zone at each time

instant. Furthermore, each agent only knows its own desire destination; but they

all know the exact number of agents in the whole system. Collisions among agents

are avoided.

The major difference between this work and the thesis proposed here is that

agents learn how to sense to solve the problem at hand. This sensing capability
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and the necessary behaviors can be replicated in the rest of the agents in the

system and use to solve similar problems without any need for retraining.

As stated earlier and unlike all the algorithms mentioned above, the purpose of

the methods presented here is to find individual behavior and sensing capability

of each agent involved in the multi-agent system that allows them to solve a

predefined emergent behavior. There are several definitions of emergent behavior,

the one which comes closest to our thought is defined in [16]: “It is essentially

any behavior of a system that is not owned by any of the components of it and

emerges due to interactions between them.” Any problem can be considered as an

emergent behavior of a multi-agent system, in particular, problems like geometric

pattern formation treated in this thesis.



Chapter 3

Preliminary Knowledge

3.1 Definitions

Any problem can be considered as an emergent behavior of a multi-agent system,

in particular the geometric pattern formation problems. To be able to solve this

type of problems is necessary to know how the agents involved in the multi-agent

system should be in order to reach the goal.

Once the problem to be solved is known, that is, the emergent behavior of the

multi-agent system is identified, the agents involved in the system must learn how

to behave in the environment. The way to obtain individual behavior of a group

of agents to achieve a goal is called reverse engineering .

From now on, the state of the agent after sensing the environment is called

configuration. A configuration is the agent’s belief about the world, from its own

point of view. This view of the agent depends on the number and type of sensors

with which it is equipped. Computationally, the configuration is the representation

of the sensed state.

It should be clarified that a sensing capability with a low number of possible

configurations, allows using inexpensive simple agents. When an agent decides

to perform an action the configuration to be achieved by the movement may

differ from the configuration at the moment of deciding the next action, due to

the randomness of the environment arising from the other agents’ actions. As a

remainder, agents are autonomous, without any clock or central coordination to

determine the order in which they move, and the actions performed by each one

of them modify the environment. Therefore, it is necessary that the agent senses

the environment again to pick an action at that moment. As a result, a new

configuration is obtained

17
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In this work two methods are presented to find simultaneously what the sensing

capability should be and what the behaviors should be for each agent involved in

the system. From now on, the sensing capability and the behaviors learned by the

agents using the proposed methods will be named learned knowledge.

3.1.1 Introduction to Reinforcement Learning

The algorithm of reinforcement learning used to train agents is Q-learning (see

[31]). Q-learning for multi-agent systems case has been implemented as a direct

extension of Q-learning for single agents. It should be considered that, while

learning is done independently for each agent, the information observed by each

individual of the population depends on actions taken by the remaining robots.

Given a multi-agent system where S is the set of reachable states for each

agent and A is the set of possible actions that each agent can perform, Q-learning

associates an utility Q with each pair (s, a), where s is a state of the environment

and a is an action that the agent can take in that state. At each step, the agent

receives a reward r ∈ R . The objective of the agent is to maximize the discounted

sum of future rewards [27]. The reinforcement role is to increase or decrease the

corresponding value in the matrix Q, depending on whether the agents reached or

not the target.

Each iteration agents update the values of Q based on the reinforcement that

has received and the maximum Q value for the successor state, according to

Eq. 3.1.

Q(st, at)← Q(st, at) + α(rt+1 + γmax
a
Q(st+1, a)−Q(st, at)) (3.1)

where α is the learning rate and γ is the discount factor.

Parameter α is initially set to 0.1 and is decreased linearly reaching 0 when

the learning process ended. The number of iterations needed to start decreasing

α is set into the variable Limitα at the beginning of the training process. Two

phases can be distinguished in most of the searching algorithms: exploration of

possible actions and exploitation of that actions that appear to promise a good

solution to the problem. As initially nothing is known about the solution of the

problem, exploration allows a global search into the possible actions to test them.

Once the learning process is advanced it is useful to reaffirm the best results
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so far. It is difficult to know how long to explore or exploit actions. Q-learning

distinguishes these phases using ε−greedy. The phases of exploration/exploitation

are determined by the parameter ε. This parameter declines with the iteration

number. The smaller the value of ε, the bigger is the probability to exploit good

actions. Both parameters, α and ε, are related. In general, the parameter α

starts declining when the parameter ε reaches 0. It is important to notice that the

algorithm proposed here uses action directed exploration (see Section 4.2.2.1), so

some actions can be explored even when the training process is near to the end.

The aim is to find a policy (behavior) for each agent. These policies can be

obtained from Q using Eq. 3.2.

Π(s) = argmax
a
QΠ(s, a). (3.2)

The rewards are obtained with a global reinforcement function, FR, involving

the performance of the whole group. As it was appointed before the environment

is stochastic, so

P a
ss′ = Prob{st+1 = s′/s = st, a = at}, (3.3)

where s is the current state, a the action to be taken for the agent and s′ the new

state after execute the action a. That explains why the policies obtained through

different training process can associate different actions to the same state.

The Q-learning technique associates exploration and exploitation with actions

and in turn every action leads to at least one state (see Section 4.1). Therefore

from here onwards actions and states will be used interchangeably when dealing

with exploration and/or exploitation.

3.1.2 Policies

Policies , Π, obtained by Q-learning, can be either:

1. Stochastic, or

2. Deterministic.

When the policy is Stochastic, each action for each configuration has a proba-

bility of being selected for execution. That is to say, the policy Π is Stochastic if

0 ≤ Π(s, ai) ≤ 1 and,
∑

i=1,N Π(s, ai) = 1, where Π(s, ai) = Pr(at = ai/st = s).
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It is calculated as a proportion of the Q values for each configuration and each

action. The Q value for an action ai in a configuration c is calculated according

to Eq. 3.4. This Q value is used to associate a probability of selection an action

with each individual configuration.

prob(c, ai) =
Q(c, ai)

#actions∑
j=1

Q(c, aj)

(3.4)

Instead, the Deterministic Policy unambiguously establishes the action that

an agent should apply for each possible configuration. In short, if A is the set

of actions for an agent and ai ∈ A, ∀i such that 1 ≤ i ≤ N , where N is the

number of possible actions then, the policy Π is deterministic if Π(s, ai) = 1 y

Π(s, aj) = 0, ∀j 6= i that is to say, Π(s) = ai. It is calculated as the action that

produce the maximum value of Q for each configuration, following Eq. 3.5.

action = argmax
a
Q(s, a). (3.5)

When the problem to be solved is grouping agents anywhere in a toroid with-

out any predetermined shape, it is possible to obtain a Deterministic Policy that

allows agents to reach the goal. It is because there are many possible solutions to

this problem and no special one is required. The enormous difference between a

Deterministic Policy and a Random Policy is that the first has knowledge about

the problem that the second one does not, allowing the solution to be reached with

better effectiveness and lower number of steps (see Chapter 5). This is not the

case when a predetermined shape is required, because there is only one solution to

the problem. In the grouping problem, without any predetermined shape, agents

do not need differentiation of behavior. When more than one agent is trained,

the learned knowledge of each can be considered as a different point of view of

only one agent. Therefore, a homogeneous policy can be obtained combining the

learned knowledge by each agent in each training process. There are different ways

to obtain these policies, all of these will be explained in Chapter 5.
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3.1.3 Introduction to Genetic Algorithms

A Genetic Algorithm is an heuristic search that mimics the process of natural

evolution, allowing finding useful solutions to optimization problems using inher-

itance, selection, crossover and mutation.

The algorithm was proposed by John Holland [13, 10]. Potential solutions,

named individuals , are coded into a chromosome. Each chromosome is composed

by genes, which can be simple (e.g. a bit) or complex (e.g. a structure). Each in-

dividual has assigned a fitness value, depending on the problem to be solved. This

value is a measure of how good, or apt, the solution coded into the chromosome

is.

Given an initial set of random individuals, named initial population, a group

of them are selected with some criteria. There are several ways to select and/or

replace individuals in the population. The way applied here, is to choose a percent-

age of the more apt individuals in the population and to choose the rest randomly

based on their fitness value. Random choice allows the introduction of diversity,

avoiding premature convergence. These individuals are crossed to obtain the off-

spring. These offspring can suffer mutation of some of their genes. The individuals

obtained replace the same number of individuals in the original population, cre-

ating the new generation. This process is repeated until a termination condition

is found. Some of these termination conditions are the following:

• The solution is found.

• The maximum number of generations is reached.

• Population remains the same from generation to generation.

• Manual inspection of the population is conducted.

Evolution usually starts form a random initial population where each individual

represents a potential solution of the problem to be solved. Each population

evolves using genetic operators form one generation to another. The basic genetic

operators are the following:

• Selection: Allows choosing which individuals will be involved in the gener-

ation of the offspring. There many ways to do this, in the work presented

here a combination of the following will be used:
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– Elitist : Allows some of the best individuals from the current generation

to be carried over to the next generation, based on their fitness value.

– Roulette: Chooses the individuals taking into account their fitness level.

The fitness level is used to associate a probability of selection to each

individual. If fi is the fitness of individual i in the population, its

probability of being selected is

pi =
fi
N∑
j=1

fj

where N is the number of individuals in the population.

• Crossover : Two individuals are combined to generate the offspring. The

combination of apt individuals has a great probability to generate apt indi-

viduals. In fact, the crossover operator allows exploring locally the space of

potential solutions.

• Mutation: Allows randomly changing genes in the chromosome. This oper-

ator allows a global exploration of the space of potential solutions, adding

diversity to the population.

• Replacement : Less apt individuals from the population are replaced by the

offspring.

In each new generation the fitness value of each new individual is calculated.



Chapter 4

ObIndBe and ObSenPar:

Proposed Methods

In this chapter two methods are introduced: the algorithm that allows obtaining

individual behaviors for a group of agents trying to complete a task (ObIndBe)

and the algorithm that enables acquiring the sensing capability for this purpose

(ObSenPar).

In order to explain some of the concepts set out below, graphics like Fig. 4.1

and 4.2 will be used. Both figures show a 7 × 7 discrete toroid representing a

possible state in which the agents could be, either during the learning or the

evolution of the system. Each agent has a number that identifies it. The darker

area in the square, with the number, represents the agent’s face and indicates the

direction where it is facing. Fig. 4.2 shows a possible sensing area for Agent 1.

This Agent uses four sensors: front, right, back and left. The sensing area is

represented by the black thick lines whose center is the agent who is sensing. For

example, Agent 1 sees Agent 2 with the front sensor. Agent 7 is inside of the right

sensor sensing area and Agent 4 is inside of the back sensor sensing area. There

are no agents inside the left sensor sensing area.

4.1 Sensing Capability

Finding the correct sensing capability to solve a problem using multi-agent systems

is a difficulty in itself. The impossibility to solve a problem may arise from the

agents having an incorrect sensing capability and, consequently, they could require

more steps to solve it than the number of steps needed when the appropriate

sensing capability is used, or not solve the problem at all. For example, solving a

23
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Figure 4.1: Scenario with ten agents, distributed randomly in a 7x7 discrete toroid.

Figure 4.2: Sensing area for Agent 1.

problem using blind agents is the same as finding a solution using random walk.

Blind agents will need more steps than agents that can see one position in front of

them. But, perhaps, these last agents will encounter complicated situations that

can be avoided by having correct sensing. It is also true that incorrect sensing

can lead to situations where the agents remain stuck and are unable to reach

the solution. In Chapter 5 a comparison between the policies obtained with the

proposed methods and a Random Policy is shown.

One way to find the correct sensing capability is to solve the problem manually.

Namely, determining the different sensing areas, learning the individual behaviors

for each agent, analyzing the problems that could not be solved, and making the

necessary changes to repair the problems. This was done in [22] where the con-

clusion was that finding the best sensing capability by trial and error is extremely

tedious and time consuming. In Chapter 5 a detailed explanation on this issue is

presented.

Because the agents are simple and with a bounded sensing capability, a problem

named perceptual aliasing arises. Perceptual aliasing is the incapacity to distin-

guish states of the world because the same configuration is used (see Chapter. 3)
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to represent them. Given a behavior, it is possible to differentiate two groups of

states in the sense of perceptual aliasing:

1. Those that need the same action.

2. Those that need different actions.

The first group is interesting because the space state is reduced in a consid-

erable way. The second group presents a problem that is difficult to solve. For

example, if the previous state to reach the goal is confused with another state of

the world, far away from the objective, and both need different actions, it is very

likely that the problem will have no solution. This situation is named conflictive

perceptual aliasing. As in [19], perceptual aliasing is considered “a blessing and a

curse”. Let’s suppose that the multi-agent system needs to reach the formation

shown in Fig. 4.3. Fig. 4.4(a) shows a previous state to reach the goal and the

sensing area for Agent 0. If Agent 0 moves one position to the front, it reaches

the goal (Fig. 4.3). Instead, in Fig. 4.4(b), although the Agent 0 is far away from

the goal, the sensing value is the same as Fig. 4.4(a). In this case, if the policy

used is deterministic and the action is “go one step forward”, Agent 0 reaches the

position shown in Fig. 4.5, far away from the goal. In this case, the policy needs

to be stochastic to allow the agent to reach the solution.

Figure 4.3: Triangular shape in an 9× 9 toroid with nine agents.

When conflictive perceptual aliasing is presented it is impossible to learn a

Deterministic Policy. This can be seen in [19, 14, 6] and mainly in [35]: “Perceptual

aliasing interferes with the decision system’s ability to learn the optimal policy”.

There is a relationship of compromise between finding the best sensing capability

and using a Stochastic Policy. It must be remembered that a sensing capability
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(a) Agent 0 one step from the
goal.

(b) Agent 0 far away to reach
the goal but with the same
configuration as in Fig 4.4a.

Figure 4.4: Both figures show a 9 × 9 discrete toroid with nine agents and the
sensing area of Agent 0. The goal is shown in Fig. 4.3. Fig 4.4a shows Agent 0 one
step to reach the goal. In Fig. 4.4b Agent 0 is far away from the goal.

Figure 4.5: State reached for Agent 0 after moving forward one position starting
in the situation shown in Fig. 4.4(b)

with a low number of possible configurations is desired. It is important to have

in mind that, the lower the number of configurations, the higher the perceptual

aliasing; and the higher the perceptual aliasing, the more likely the conflictive

perceptual aliasing. In cases of higher conflictive perceptual aliasing, the best

results are obtained using Stochastic Policies against Deterministic ones, but the

number of steps that the agent needs to reach the goal, increases considerably.

A question to be posed is why the sensing capability must change if it is

always possible to define a Stochastic Policy? In general, solving a problem using a

Stochastic Policy requires a greater number of steps to reach the goal. Therefore, in

cases in which it is possible to find a Deterministic Policy, this should be preferred
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instead of a Stochastic one.

When sensing capability presents a strong conflictive perceptual aliasing, a

Stochastic Policy would be necessary to allow agents to perform actions that en-

able them to overcome problematic world states. Instead, if sensing capability has

slightly conflictive perceptual aliasing, the number of steps needed to reach the

goal decreases considerably (see Chapter 5). There is a trade-off between finding

the best sensing capability, which is completely unknown, and using a Stochas-

tic Policy. Moreover, in a stochastic environment, where conflictive perceptual

aliasing is present, it is very difficult to reach the solution with a Deterministic

Policy.

Several problems can appear when the sensing capability is not the appropriate.

Some of them are:

Symmetries: When an agent goes from one state to another doing opposite

actions without being able to break the cycle for itself. Two situations must

be considered with respect to the policies used. If the policy is stochastic,

this situation cannot last because all possible actions in that configuration

have a non-zero probability of being executed, so this is not a problem.

But, if the policy is deterministic, the only way to go through the situation

is if the other agents, involved in it, perform an action that changes the

resulting configuration. To explain this, let’s consider an example. Let

Agent 1 be in the state show in Fig. 4.6(a) where the action associated

with this configuration is “rotate clockwise if at least one agent is insight its

right sensor sensing area”. Agent 7 is in the sensing area of Agent 1’s right

sensor, so Agent 1 turns right and reaches the state shown in Fig. 4.6(b).

Now, Agent 7 is sensed with the Agent 1 left sensor. If the action associated

with this configuration is “rotate counterclockwise if at least one agent is in

its left sensor sensing area”, when Agent 1 makes its movement, the state

shown in Fig. 4.6(a) is reached. If none of the rest of the agents makes a

movement, this situation is unsolvable.

Facing: When at least two agents are faced preventing each others’ movement;

the policy is deterministic; and the action for all agents involved in this

situation is “move forward”. Fig. 4.7 shows the problem of facing among

agents.



28

(a) Agent 1 upwardly facing,
sensing Agent 7 on the right.

(b) Agent 1 facing right, 7
on the left.

Figure 4.6: States of the environment before and after Agent 1 rotates 90◦ clock-
wise, with the corresponding sensing area. Fig. 4.6a shows the Agent 1 before rotat-
ing. Fig. 4.6b shows Agent 1 after rotating.

Figure 4.7: Facing example. It is possible to observe three groups of agents facing
each other. Agents 1, 2 and 7 form the first group. Agent 3 and 4 the second group.
Agents 6, 8 and 9 the third group. Agents 0 and 5 do not have problems in this
situation.

Remoteness: When it is necessary to know proximity of agents. That is to say,

if there are agents near or far.

All the aforementioned problems may be avoided by making changes to the

sensing capability until finding one with minimal number of possible configurations

with a low probability of conflictive perceptual aliasing.

Improving sensing capability using trial and error is a cumbersome matter, and

lot of time is needed to find the appropriate sensing capability to solve a problem

efficiently (in both, homogeneous and heterogeneous behaviors; being worse in the

case of heterogeneous agents). Hence, the aim is to find a method to discover
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the minimal sensing capability (in terms of the number of possible configurations)

such that the agents that use it can learn a policy for a given problem. This policy

may be either deterministic or stochastic.

One way that an agent can learn its sensing capability is by defining a param-

eterized function, using a global searching method to look for values that allows

learning the behaviors to solve the original problem. Characteristics of several

sensors such as infrared proximity detectors, ultrasonic sensors, scanner and video

camera, were taken into consideration when the parameters where defined. For

example, an ultrasonic sensor has limited scope but can measure the distance to

an object, while a CCD camera has unlimited scope but gives no information

about the distance of the objects in front of it. Once the type of parameters

is determined, their values must be found. To deal with this, an optimization

algorithm such as Genetic Algorithms (see [16-17]) is used. If the behavior is ho-

mogeneous (see Sec. 1) all agents can use the same sensing capability. But, if the

behaviors needed, to solve the problem, are heterogeneous, then different sensing

capabilities, for each agent or group of agents, must be found.

In this sense, it is necessary to consider which is the minimal number of agents

that need to be trained to solve the problem, replicating that knowledge to the

remaining agents in the multi-agent system.

4.1.1 Sensing Parameterization

Five main parameters are used to model the most common characteristics of sev-

eral sensors:

1. Scope (ρ): denoting the radius of the sensing area.

Integer value in [1,min(height, width), where height and width, are the

discrete toroid sizes.

2. Aperture (θ): denoting the sensing aperture angle. Integer value in [0, ρ].

3. Expansion (ν): denoting the shape of the sensing area. Integer value in

[−ρ+ 1, ρ], without 0. If θ = 0⇒ ν = ρ.

4. Closeness (β): denoting the number of layers into which the sensing area

is divided. The layers are numbered starting in 1, referring the layer nearest

to the agent and so on. Integer value in [1, ρ].
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5. Density (δ): denoting how to measure the quantity of agents in each layer.

Integer value in [1, N ] whereN is the number of agents involve in the problem

solution. There is a value for the first layer (δ1) and another for the rest of

the layers (δr); therefore, the quantity of parameters to be considered, from

now on, will be six.

The shape of the sensing area is determined by the values of ρ, θ and ν.

Fig. 4.8 shows, for one sensor, several examples for different values of these three

parameters.

Figure 4.8: Scope, Aperture and Expansion examples. The arrow (↑) represents
the agent. The arrowhead points to the front sensor.

The range of the value of each parameter can depend on the values of some

of the other parameters. The maximum value of β depends on ρ; the number of

possible configurations of the agent is determined as a function of β, δ1 and δr for

each sensor (front, right, back, left).

The sensing area is divided starting from the row closest to the agent which is

sensing. All layers will have a single row except the layer farthest from the agent,

which have the remaining rows completing the area. The division is performed in

this way to have greater discernment near the agent which is sensing. Table 4.1

displays the number of rows in each layer. For example, if β = 3 and ρ = 4 the

first layer has one row, the second layer has one row and the third layer has the

remaining two rows.

Fig. 4.9 shows four possible values for β when ρ = 4. Regarding the density of

the first layer, the nearest layer to the agent, it has more variety in values than the
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Table 4.1: Number of rows in each layer depending on the value of β and ρ.

ρ
β 1 2 3 4 . . .
1 1 2 3 4 . . .
2 - 1,1 1,2 1,3 . . .
3 - - 1,1,1 1,1,2 . . .
4 - - - 1,1,1,1 . . .

remaining layers. Table 4.2 displays the set of possible values for the first layer.

Remaining layers only have two values as displayed in Table 4.3. In both tables

column Meaning shows the different possibilities for the parameter.

Figure 4.9: Closeness examples for ρ = 4.

Table 4.2: Density for the first layer (δ1).

δ1 = i
Value Meaning

0 No agents.
1 At least 1 agent on either side.
2 At least 2 agents on either side.
3 . . .

i− 1 At least i−1 agents on either side.
i 1 agent in front.

i+ 1 1 agent in front and at least 1
agent on either side.

2i− 2 1 agent in front and at least i− 2
agents on either side.

2i− 1 1 agent in front and at least i− 1
agents on either side.

An example of sensing area and the corresponding parameter values for only

one sensor is shown en Fig. 4.10. In Fig 4.11 can be seen an example of sensing

area and the corresponding parameter values for four sensors.
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Table 4.3: Density for the remaining layers (δr).

δr = 1
Value Meaning

0 No agents.
1 At least 1 agent.

δr = 2
Value Meaning

0 No agents.
1 At least half of the positions with

agents.
2 More than half of the positions

with agents.
3 All positions with agents.

Figure 4.10: Parameterization example for only one sensor. The smallest arrow
represents the agent, and its arrowhead points to the front.

The state of each agent is represented by a 5-tuple (F , R, B, L, G), where F ,

R, B and L are the output values of the F ront, Right, Back and Left sensors. The

element G represents the grouping of all agents somewhere in the toroid. When an

agent joins with agents, they start to exchange information about whether they

are seeing other agents or not. If all agents are together, then the component G

is set to 1, otherwise it is 0. Agents have an internal memory where they record

information obtained from agents with whom they are connected, at the time of

the sensing, in order to determine the value of component G. In the experiments

performed in this thesis there are two different ways to obtain these values. In the

case of clustering problems, the internal memory is an array of as many positions

as the number of agents involved in the multi-agent system. A given position in

the internal memory is active when the agent that owns that memory is in contact

with the agent represented by this position. In this case, the agent which is sensing



33

Figure 4.11: Parameterization example for four sensors. The smallest arrow rep-
resents the agent, and its arrowhead points to the front.

recognizes the agents with which it is connected, and collects information about

which agents they, in turn, are connected to. And so on recursively. Fig. 4.12

shows nine agents distributed in a toroid and a table with the internal memories

of each agent. In Fig. 4.12(a), Agent 1 knows that Agent 7 and Agent 3 are

connected to him; Agent 7 knows that he is connected to Agent 1, and Agent 3

knows that he is connected to Agent 5. Hence, Agent 1 knows that he is connected

to Agent 4 after having exchanged the corresponding information with Agent 3.

When this recursive process has ended, Agent 1 knows that he has reached the

goal.

Let Agent 1 be the agent which is sensing. It exchanges information with the

agents touching him. When this process has ended, Agent 1 is able to determine

if all agents are connected (see Fig. 4.13).

In the other geometric patterns, the agent has the same array as stated before

plus one position. This last position is active when the rest of the positions are

active. When agents are in contact they exchange this last position in the same

way that was explained for the clustering problem in previous paragraphs.
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(a) Nine agents distributed in a discrete toroid.

0 1 2 3 4 5 6 7 8
0 x x x
1 x x x
2
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x
8 x x x

(b) Internal memory for each agent presented in Fig.4.12a. Rows
represent agents and columns represent the agents in contact with.

Figure 4.12: Possible state for nine agents distributed in a discrete toroid and
their internal memories. Fig.4.13a shows nine agents in one possible state during
the resolution of the problem. Table 4.12b displays the values of the corresponding
internal memories. In this example, Agent 0 knows that he is connected to Agents 5,
6 and 8; Agent 1 knows that he is connected to Agents 3 and 7; Agent 2 knows that
he is alone; Agent 3 knows that he is connected to Agents 1, 4 ant 7; and so on.
Therefore, Agent 1 knows that he is connected to Agent 4.

Fig. 4.14a shows a possible intermediate state with nine agents and a table

with the internal memory for each agent. The first nine columns in the table will

be active if the agent (corresponding to the row) is in contact with the agents

named in the columns. The last column will be active if the agent represented by

the row is in contact with all the necessary agents to complete the desired shape.

Fig. 4.15a shows a final state where the desired formation, a triangular shape,

is reached and a table with the corresponding internal memories.
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(a) Another distribution of nine agents into a discrete toroid.

0 1 2 3 4 5 6 7 8
0 x x x x x x x x
1 x x x x x x x x
2 x x x x x x x x
3 x x x x x x x x
4 x x x x x x x x
5 x x x x x x x x
6 x x x x x x x x
7 x x x x x x x x
8 x x x x x x x x

(b) Internal memory of each agent involved in the state shown
in Fig. 4.13a. Rows represent agents and columns represent posi-
tions.

Figure 4.13: Another possible state for nine agents distributed in a discrete toroid
and their internal memories. Fig.4.13a shows the connections among agents, and
Table 4.13b displays the corresponding internal memories. As all agents are con-
nected, all positions in the internal memories are active.

The remaining elements of the five-tuple are calculated as follows. Let sF (layer),

sR(layer), sB(layer) and sL(layer) be the given values of front, right, back and

left sensors, respectively, for each layer of an agent in particular. Let sF , sR,

sB and sL be the corresponding arrays of the sensed values for all layers of each

sensor, and δF , δR, δB and δL, the density arrays for each layer for each sensor.

Then, the sensor output value for this agent is calculated according to Eqs. 4.1 to

4.4.

Given the parameter values of each sensor the number of possible configurations

is calculated according to Eq. 4.5.
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(a) Possible intermediate state with nine agents when the final
state is a triangular shape.

0 1 2 3 4 5 6 7 8 Exchange
0
1 x x 1
2 x x
3 x x 1
4 x 1
5 x x
6 x x
7 x x x 1
8 x x

(b) Internal memory for each agent present in Fig.reffig:arrowA1.
Rows represent agents and columns represent the agents in contact
with.

Figure 4.14: Possible intermediate state with nine agents when the final state is a
triangular shape and the corresponding internal memories. If Agent 1 is the agent
which is sensing, it asks Agent 2 and 5 for information. Agent 5 completes its job
but Agent 2 does not. Therefore, the internal memory for Agent 1 is not complete.

F (βF , δF , sF ) = sF (βF ) +

βF−1∑
i=1

2βF−i ∗ sF (i) ∗
βF∏

j=i+1

δF (j), (4.1)

R(βR, δR, sR) = sR(βR) +

βR−1∑
i=1

2βR−i ∗ sD(i) ∗
βR∏

j=i+1

δR(j), (4.2)

B(βB, δB, sB) = sB(βB) +

βB−1∑
i=1

2βB−i ∗ sB(i) ∗
βB∏

j=i+1

δB(j), (4.3)

L(βL, δL, sL) = sL(βL) +

βL−1∑
i=1

2βL−i ∗ sL(i) ∗
βL∏

j=i+1

δL(j). (4.4)



37

(a) Final state with nine agents when the goal is a triangular
shape.

0 1 2 3 4 5 6 7 8 Exchange
0 x 1
1 x x 1
2 x x x x 1
3 x x 1
4 x 1
5 x x x 1
6 x x x 1
7 x x x 1
8 x 1

(b) Internal memory for each agent present in Fig.4.15a. Rows
represent agents and columns represent the agents in contact with.

Figure 4.15: Final state with nine agents when the goal is a triangular shape and
the corresponding internal memories. Because the last column is “active” for all
agents, the goal is reached.

Conf(β, δF , δR, δB, δL) = 2(βF+βR+βB+βL+1)
βF∏
i=1

δF (i)
βR∏
i=1

δR(i)
βB∏
i=1

δB(i)
βL∏
i=1

δL(i)).

(4.5)

For example, the number of possible configurations for the four sensors shown

in Fig 4.11 is 32768.

It should be remembered that a parameterization of a sensing capability with

a low number of possible configurations, and minimizing conflictive perceptual

aliasing is wanted.

The maximum density per layer is a function of ρ, θ, ν and β and it is defined

by Eq. 4.6.
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δ(l) = 1 + 2

f(l)+l−1∑
i=l

ap(i) ∀1 ≤ l ≤ β (4.6)

where l identifies the layer; the function f(l) defines the number of rows in each

layer and it is calculated according to Eq. 4.7; and ap(l) defines the aperture of

each row and it is calculated according to Eq. 4.8. If l ≥ 2 and δ(l) > 2⇒ δ(l) = 2.

f(l) =

{
1 l 6= β

ρ− β + 1 l = β
(4.7)

ap(i) =


θ Cond1 = True

0 Cond2 = True

ap(i+ sgn(ν))− 1 otherwise

(4.8)

where

Cond1 =

{
True i = g(sgn(ν)) ∨ sgn(|ν| − ρ+ i ∗ sgn(ν)) = sgn(ν)

False otherwise
,

(4.9)

and

Cond2 =

{
True i 6= g(sgn(ν)) ∧ ap(i+ sgn(ν))− 1 < 0

False otherwise,
. (4.10)

Function g(x) used in Eq 4.9 and 4.10 is calculated according to Eq. 4.11.

g(x) =
ρ− 1

2
∗ x+

ρ+ 1

2
. (4.11)
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4.2 Method to Obtain Individual Behaviors (ObIndBe)

The learning process is episodic and is as follows: agents start at random positions

in the toroid carrying out actions (decided by exploration and/or exploitation)

until the goal is reached or the maximum number of iterations is reached. If

applicable, a reward is given. The process continues with agents starting in other

random positions, and so on. The method uses the Algorithm ObIndBe to do this.

4.2.1 Algorithm ObIndBe

Input: Q matrix for each agent.

Output: Individual policies.

begin
Place agents randomly in the toroid.

for each agent, named i do
Initialize matrix, Qi.

end

while the maximum number of learning process not completed do
while the goal was not reached or the maximum number or

iterations not completed do

if the goal was reached then
Place agents randomly in the toroid

else

for each agent i picked randomly do
Obtain the current configuration.

Pick an action using action directed exploration

Apply the action.

Obtain the reward.

Update matrix Qi.

end

end

end

end

Obtain the individual behaviors.
end

Algorithm 1: ObIndBe. Algorithm to obtain individual behaviors.
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This algorithm is an improved version of Q-learning. Q-learning for multi-agent

systems was implemented as a direct extension of Q-learning for single agents.

Therefore, each agent has its own Q matrix, choosing its action independently

and concurrently. It is important to notice that, although the learning is carried

out independently for each agent, the observed information for each agent depends

of the actions leads by the rest of the agents in the multi-agent system. It should

be borne in mind that, while the learning is done independently for each agent,

the observed data for each individual in the population depends on the actions

taken by other agents.

The reward function is one of the most important components of Q-learning

with respect to learning. In the proposed method a purely delayed positive reward

function was used. That is to say, the agents are rewarded with a value of 100 if

they reach the goal. Otherwise, the reward is 0. Analytically, the reward function

is represented by Eq. 4.12.

FR(sj(t)) =

{
100 ∀sj = (Fj, Rj, Bj, Lj, Gj), Gj = 1,

0 otherwise
(4.12)

where sj is the configuration for Agent j at time t after sensing the environ-

ment. Although the reward function is global, individual rewards are given to

each agent. Only the agent that reaches the goal will be rewarded.

4.2.2 Exploration

By definition, Q-learning, using ε greedy, has only one parameter to manage the

balance between exploration and exploitation, named ε. Therefore, the best action

is selected with probability 1 − ε. From here on, this parameter will be named

ε global. In the experiments presented in this thesis, this parameter decreases lin-

early from 1 to 0 with the iteration number. This linear decrement can generate

the following problem: in a very advanced learning stage there might be configu-

rations that were never seen before, losing the chance to explore them. To avoid

this potential problem a new parameter is added for each possible configuration

(see [23]). This new parameter is named ε individual and is independent from

ε global. ε individual is initially set to 1 and is linearly decreased to 0 in the range

of 0 to topε, where topε is the maximum number of visits allowed a configuration
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to be explored; aiming to sufficiently explore all configurations needed to reach

the goal. Despite this, it is possible that some configurations will not be explored

enough to enable the agent to determine the most appropriate action, as shown

in Chapter 5. If the behavior to learn is homogeneous, there is a low probability

that certain configurations will remain without exploration, because the knowl-

edge acquired by each agent, during learning, will contribute to the knowledge of

all agents (see Chapter 5). In contrast, if the behavior needed is heterogeneous,

the problem of not visiting some important configurations is more likely.

Because the environment is stochastic and due to the existence of perceptual

aliasing, it is possible that different actions, from the same configuration, give

the same successor configuration. Fig. 4.16 shows a possible state for Agent 1

and Table 4.4 displays the sensing capability parameter values used to obtain the

corresponding configuration. With these parameter values the configuration for

Agent 1 is “01:01:00:00:0” (meaning “F:R:B:L:G”).

Figure 4.16: Possible state for Agent 1.

Table 4.4: Sensing capability parameter values for Agent 1.

ρ θ ν β δ1 δr
Front 2 1 1 1 1 1
Right 1 1 1 1 1 1
Back 2 1 1 1 1 1
Left 1 1 1 1 1 1

Fig. 4.17 shows the three possible successor states for the same agent. Fig. 4.17a

shows the resulting configuration after the agent moves forward, whose value is

“01:01:00:00:0”. Fig. 4.17b shows the resulting configuration after the agent ro-

tates counterclockwise 90◦, whose value is “01:01:00:00:0”. And Fig. 4.17c shows
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the resulting configuration after the agent rotates clockwise 90◦, whose value is

“00:00:01:01:0”.

(a) Successor state if Agent 1
moves forward.

(b) Successor state if Agent 1
rotates counterclockwise 90◦.

(c) Successor state if Agent 1 rotates clockwise.

Figure 4.17: Possible successor states obtained from the state in Fig. 4.16 for
Agent 1.

It can be seen that, although the states obtained are different, moving forward

a position or rotating clockwise 90◦ give the same configuration. Once more it is

clear that the configuration is totally dependent on the parameterization of the

sensing.

On the other hand, the same action taken by the agent in a configuration

can lead to different successor configurations. That explains why it is impor-

tant to evaluate the state each time the agent decides to perform an action.

Fig. 4.18(a) shows Agent 7 before moving one position forward obtaining a con-

figuration represented by “00:06:01:01:0”, using the parameter values displayed in
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Table 4.5. When Agent 7 has to move again, the environment has changed be-

cause of Agent 0 and the configuration obtained after sensing is “08:06:01:00:0”,

as shown in Fig. 4.18(b).

(a) Sensing area for Agent 7 be-
fore moving.

(b) Sensing area for Agent 7 af-
ter moving forward.

Figure 4.18: Sensing area for Agent 7 before and after moving forward. Fig. 4.18a
shows the agent before performing an action. Fig. 4.18b shows the same agent after
moving forward.

Table 4.5: Parameter values used in Fig. 4.18.

ρ θ ν β δ1 δr
Front 4 1 -1 2 2 1
Right 2 1 1 1 3 1
Back 2 1 2 1 1 1
Left 2 1 1 2 1 1

Under these conditions the following questions arise: if the agent wishes to

move towards configurations not visited or low-visited, how can it select the action

that leads to such configurations? Given the stochastic nature of the environment,

the realization of a given action does not guarantee the visit of a given successor

configuration. Therefore, perhaps rather than exploring low-visited configurations,

agents should pick actions ensuring that most configurations have been selected

a minimum number of times. To solve this problem action directed exploration is

implemented in the method.
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4.2.2.1 Action Directed Exploration

Under action directed exploration an agent decides which action to apply taking

into account three aspects:

1. The successor configurations,

2. Previous actions carried out from the current configuration, and

3. The Q values for the current configuration.

The algorithm uses three parameters (set at the beginning of the execution):

• threshold config for all possible configurations for all agents,

• threshold action for all possible actions for all agents, and

• Q percentage, the value that a pair (s, a) must have in matrix Q to be

considered for exploration.

Each time an agent performs an action from a configuration, the number of

visits to this configuration is increased. There is a different counter for each

configuration for each agent. Each time an action is used to make a movement, the

counter of times the action was used is increased. There is a different counter for

each action for each agent. Based on these counters and parameters, the algorithm

considers a configuration as saturate when it was visited a threshold config times.

Additionally, the algorithm considers an action as saturate when it was used a

threshold action times.

Bearing in mind that, without perceptual aliasing and/or in a deterministic

environment, the number of times that an action is used and the number of visits

to the successor configuration are the same. In this case both thresholds, con-

figurations and actions, are equivalent. For example, if threshold action is 5 and

threshold conf is 3, the corresponding configuration will be explored at least 3

times and, once it had been saturated, only 2 more explorations will be done to

saturate actions. That is to say, when an action is saturated the corresponding

successor configuration was visited the same number of times that the action was

applied. But when perceptual aliasing is presented the action saturation and the

configuration saturation could be slightly different. In this case, action directed

exploration is important.
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The directed exploration is performed with the following algorithm.

Input: Let ci be the current configuration of the agent,

Aci be the set of possible actions from configuration ci,

Ci+1 = ci+1, c
′
i+1, c

′′
i+1, . . . be the set of possible successor configurations for

ci.

Output: An action.

begin
Calculate the set of non-saturate successor configurations according to:

CnoSat = {x/x ∈ Ci+1 ∧ V isits(x) < threshold config}
if CnoSat 6= ∅ then

Apply the action ai which leads to ci+1 ∈ CnoSat, choosing

randomly among all the elements in CnoSat

else
Calculate the set of non-saturate actions according to:

AcnoSat = {x/x ∈ Aci ∧ Used(x) < threshold action}
if AcnoSat 6= ∅ then

Choose action ai randomly among all actions in AcnoSat

else
Obtain the list L with all possible actions ai ∈ ACi , in increasing

order according to Q(ci, ai).

Let head be the first element of L and second be the second

element of L.

if Q(ci, head) > Q percentage ∗Q(ci, second) then
ai = head

else
Choose ai randomly among all elements in AcnoSat

end

end

end

end

Algorithm 2: Action Directed Exploration Algorithm.
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4.3 Method to Obtain the Sensing Parameter Values (Ob-

SenPar)

The Algorithm ObSenPar is used to obtain the parameter values for the sensing

function. This algorithm implements a Genetic Algorithm (see [13] and [10]) with

the following characteristics:

1. Genes, in the chromosome, represent the parameter values for each sensor.

2. Genetic operators:

• Selection: 10% of the individuals were chosen with Elitist and the re-

maining 90% using Roulette.

• Crossover operator picks a parent from the set of chromosomes obtained

with Elitist and the other parent from the set obtained with Roulette.

• The Algorithm ObIndBe (see Section 4.2) is added as a new genetic

operator. It is used to calculate the fitness value for the chromosome.

The number of iterations and learning process is established at the

beginning of the algorithm. The values of Q matrix obtained at the end

of each learning process are used as initial values for the next learning

process for each agent in each chromosome.

3. The fitness function is the result of the testing of Individual Policies obtained

through the operator explained in the previous item (2) weight by the num-

ber of possible configurations represented in the corresponding chromosome.

Mathematically,

Fitness(x) = τEffectiveness(x) + (1− τ)e
(Conf(x)−µ)2

2σ , (4.13)

where x is the chromosome; Effectiveness is the value obtained applying

the new operator involving Algorithm ObIndBe; Conf(x) is the number of

possible configurations for the sensing capability represented by chromosome

x; τ is a proportionality constant; µ is the expected value of the number of

possible configurations; σ is the variance of the number of possible configu-

rations.
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The required number of test repetitions for fitness value is established at the

beginning of the method. The test is performed using the sensing capability

represented in the chromosome and the policy obtained during the learning.

Each time the problem is solved, the testing process counts it as a success.
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4.3.1 Algorithm ObSenPar

Input: An initial random population.

Output: Sensing capability for each agent.

begin
while the maximum number of generations is not completed or the

population does not remain the same do
Select chromosomes from the population.

Apply the crossover operator in a single point.

Apply the mutation operator to the offspring.

Apply Algorithm ObIndBe

Obtain the fitness value for each new chromosome.

Apply replacement operator to obtain the new generation.

end

end

Algorithm 3: ObSenPar. Algorithm to obtain the sensing parameter values.

How to apply the methods presented here will be seen in the next chapter. To

this end, a series of experiments will be presented and their results will be analyzed.

This, together with some new definitions, will contribute to a more comprehensive

understanding of the problems and solutions proposed in this thesis.



Chapter 5

Experiments and Results

As it was stated previously, the scope of the problems to be solved is restricted to

pattern formation in a finite discrete toroid.

Three different experiments are conducted to validate the proposed methods

(see Chapter 4), which involve the ability to obtain sensing capabilities and be-

haviors of agents in the multi-agent system:

1. Experiments with grouping problems: Obtaining a group or cluster of ten

agents anywhere in a toroid. Fig 5.1 shows some different ways of grouping

ten agents, each of which is considered a goal for this experiment within the

set of all possible solutions to this problem.

In this experiment, the way in which the sensing capability is obtained will

be separated in three different studies using:

(a) Trial and error (see Section 5.1.1).

(b) The proposed methods to obtain only three out of six parameters (see

Section 5.1.2). Parameters ρ, θ and ν are fixed at the beginning of the

experiment, and β, δ1 and δr are learned.

(c) The proposed methods to obtain all six parameters (see Section 5.1.3).

2. Experiments with square shape: Obtaining a square shape anywhere in a

discrete toroid, using nine agents, as shown in Fig. 5.2.

In this experiment, the way of obtaining the sensing capability will be divided

into two different studies using:

49
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Figure 5.1: Possible grouping formations with ten agents.

(a) The proposed methods to obtain only three out of six parameters (see

Section 5.2.1). Parameters ρ, θ and ν are fixed at the beginning of the

experiment, and β, δ1 and δr are learned.

(b) The proposed methods to obtain all six parameters (see Section 5.2.2).

Figure 5.2: Square shape to be obtained in this experiment.

3. Testing proposed methods: Obtaining two different shapes:
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(a) A triangular shape anywhere in a discrete toroid, using nine agents, as

shown in Fig. 5.3 (see Section 5.3.1).

Figure 5.3: Triangular shape to obtain in Experiment 3a.

(b) A diagonal shape anywhere in a discrete toroid using ten agents as

shown in Fig. 5.4 (see Section 5.3.2).

Figure 5.4: Diagonal shape to obtain in Experiment 3b.

Experiment 1a, in Section 5.1.1, is carried out to obtain the individual behav-

iors of a group of ten homogeneous agents using Algorithm ObIndBe. It is useful

to prove that it is not necessary to train all agents involved in the solution of the

problem. In fact, only a reduced subgroup can be trained, then replicating the

knowledge learned to the remaining agents in the multi-agent system. The sensing

capability is set before the Algorithm ObIndBe starts and it is found by trial and

error.

Experiment 1b, in Section 5.1.2, aims to obtain the sensing capability of the

agents using Algorithm ObSenPar (see Algorithm 3 in Section 4.3.1) and the

individual behaviors using Algorithm ObIndBe (see Algorithm 1 in Section 4.2.1).
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The number of agents used to prove the methods is the same as in Experiment 1a,

but only three out of six parameters are found by the Algorithm ObSenPar.

Experiment 1c, in Section 5.1.3, uses both proposed algorithms to obtain all six

parameters. This experiment is divided into three phases determined by the use

of initial distributions and the type of policy that will be obtained (Deterministic

or Stochastic).

Experiment 2 in Section 5.2 is performed to force policy differentiation.

Experiment 3a in Sections 5.3.1 and 5.3.2 are examples of how the proposed

methods work when the goal is a triangular shape and a diagonal shape, respec-

tively.

In all experiments, several tests are carried out changing the number of agents

and/or the size of the toroid, using the policies and sensing capabilities learned be-

fore. That is, without having to make additional training processes. A comparison

with a Random Policy is carried out in all experiments.

All the experiments have the following common features:

• Agents have the following characteristics:

– Autonomous behavior.

– Three possible movements: one position to the front, rotate clockwise

90◦ and rotate counterclockwise 90◦.

– Default action, setting at the beginning of the method.

– Four sensors: front, right, back and left.

– Low-communication among them.

– Own reinforcement matrices Q.

• Agents have the following requirements:

– Must move into a 7× 7 discrete toroid during the learning processes.

– Two agents are neighbors if both have a common side.

• Algorithm ObIndBe settings:

– Parameter ε global is initialized in 1.

– Parameter α is initialized in 0.1.
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– Parameter Limitα is set to 2660 iterations. That is to say, the param-

eter α starts decreasing at the iteration 2660 reaching 0 at the end of

the learning process.

– Parameters εij, (ε individual), ∀i, j 1 ≤ i ≤ Conf , 1 ≤ j ≤ Nagents,

initialized in 1; all linearly decreasing. Conf is calculated following

Eq. 4.5. Nagents is the number of agents involved in the learning

process.

– Parameter γ is set to 0.9.

– The threshold config is set to 1.

– The threshold action is set to 5.

• Algorithm ObSenPar settings:

– The chromosome length is determined in each experiment because it

depends on the number of parameters to be learned.

– The population is composed of 50 individuals.

– The fitness value, or effectiveness, is reached by testing the obtained

policies 300 times after seven learning process with 1400 iterations each.

• Once the optimal set of parameters is obtained, the policies are improved

with extra learning processes. For this to happen, fifteen learning processes

with 11200 iterations each are conducted.

• The number of testing processes accomplished after the learning process is

300 with 500 iterations each.

• During the testing process, if any agent obtained a configuration that did

not appear in any of the learning processes, the agent carried out the action

obtained from the closest configuration. Closeness between configurations is

calculated using 1-norm distance.

5.1 Experiments with grouping problems

In this experiment the Algorithm ObIndBe is used to find individual behaviors

that allow solving the grouping problem with ten agents anywhere into a discrete
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toroid. In this case, matrix Q for each agent, is reinitialized in each learning

process. The sensing capability is found by trial and error.

In this kind of problem, it will be shown that a Deterministic Policy can be

used. Why is it possible to use a Deterministic Policy when it is well known

[19, 14, 6, 35] that, if perceptual aliasing is present, a Stochastic Policy must

be used? This can be explained looking at the number of possible solutions.

Bearing in mind that agents are indistinguishable and any state where all agents

are connected side by side is a solution, the number of final states represents a

high percentage of the number of possible states for ten agents in the toroid. For

example, if the problem is grouping nine agents in a 7 × 7 discrete toroid, the

number of possible solutions is 2.3464e9. Because there are many final states the

probability of states with conflictive perceptual aliasing is negligible against the

probability of states representing a solution; in other words, the system is less

sensitive in the case that conflictive perceptual aliasing is present. Therefore,

when a Deterministic Policy is used to solve the problem, some choices made by

any agent, have a high probability of reaching some of the possible final states

mentioned above.

Moreover, taking into account that, the environment is purely stochastic, each

agent has its own matrix Q and these matrices are reinitialized between learning

processes, the policies obtained in each learning can associate different actions to

the same configuration (see Chapter 1). In other words, the policies obtained after

each training can be slightly different, and because agents are homogeneous, the

knowledge obtained by each agent during each learning is another way to act under

the same state. Remember that policies are obtained by choosing the action that

gives the best expectation of future rewards (the action with the greatest value of

Q) for each configuration. All configurations that were visited during exploration

but never changed any value of Q (remaining in zero) will be assigned the default

action. The policies thus obtained are named Original Policies. Therefore, there

are different ways to obtain a Deterministic Policy from a group of independent

training processes. All of these allow solving the stated problem. The way to

obtain these policies is explained below. For this purpose, a hypothetical example

will be used, and the process used to obtain the Deterministic Policies will be

explained using several tables.

Let be a problem with only five configurations, where the number of learning
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process needed to train the agents is four with 30 iterations each. Table 5.1 displays

the number of visits that each configuration had for each agent in each training in

row “Visits”, and the best action for each configuration in row “Action”. Agents

perform only three actions, a1, a2 and a3, being a1 the default action.

Table 5.1: Original Policies, actions and number of visits per configuration. Each
agent can do three different actions: a1, a2 and a3.

Configuration
Agent c1 c2 c3 c4 c5

Training 1

0
Action a2 a1 a2 a1 a3

Visits 10 6 7 0 7

1
Action a1 a3 a1 a2 a2

Visits 0 9 0 14 7

2
Action a1 a2 a3 a2 a1

Visits 3 10 15 2 0

Training 2

0
Action a2 a3 a2 a2 a2

Visits 16 2 1 8 3

1
Action a2 a1 a3 a2 a3

Visits 4 11 4 7 4

2
Action a1 a3 a2 a1 a1

Visits 1 12 4 4 9

Training 3

0
Action a1 a2 a1 a2 a2

Visits 10 15 0 3 2

1
Action a1 a3 a2 a2 a3

Visits 0 12 6 8 4

2
Action a1 a3 a3 a1 a2

Visits 4 9 2 12 3

Training 4

0
Action a3 a2 a1 a1 a2

Visits 7 20 0 2 1

1
Action a3 a2 a3 a1 a1

Visits 7 6 9 3 5

2
Action a1 a1 a3 a1 a2

Visits 10 11 4 0 5

A configuration with zero visits means that it has never been explored. For

example, in Training 1 Agent 0 visited configurations c1, c2, c3 and c5, but it never

visited configuration c4. It can be seen that, in different training processes, not

only the number of configurations visited varies, but also the same configuration

can be visited a different number of times. For instance, Agent 1 visited config-

uration c2 nine times during Training 1 and twelve times during Training 3. In

addition, the same agent can decide to use different actions in different training
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processes. For example, for configuration c4, Agent 2 chose a2 in the first training

and a1 in the last three. Therefore, there are twelve Original Policies to use, each

of which may have information about situations that other policies might not have.

A way to combine all the information held in these Original Policies is by taking

the action that is most often chosen for each configuration by each agent in all

training processes. That is to say, for each agent and configuration, the number of

times an action is chosen is accumulated for all training processes. The action with

the greatest counter value represents the action which has been more often the

best (ties are broken randomly). This action is used to generate a Deterministic

Policy for that agent. The resulting policy is named Individual Policy. Table 5.2

shows the number of times each action was chosen for each configuration for each

agent and, in the last column, the Individual Policy obtained in this example. For

instance, for configuration c4, Agent 1 chose action a1 once and a2 three times.

It never chose action a3. Consequently, the Individual Policy for Agent 1 has a2

as the action chosen in configuration c4. In the particular case of Agent 0 and

configurations c3 and c4, the number of times actions a1 and a2 were chosen is the

same. To create the Individual Policy, in this case, one of the actions is chosen

randomly. Once the Individual Policy is obtained, this is deterministic and there

is no random choice of actions.

Individual Policies may also be different among agents, as can be seen in Ta-

ble 5.2. Therefore, because the knowledge acquired by each agent is considered

different views of the same agent, all the information learned by each of them, in

all learning processes, can be used to build a new policy, named General Policy.

It is built as the action that is chosen more often among all training processes for

all agents for each configuration. Ties are broken randomly. Table 5.3 displays

the number of times an action was chosen for each configuration, for all agents in

all training processes. The last column shows the General Policy for this example.

Because no special shape is required, all agents involved in the solution of

the problem, can share the learned knowledge. This is equivalent to saying that

agents are homogeneous. Because of this, it is not necessary to train all agents.

A minimum number can be trained, to later replicate the obtained knowledge in

the remaining agents. To establish this number some incremental experiments

are performed, keeping in mind that the number of agents should be as small

as possible without losing important configurations that may appear when ten
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Table 5.2: Examples of Individual Policies for each agent. Columns a1, a2 and a3

show how often an action was chosen because it was the best action. The last column
shows the Individual Policy for each agent. The values are based on Table 5.1

Agent 0
Configuration a1 a2 a3 Individual

c1 1 2 1 a2

c2 1 2 1 a2

c3 2 2 0 a2

c4 2 2 0 a1

c5 0 3 1 a2

Agent 1
Configuration a1 a2 a3 Individual

c1 2 1 1 a1

c2 1 1 2 a3

c3 1 1 2 a3

c4 1 3 0 a2

c5 1 1 2 a3

Agent 2
Configuration a1 a2 a3 Individual

c1 4 0 0 a1

c2 1 1 2 a3

c3 0 1 3 a3

c4 3 1 0 a1

c5 2 2 0 a2

Table 5.3: General Policy. Columns a1, a2 and a3 show how often an action was
chosen among training processes for all agents. The last column shows the General
Policy. The values are based on Table 5.1

Agent 0
Configuration a1 a2 a3 General

c1 7 3 2 a1

c2 3 4 5 a3

c3 3 4 5 a3

c4 6 2 0 a1

c5 3 6 3 a2

agents work together to achieve the goal. Grouping a single agent in an any

dimension discrete toroid has an effectiveness of 100% whithout any restriction on

the sensing capability. But when this knowledge is used by the rest of the agents,
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the effectiveness is around 0%. When two agents are involved in the learning

processes, the effectiveness is higher than the one obtained using a single agent.

But the number of configurations present during the training is still lower than

the number of configurations that appear when ten agents work together. And

the effectiveness remains at around 0%. Experimentally, the number of agents

needed to be trained is three. This is the number of agents that must be used in

Experiments 1a, 1b and 1c.

Hereinafter, the experiments for the grouping problem will be presented.

5.1.1 Experiment 1a

As it was stated before, no special shape is required in this experiment. Because

of this, all agents involved in the solution of the problem, can share the learned

knowledge. This is equivalent to saying that agents are homogeneous. As a result

of this, it is not necessary to train all agents. A minimum number can be trained,

to later replicate the obtained knowledge in the remaining agents. To establish this

number, some incremental experiments are performed. From these experiments it

will be concluded that at least three agents are needed to be trained, leaving the

remaining seven agents fixed. Replicating the learned knowledge in these seven

agents allows solving the grouping problem with a negligible error rate. The seven

agents are grouped in two initial distributions to be used during the learning

process. These distributions are shown in Fig. 5.5. From now on, the first initial

distribution (see Fig. 5.5a) will be named D1 and the second (see Fig. 5.5b) will

be named D2.

(a) Initial distribution D1. (b) Initial distribution D2.

Figure 5.5: Initial distributions of seven agents used during the learning process.
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With regard to sensing capability, the parameter values are found by hand

and they are displayed in Table 5.4. According to Eq. 4.5, the number of possible

configurations with this parameterization is 1024.

Table 5.4: Sensing parameter values obtained by trial and error.

ρ θ ν β δ1 δr
Front 2 1 2 2 2 1
Right 2 1 1 2 1 1
Back 2 1 2 2 1 1
Left 2 1 1 2 1 1

Fig. 5.6 shows, graphically, the sensing area obtained with the parameter values

displayed in Table 5.4. The dotted line determines the number of layers into which

the sensing area of each sensor is divided. The numbers inside them represent the

density for each layer.

Figure 5.6: Sensing area using parameter values from Table 5.4.

Fig. 5.7a shows a possible goal state and Fig. 5.7b shows the sensing area for

Agent 5 in that final state. Given the parameter values shown in Table 5.4 the

configuration for Agent 5 is “03:03:05:01:1”, meaning: there is one agent near, in

front (Agent 8) and at least one other agent on either side (Agents 7 or 9); there

is one agent near, on the right (Agent 4) and at least one other agent far, on the

right (Agent 1); there are at least two more agents near, at the back (Agents 0 or

3) and at least one agent far, at the back (Agent 2); there is one agent near, on

the left (Agent 6); the last position in “1” means that all agents have neighbors.

Thus, the conclusion is that the goal is reached.

Several number of iterations (i.e. 11200, 22400, 44800 and 56000) are used to

test the Algorithm ObIndBe. Each learning process using one of these numbers is

named Series of Learning Process. It is named series because, for each number of

iterations, several learning processes will be performed.
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(a) Possible final state with ten agents. (b) Sensing area for Agent 5.

Figure 5.7: Sensing area and grouping examples. Fig. 5.7a shows a possible final
state for the grouping problem with ten agents. Fig. 5.7b shows the sensing area for
Agent 5 in the state shown in Fig. 5.7a.

There are some parameters that need to be set before applying the Algorithms.

The parameter topε, named decay value, (see Section 4.2.2) for all εij is set accord-

ing to the number of visits per configuration. It was obtained by experimentation

to ensure that the configuration will not only be explored but also exploited.

Four experiments with fifteen learning processes each are carried out using

the number of iterations and values of topε given in Table 5.5 for each initial

distribution, D1 and D2.

Table 5.5: Maximum number of iterations and decay value for parameters εij.

Max. Iteration 11200 22400 44800 56000
topε 45 90 180 230

After training three agents fifteen times with both initial distributions (D1 and

D2), 90 Original Policies are obtained for each series (11200, 22400, etc.). Each

policy is assigned to agents and tested on its effectiveness starting with agents in

random positions. The Individual Policy for each agent is obtained based on the

30 corresponding Original Policies. Then, the General Policy is created, based on

the three Individual Policies.

To test the goodness of the policies learned by the agents, these are tested by

assigning them as follows:

Orig: Each agent uses its own Original Policy.
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Pol 0: All three agents use the Original Policy for Agent 0.

Pol 1: All three agents use the Original Policy for Agent 1.

Pol 2: All three agents use the Original Policy for Agent 2.

It is possible to see in Table 5.6 that, for different Series of Learning Processes,

the effectiveness is similar. Observing column D2 for all series, it can be seen

that the effectiveness varies depending on the behavior of the agent used. This

means that the knowledge acquired by each agent during training varies among

agents and must not be ruled out. This justifies the need for policies which cover

everything learned by each agent in each training process.

Table 5.6: Effectiveness obtained using the Original Policies during testing.

11200 22400 44800 56000
D1 D2 D1 D2 D1 D2 D1 D2

Orig 99.00 94.20 99.00 95.00 99.00 95.00 99.00 95.00
Pol 0 98.64 96.00 99.00 94.00 99.00 97.00 99.00 96.00
Pol 1 96.80 92.00 99.00 96.00 99.00 96.00 99.00 96.00
Pol 2 98.02 93.00 99.00 93.00 99.00 95.00 99.00 96.00

Table 5.7 displays the average of the number of configurations visited during

each Series of Learning Processes. It can be seen that, although the number of

iterations is increased, the number of configurations visited remains slightly the

same among them. This means that, the configurations visited during the series

of learning processes are part of the path to the solution. Moreover, the remaining

configurations, those that were not visited, are not necessary to reach the goal.

Another interesting value to analyze is the number of steps needed to reach the

goal. From now on, these values will be shown as average and standard deviation.

In relation to the number of steps needed to reach the solution during testing, the

results displayed in Table 5.8 show that they are similar for all series. As is the

case with the effectiveness (see Table 5.6), which is slightly the same throughout

the series.

Since there are no appreciable differences among series with respect to the

number of configurations or number of steps, from here on, 11200 will be taken as

the number of iterations in each experiment.
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Table 5.7: Number of configurations visited for each agent in each training series.

Agent 0 Agent 1 Agent 2
D1 D2 D1 D2 D1 D2

11200 717 820 718 822 717 821
22400 718 822 719 822 719 821
44800 719 822 719 822 719 822
56000 719 822 719 822 719 822

Table 5.8: Number of steps needed to reach the goal using the Original Policies
during testing.

Orig Pol 0 Pol 1 Pol 2
Avg Std Avg Std Avg Std Avg Std

11200
D1 3.74 2.10 4.13 3.09 3.71 2.97 3.73 2.05
D2 3.91 2.43 4.05 2.47 3.91 2.29 3.52 1.75

22400
D1 3.61 1.83 3.58 1.80 3.78 2.11 3.74 2.09
D2 4.12 2.69 3.71 1.99 4.07 2.43 4.20 3.68

44800
D1 3.84 2.06 3.40 1.81 3.40 1.87 3.53 1.77
D2 3.88 2.27 3.91 2.35 3.78 2.24 3.82 2.23

56000
D1 3.77 1.96 3.63 1.94 3.79 2.10 3.78 2.18
D2 4.11 2.43 3.91 2.34 3.91 2.34 3.76 2.25

Table 5.9 shows the effectiveness and the number of steps needed to reach the

goal for each initial distribution and each policy. It is interesting to observe that

all the generated policies (Individual and General Policies) have an effectiveness

similar to the Original Policies.

Table 5.9: Effectiveness and number of steps needed to reach the goal for 11200
iterations and both initial distributions.

Effectiveness
Original Individual General

D1 99.00 97.60 97.00
D2 94.20 95.60 94.60

Number of steps
Original Individual General

Avg Std Avg Std Avg Std
D1 3.74 2.10 3.78 2.14 3.76 2.20
D2 3.91 2.43 3.86 2.31 3.92 2.38

It is necessary to know how the General Policy behaves if the number of agents
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required in the solution of the problem increases and if the dimension of the toroid

varies. To answer the first question, ten and fifteen agents are used in a 7 × 7

toroid. To answer the second question, ten and fifteen agents are used in a 8× 8

toroid.

Finally, the General Policy is compared with a Random Policy using ten agents.

Table 5.10 shows the effectiveness and the number of steps needed to reach the

goal when the General Policy is used with ten and fifteen agents in a 7 × 7 and

8× 8 toroid.

Table 5.10: Effectiveness and number of steps obtained when the General Policy is
used with ten and fifteen agents in a 7× 7 discrete toroid and 8× 8 discrete toroid.

7 × 7 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 68.50 8.12 4.57
15 66.20 8.91 5.83

8 × 8 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 47.40 9.94 5.72
15 42.33 11.12 6.96

Table 5.11 displays the effectiveness and number of steps needed to reach the

goal with ten agents if a Random Policy is used.

Table 5.11: Effectiveness and number of steps obtained when a Random Policy is
used with ten agents in a 7× 7 discrete toroid.

Effectiveness
No. of steps
Avg Std

19.50 289.43 173.52

When the General Policy is used with ten agents, the number of steps required

to achieve the goal is slightly increased. It is important to keep in mind that the

General Policy is deterministic and there could be situations among the ten agents

that might not have appeared during the training processes with only three agents.

These situations are solved performing the action of the closest configuration,

which may not always be the correct action.
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These experiments show that replicating the knowledge learned by three agents

in a greater number of agents, does not, appreciably, deteriorate the effectiveness

obtained.

5.1.2 Experiment 1b

In this experiment the problem to be solved remains the same as in Experi-

ment 5.1.1. The difference between them is that, in this experiment, the pa-

rameters β, δ1 and δr are learned using Algorithm ObsenPar (see Algorithm 3).

Agents are trained using Algorithm ObIndBe (see Algorithm 1).

Parameters ρ, θ and ν have the same values as in Experiment 5.1.1. Table 5.12

displays these values and Fig. 5.8 shows the corresponding sensing area.

Since agents are homogeneous and only three out of six parameters must be

learned, the chromosome is composed of twelve genes.

Comparative results between both experiments are shown below.

Table 5.12: Fixed parameters, ρ, θ and ν, used to solve the grouping problem.

ρ θ ν
Front 2 1 2
Right 2 1 1
Back 2 1 2
Left 2 1 1

Figure 5.8: Sensing area using the parameters displayed in Table 5.12.

Table 5.13a displays the values of β, δ1 and δr for the sensing capability ob-

tained by hand in Experiment 5.1.1, and the values for the sensing capability

obtained using the Algorithm ObSenPar in this experiment.

Table 5.14 displays the effectiveness and the number of steps needed to reach

the goal when the Original, Individual and General Policies are used.
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Table 5.13: Parameters β, δ1 and δr used in Experiments 5.1.1 and 5.1.2.

(a) Values obtained by hand used in
Experiments 5.1.1

β δ1 δr
Front 2 2 1
Right 2 1 1
Back 2 1 1
Left 2 1 1

(b) Values obtained with the proposed
method.

β δ1 δr
Front 2 2 1
Right 1 3 1
Back 1 1 1
Left 2 1 1

Table 5.14: Effectiveness and number of steps needed to reach the goal for 11200
iterations and both initial distributions.

(a) Effectiveness for 11200 iterations and both initial distri-
butions.

Effectiveness
Original Individual General

D1 99.00 99.00 99.00
D2 93.00 96.00 96.00

(b) Number of steps needed to reach the goal.

Number of steps
Original Individual General

Avg Std Avg Std Avg Std
D1 4.22 2.22 4.49 3.15 4.31 2.41
D2 4.26 2.52 4.64 3.12 4.53 2.71

Table 5.15 displays effectiveness and number of steps needed to reach the goal

when ten and fifteen agents are used in a 7× 7 discrete toroid, and the same in a

8× 8 discrete toroid.
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Table 5.15: Effectiveness and number of steps obtained when the General Policy is
used with ten and fifteen agents in a 7× 7 discrete toroid and 8× 8 discrete toroid.

7 × 7 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 80.00 12.03 6.89
15 67.00 8.92 5.01

8 × 8 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 67.80 14.06 8.67
15 55.00 10.90 6.93

It is important to notice the difference in the number of possible configurations

in both sensing capabilities, calculated according to Eq. 4.5. Whereas the sensing

capability obtained by hand in Experiment 5.1.1 has 1024 configurations, the

sensing capability obtained with the proposed method has only 768 configurations.

The considerable decrease in the number of configurations does not affect the

resolution of the problem. When the Individual and General Policies are compared,

they have better effectiveness when the parameters are obtained with the proposed

method than those obtained by hand in Experiment 5.1.1 (see Tables 5.9 and

5.14a).

Furthermore, the effectiveness obtained when the manual sensing capability

is used for grouping ten agents in a 7 × 7 discrete toroid is 68.50%, in contrast

with an effectiveness of 80% reached when the sensing capability obtained using

Algorithm ObsenPar (see Table 5.13b) is used to solve the same problem.

With respect to a Random Policy, Table 5.16 displays the effectiveness and

number of steps needed to reach the goal. It can be observed in the tables that

effectiveness decreases considerably, while the number of steps to reach the solution

increases substantially when a Random Policy is used.

5.1.3 Experiment 1c

This experiment is divided into three phases. In all of them the six sensing param-

eter values are found using Algorithm ObSenPar, but they differ in the number of

agents used to be trained and the policies that will be obtained.
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Table 5.16: Effectiveness and number of steps needed to reach the goal with a
Random Policy using the sensing parameter values displayed in Tables 5.12 and
5.13b.

Effectiveness
No. of steps
Avg Std

22.00 287.15 177.04

In Phase 1, a Deterministic Policy is sought using three agents and initial

conditions. Phases 2 and 3 are carried out to see what will happen if there is

no possibility to find initial distributions to train agents. With this idea in mind

and considering what was exposed at the beginning of Experiment 1, five agents

will be used. Using less then five agents, during training, has the drawback that

there will be configurations that will never appear during this process, making it

impossible for the agents to learn how to behave in those situations.

Another question to be answered is: knowing that the effective policy in a

stochastic environment is a Stochastic Policy, is it possible to find a Homogeneous

Stochastic Policy to solve this kind of problem using the proposed methods? And,

if it is possible, it is interesting to compare results with a Deterministic Policy in

the same conditions.

5.1.3.1 Phase 1

In this case all six parameters are obtained using three agents, for these reason

the chromosome has 24 genes.

Table 5.17 displays the sensing parameter values obtained with Algorithm Ob-

SenPar. Fig 5.9 shows the sensing area obtained with these parameters. The

number of possible configurations with these values is 512.

Table 5.17: Parameter values obtained with Algorithm ObSenPar to solve the
grouping problem automatically.

ρ θ µ β δ1 δr
Front 2 1 1 1 2 1
Right 2 2 1 1 1 1
Back 1 0 1 1 1 1
Left 2 1 -1 2 3 1
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Figure 5.9: Sensing area using the parameters shown in Table 5.17.

Table 5.18 displays the effectiveness and the number of steps needed to reach

the goal when the Original, Individual and General Policies are used.

Table 5.18: Effectiveness and number of steps needed to reach the goal with three
agents and both initial distributions.

(a) Effectiveness reached using three agents and both initial
distributions.

Effectiveness
Original Individual General

D1 88.20 93.80 94.60
D2 87.80 91.20 93.00

(b) Number of steps needed to reach the goal.

Number of steps
Original Individual General

Avg Std Avg Std Avg Std
D1 8.00 6.81 7.70 5.37 7.97 5.81
D2 5.94 4.28 6.85 4.87 6.87 4.91

Table 5.19 displays effectiveness and number of steps needed to reach the goal

when ten and fifteen agents are used in a 7× 7 discrete toroid, and the same in a

8× 8 discrete toroid.

It can be seen in Table 5.20 that, using a Random Policy instead of the learned

ones decreases the effectiveness considerably, with an important increase in the

number of steps needed to reach the goal.
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Table 5.19: Effectiveness and number of steps obtained when the General Policy is
used with ten and fifteen agents in a 7× 7 discrete toroid and 8× 8 discrete toroid.

7 × 7 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 82.20 28.93 22.29
15 82.60 17.66 12.19

8 × 8 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 70.60 37.58 32.69
15 68.20 22.30 22.46

Table 5.20: Effectiveness and number of steps needed to reach the goal with a
Random Policy.

Effectiveness
No. of steps
Avg Std

21 292.32 168.98

5.1.3.2 Phase 2

Because the initial distributions used in the previous experiments restrict the

number of configurations in which the agents can be found during the learning

processes, it is interesting to test what will happen if the agents are trained with-

out these initial distributions. Considering that the lower the number of agents,

the lower the number of configurations, and this, in turn, influences the subse-

quent generalization to a greater number of agents, the number of agents must be

increased for these experiments. With an even number of agents facing situations

are more possible than with an odd number of them Therefore, in this case a

Deterministic Policy is sought by training five agents without initial distributions.

Table 5.21 displays the sensing parameter values and Fig 5.10 shows the shape

of this sensing area. The number of possible configurations with this parameteri-

zation is 512.

Tables 5.22 show the effectiveness and number of steps needed to reach the

goal when the Individual and General Policies are used with five agents and initial
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Table 5.21: Parameter values obtained with Algorithm ObSenPar to solve the
grouping problem automatically.

ρ θ µ β δ1 δr
Front 3 1 -2 2 2 2
Right 4 1 2 2 1 1
Back 1 0 1 1 1 1
Left 1 0 1 1 1 1

Figure 5.10: Sensing area using the parameters shown in Table 5.21.

distributions.

Table 5.22: Effectiveness and number of steps needed to reach the goal using the
corresponding Individual and General Policies and initial distributions.

(a) Effectiveness reached using five agents and both initial
distributions.

Effectiveness
Individual General

D1 88.60 88.50
D2 70.20 70.25

(b) Number of steps needed to reach the goal.

Number of steps
Individual General
Avg Std Avg Std

D1 11.95 9.77 12.06 10.51
D2 13.55 11.86 12.79 10.85

Table 5.23 displays effectiveness and number of steps needed to reach the goal

when ten and fifteen agents are used in a 7× 7 discrete toroid, and the same in a

8× 8 discrete toroid.
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Table 5.23: Effectiveness and number of steps obtained when the General Policy is
used with ten and fifteen agents in a 7× 7 discrete toroid and 8× 8 discrete toroid.

7 × 7 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 92.20 47.86 44.02
15 89.20 19.29 18.71

8 × 8 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 89.20 75.60 70.66
15 84.40 21.50 22.87

These tables also show that, despite having trained only five agents without

any initial distribution, the problem can solved with an effectiveness greater than

80% using the General Policy with ten and fifteen agents with the same sensing

capability as the trained agents. Although there is a slightly lower effectiveness

when Individual and General Policies are used with the five trained agents than

then obtained in Experiment 1b, the effectiveness reached during generalization is

considerably higher (see Tables 5.19 and 5.23).

The effectiveness obtained using the General Policy to group 10 agents is sub-

stantially greater than that obtained when a Random Policy is used (see Ta-

ble 5.24).

Table 5.24: Effectiveness and number of steps needed to reach the goal with a
Random Policy using the sensing parameter values displayed in Table 5.21.

Effectiveness
No. of steps
Avg Std

1 396.68 231.31

5.1.3.3 Phase 3

To this end, a Stochastic Policy is sought, and only a General Policy will be used.

The characteristics of the experiment are the same as in Phase 2.
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Table 5.25 displays the sensing parameter values obtained with Algorithm Ob-

SenPar and Fig 5.11 shows the shape of the corresponding sensing area. The

number of possible configurations is 768.

Table 5.25: Parameter values obtained when solving the grouping problem with five
agents using a Stochastic Policy.

ρ θ µ β δ1 δr
Front 3 2 3 1 4 1
Right 2 0 2 1 1 1
Back 3 1 -1 2 1 1
Left 4 1 1 1 3 1

Figure 5.11: Sensing area using the parameters shown in Table 5.25.

Because agents are homogeneous it is necessary to obtain an Homogeneous

Stochastic Policy with which to test generalization for a greater number of agents.

The Homogeneous Stochastic Policy is obtained combining all the Stochastic Poli-

cies collected for each agent throughout all training processes. The way to do

this is to accumulate the corresponding values of matrix Q for each configuration

and each action for all agents throughout all training processes. Although the

behaviors are obtained training agents without initial distributions, the policy is

tested with them. Table 5.26 shows the effectiveness and number of steps needed

to reach the goal.

Table 5.26: Effectiveness and number of steps needed to reach the goal using the
Homogeneous Stochastic Policy and initial distributions.

Effectiveness
No. of steps
Avg Std

D1 99.99 26.60 20.90
D2 99.99 38.12 31.69
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To test generalization ten and fifteen agents are used in a 7×7 and 8×8 toroid.

Table 5.27 shows the effectiveness and the number of steps needed to reach the

goal in those cases.

Table 5.27: Effectiveness and number of steps obtained when the General Policy is
used with ten and fifteen agents in a 7× 7 discrete toroid and 8× 8 discrete toroid.

7 × 7 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 99.99 79.82 73.83
15 99.99 39.14 35.83

8 × 8 toroid

No. of Agents Effectiveness
No. of steps
Avg Std

10 88.60 229.28 185.93
15 98.40 142.94 140.74

The next step is to use a Random Policy with ten agents to compare with the

effectiveness obtained with the learned policy. Table 5.28 displays the effectiveness

and the number of steps needed to reach the goal. As in all experiments so far, the

Random Policy has a very low effectiveness regarding the effectiveness achieved

when the policy obtained with the Algorithm ObIndBe is used.

Table 5.28: Effectiveness and number of steps needed to reach the goal for ten and
fifteen agents using a Random Policy.

Effectiveness
No. of steps
Avg Std

21.00 396.50 230.47

5.1.4 Results

Previous experiments show that the Algorithm ObIndBe is able to find deter-

ministic behavior for a small group of agents that allow grouping them anywhere

within a discrete toroid, replicating this knowledge to the remaining untrained

agents that are needed to reach the goal, with a good effectiveness.

These experiments show that for homogeneous behavior, it is possible to find

a sensing capability and deterministic behaviors using Algorithms ObSenPar and
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ObBinDe proposed in this thesis.

With respect to the Stochastic Policy, there are two aspects to consider when

five agents are trained:

1. The effectiveness reached is better than in other kinds of policies, determin-

istic or random.

2. The number of steps needed to reach the goal increases with respect to a

Deterministic Policy, but it is lower compare to a Random Policy.

Regarding fault tolerance, the testing showed that agents can be added without

any need for retraining. Therefore, if some agents fail in solving the problem, it

is only necessary to replace them with other agents.

5.2 Experiments with square shape

In these experiments Algorithms ObIndBe and ObSenPar are used to find individ-

ual behaviors and sensing capabilities that allow forming a square shape as shown

in Fig. 5.12. In this particular shape, position numbers and agent numbers are

equivalent and are used interchangeably throughout these experiments. Taking

into account the position they have in the goal shape, it is possible to distinguish

two classes of agents:

• The four corners (positions 0, 2, 6 and 8), named set of even agents.

• The four remaining places (positions 1, 3, 5 and 7), named set of odd agents.

Agent 4 is used as a seed to determine where the desired shape will be formed.

For this reason, this agent is neither trained nor tested.

Intuitively, agents that must occupy the corners, members of the set of even

agents, should have the same capabilities; in other words, they can used the same

sensing capability and behavior. The same would seem to happen with agents

in the odd class, but not among agents in different classes. That means that at

least one agent of each class should be trained and their sensing capabilities must

be found. These experiments prove that differentiation of behaviors and different

sensing capability are needed, and the proposed methods find them.
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Figure 5.12: Shape to be reached in Experiment 2. Each position in the objective
shape has been enumerated from 0 to 8 in consecutive order. Position 4 determines
where the shape has to be formed in the toroid.

5.2.1 Experiment 2a

In this part of the experiment three out of six parameters are obtained with the

Algorithm ObSenPar. The experiment is divided into two phases:

Phase 1: Obtaining the sensing capabilities and behaviors for the Agents 0, 2, 5

and 7. Notice that two of each class of agents are used. Only three

parameters will be learned and, therefore, the chromosome used will

be compose of 48 genes (three parameters, four sensors, four agents).

Parameters ρ, θ and ν are fixed at the beginning of the experiments;

Table 5.29 displays the values of these parameters for each sensor, and

Fig. 5.13 shows the sensing area obtained with these values.

Phase 2: Obtaining the sensing capabilities and behaviors for Agents 0 and 7, one

of each class of agents. These agents are chosen analyzing the results of

experiments in Phase 1 in Section 5.2.1.1. In this case the chromosome

is compose of 48 genes (six parameters times four sensors times two

agents).

Here, it is not possible to use a Deterministic Policy because the number of

possible final states, with distinguishable agents, is only one. So, if this is the

case, and considering a minimal sensing capability, the probability of conflictive

perceptual aliasing is too high. A Deterministic Policy that takes bad decisions in

an intermediate state, can leave the system in an unsolved situation, as mention in

Section 4.1. For those reasons, a Stochastic Policy will be used (see Section 3.1.2).
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Table 5.29: Parameters ρ, θ and ν for Experiment 5.2.1.

ρ θ ν
Front 4 1 -1
Right 2 1 1
Back 2 1 2
Left 2 1 1

Figure 5.13: Sensing area using the parameters displayed in Table 5.29.

5.2.1.1 Phase 1

Tables 5.30 displays the sensing parameter values obtained with the Algorithm

ObSenPar. Table 5.31 displays the number of possible configurations for each

parameterization, according to Eq. 4.5. With these parameterizations the effec-

tiveness obtained is 6%. Naturally, a question arises when such low effectiveness

is obtained: which are the agents that contributed to such low value?

To answer it, individual agents are tested. That is, nine agents are located in

the toroid in such a way that they form an incomplete square (for example, to

test Agent 0, the nine agents form a square with an empty Position 0). Table 5.32

displays the effectiveness for each test. It can be seen that, the values obtained

by Agents 2 (63%) and 5 (64%) are lower than those obtained by Agents 0 (97%)

and 7 (92%). This means that Agents 2 and 5 did not learn properly and disturb

the total system performance.

In the goal shape, Agents 0 and 2 are members of the set of even agents.

Because Agent 0 obtained better effectiveness than Agent 2, the next step is to

replicate the knowledge learned by Agent 0 (sensing capability and behavior) in

Agent 2. The same is made with Agent 5 and 7, both members of the set of

odd agents, so, Agent 5, in this step, uses the knowledge for Agent 7. Table 5.33
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Table 5.30: Parameter values for Agent 0, 2, 5 and 7, obtained with the proposed
methods.

(a) Parameter values for Agent 0
obtained with the proposed meth-
ods.

Agent 0 β δ1 δr
Front 2 2 1
Right 2 1 1
Back 2 3 1
Left 1 2 1

(b) Parameter values for Agent 2
obtained with the proposed meth-
ods.

Agent 2 β δ1 δr
Front 4 2 1
Right 2 1 1
Back 1 4 1
Left 2 1 1

(c) Parameter values for Agent 5
obtained with the proposed meth-
ods.

Agent 5 β δ1 δr
Front 2 2 1
Right 1 2 1
Back 2 1 2
Left 2 1 1

(d) Parameter values for Agent 7
obtained with the proposed meth-
ods.

Agent 7 β δ1 δr
Front 4 3 1
Right 2 1 2
Back 1 4 1
Left 1 2 1

Table 5.31: Number of possible configurations for the sensing parameter values
displayed in Table 5.30.

Agent 0 2 5 7
Number of

3072 8192 2048 24576
Configurations

Table 5.32: Effectiveness for policies and sensing capabilities obtained with the
proposed methods.

Agent 0 2 5 7
Effectiveness 97 63 64 92

displays the effectiveness obtained when the knowledge for Agent 0 and Agent 7 is

replicated in Agent 2 and Agent 5, respectively. The values obtained by Agents 2

(95%) and 5 (86%) increased with respect to the values obtained when their own

knowledge was used (see Table 5.32).

To complete the experiments, the remaining agents - those who were not

trained - are tested using the knowledge of the trained agent from its own class

(i.e., Agents 6 and 8 use the knowledge learned by Agent 0 and Agents 1 and 3

use the knowledge learned by Agent 7.). Table 5.34 displays the effectiveness for
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Table 5.33: Effectiveness for Agents 2 and 5 using knowledge learned by Agents 0
and 7, respectively.

Agent 2 5
Effectiveness 95 86

Agents 1, 3, 6 and 8.

Table 5.34: Effectiveness obtained for non trained agents using the knowledge of
the trained agent in its own class.

Agent 1 3 6 8
Effectiveness 90 89 95 94

It is worth mentioning that, in this particular experiment, the underlying idea

is to prove that differentiation of behaviors is necessary and, therefore, the pro-

posed methods in this thesis allow reaching this goal. A new test is made to verify

differentiation: Agent 0 must go to Position 0 in the square shape but using the

knowledge learned by Agent 7 and Agent 7 must go to Position 7 but using the

knowledge learned by Agent 0. Table 5.35 displays the effectiveness obtained in

this case. It can be observed that both effectiveness decreased compared with

the values obtained using their own knowledge (see Table 5.32). However, the

worst value is that obtained by Agent 7, 4.00%. It is possible to explain such

low value by paying attention to the sensing capabilities and number of possible

configurations for both agents. The number of possible configurations for Agent 0

(see Table 5.31) is smaller than those for Agent 7. This results in decreasing the

ability to distinguish situations that Agent 7 could differentiate when he used his

own knowledge.

Table 5.35: Effectiveness obtained when testing differentiation. Column 0 shows
the effectiveness for Agent 0 going to Position 0 but using the knowledge learned by
Agent 7. Column 7 shows the effectiveness for Agent 7 going to Position 7 but using
the knowledge learned by Agent 0.

Agent 0 7
Effectiveness 82 4

The reason that even agents had better performance than odd ones can be

understood by analyzing the sensing parameters in Tables 5.30. It is necessary to
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remember that, the greater the number of possible configurations, the more likely

the sensing capability can be successfully used in any position of the target shape.

The problem is that the greater the number of configurations, the larger the state

space, with its corresponding learning problems. (see [30]).

Table 5.36 shows the effectiveness obtained when agents are tested individually.

To do that, the knowledge learned by Agent 0 is used for even agents, and the

knowledge learned by Agent 7 is used for odd agents.

Table 5.36: Effectiveness for each Agent using information from Agent 0 and 7.

Agent 0 1 2 3 5 6 7 8
Effectiveness 97.00 89.00 95.00 89.0 86.0 95.00 92.00 94.00

All nine agents are tested leaving Agent 4 docked as a seed using knowledge

for Agent 0 in the even agents, and knowledge for Agent 7 in odd agents. The

effectiveness obtained is 52.00% grater than the obtained when four agents were

trained.

Taking these values into consideration, it is possible to conclude that it is

enough to train as many agents as distinguishable positions there can be found in

the goal shape.

5.2.1.2 Phase 2

For the reason explained in Phase 1 in Section 5.2.1.1 Agent 0 and 7 are selected

to be trained using the proposed methods. The methods give two different sensing

capabilities, one for Agent 0 and a distinct one for Agent 7, both are displayed in

Table 5.37.

Table 5.37: Parameter values obtained for Agents 0 and 7 with the proposed
methods.

(a) Parameter values obtained
for Agent 0.

Agent 0 β δ1 δr
Front 4 2 1
Right 1 1 1
Back 2 2 1
Left 1 1 2

(b) Parameter values obtained
for Agent 7.

Agent 7 β δ1 δr
Front 4 3 1
Right 2 1 2
Back 1 4 1
Left 1 2 1
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Table 5.38 displays the number of possible configurations for each sensing pa-

rameter values in Table 5.37. Although the sensing area is the same for both

agents, the number of possible configurations is different because the number of

layers and densities varies among them.

Table 5.38: Number of possible configurations for each sensing parameter values
shown in Table 5.37.

Agent 0 7
Number of

5096 30576
Configurations

The effectiveness obtained after training both agents with these sensing pa-

rameter values using Algorithm ObIndBe, is 82%.

All the tests carried out in Phase 1 in Section 5.2.1.1 are repeated in this phase

using the knowledge gathered for both agents, keeping in mind that only Agent 0

and 7 are trained. Table 5.39 displays the effectiveness obtained using the policy

and sensing capability from Agent 0 for the even positions and the policy and

sensing capability for Agent 7 for odd positions, when agents are tested.

Table 5.39: Effectiveness for each Agent. Agents belonging to the set of even
agents are tested using knowledge learned by Agent 0. Agents belonging to the set of
odd agents are tested using knowledge learned by Agent 7.

Agent 0 1 2 3 5 6 7 8
Effectiveness 99.00 92.00 100.00 86.00 88.00 98.00 87.00 99.00

When all agents are put to work together, with the criteria explained in the

previous paragraph, the effectiveness obtained is 56%, that is greater than the

effectiveness obtained with the information gathered in Phase 1 in Section5.2.1.1,

that is 52.00%.

5.2.2 Experiment 2b

As in Experiment 2 Phase 2 in Section 5.2.1.2, Agents 0 and 7 are used in these

experiments, but all six parameter values are learned in this case. For this reason,

the chromosome length is 48 (six parameters, four sensors, two agents).
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Table 5.40 displays the sensing capabilities resulting from the Algorithm Ob-

SenPar for both agents. With these sensing capability parameter values, the num-

ber of possible configurations is 3072 for Agent 0 and 4608 for Agent 7, as displayed

in Table 5.41.

Table 5.40: Parameter values obtained for Agent 0 and 7 in Experiment 2b.

Agent 0 ρ θ µ β δ1 δr
Front 1 1 1 1 2 1
Right 4 2 2 1 5 1
Back 2 1 1 2 1 1
Left 2 0 2 1 1 1

Agent 7 ρ θ µ β δ1 δr
Front 3 1 2 2 1 1
Right 1 1 1 1 3 1
Back 2 0 2 1 1 1
Left 1 0 1 1 1 1

Table 5.41: Number of possible configurations for each sensing parameter values
shown in Table 5.40.

Agent 0 7
Number of

1280 192
Configurations

Table 5.42 displays the effectiveness and number of steps needed to reach the

goal when Agents 0 and 7 are tested with the seven remaining agents fixed as in

Fig 5.14.

Table 5.42: Effectiveness and number of steps needed to reach the goal when
Agents 0 and 7 are tested with the seven remaining agents fixed.

Effectiveness
No. of steps
Avg Std

96.80 108.70 73.35

The next test is carried out as follows: the behavior for Agent 0 is used by

Agents 2, 4 and 8, and the behavior of Agent 7 is used by Agents 1, 3 and 5.

The nine agents are tested in a 7 × 7 and 8 × 8 toroide. Table 5.43 displays the

effectiveness and number of steps in these cases.
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Figure 5.14: Seven agents fixed.

Table 5.43: Effectiveness and number of steps needed to reach the goal when nine
agents are tested in a 7× 7 and 8× 8 toroid.

Toroid
Effectiveness

No. of steps
dimension Avg Std

7 × 7 90.24 253.78 92.65
8 × 8 76.88 290.51 98.16

It can be seen that the values have improved compared with those obtained in

Experiment 2a.

Table 5.44 displays the effectiveness and number of steps when a Random

Policy is used.

Table 5.44: Effectiveness and number of steps needed to reach the goal when a
Random Policy is used.

Effectiveness
No. of steps
Avg Std

6 427.24 62.27

5.2.3 Results

The effectiveness obtained in Experiment 2b has a remarkable improvement with

respect to those obtained in Experiment 2a where four agents are used. The

number of configurations for Agents 0 and 7 are higher than that which are

obtain in Experiment 2a. It can be explained considering that Agent 0 must
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taking into account configurations that Agent 2 considered and the same happens

with Agents 7 and 5.

Then, it is possible to compare the sensing area for the sensing capability for

each trained agent in both experiments. It is important to point out that, for

Experiment 2a the area is set manually, being the same for all agents, and it is

shown in Fig. 5.15a; whereas, in Experiment 2b the sensing area for the sensing

capability for each trained agent is learned using the proposed methods and they

are shown in Figs. 5.15b and 5.15c.

(a) Sensing area for agents in Experiment 2a.

(b) Sensing area for Agent 0
in Experiment 2b. (c) Sensing area for Agent 7

in Experiment 2b.

Figure 5.15: Sensing area for agents in Experiments 2a and 2b.

Another remarkable point to taking into account is that when all parameter

values are learned by Algorithm ObSenPar, the number of possible configurations

decrease considerably. Even so, the effectiveness increases.

5.3 Testing proposed methods

In this section two shapes are used to test the proposed methods. All the six

parameters are obtained using Algorithm ObSenPar. Different classes of agents are

detected and an example of each is used to be trained using Algorithm ObIndBe.

The first is a triangular shape and the second is a diagonal shape.
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5.3.1 Triangular shape

In this experiment the proposed methods are applied to find the triangular for-

mation shown in Fig. 5.16. As in the previous experiments, a Stochastic Policy is

used. The reasons are the same as those explained in Section 5.2, for the square

shape.

Figure 5.16: Triangular shape in an 7× 7 toroid whit nine agents.

In this particular shape it is possible to distinguish 4 classes of agents:

• The first class formed by Agents 0, 4 and 8, named corner agents.

• The second class formed by Agents 1 and 3, named side agents.

• The third class formed by Agents 5 and 7, named base agents.

• The fourth class formed by Agent 6, named middle agent.

One agent from each class is used to be trained, in particular, Agents 0, 1, 6

and 7, are chosen. In this experiment the chromosome length is 96 (six parameters,

four sensors, four agents). The sensing capability parameter values found with

ObSenPar are displayed in Table 5.45. Table 5.46 displays the number of possible

configurations for the obtained sensing capabilities for each trained agent.

Table 5.47 displays effectiveness and number of steps needed to reach the goal

when Agents 0, 1, 6 and 7 are testing (the five remaining agents are fixed as shown

in Fig 5.17).

The next test is carried out by replicating the knowledge obtained during

training into the remaining agents in the corresponding class. Table 5.48 displays

the effectiveness and number of steps in these cases.
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Table 5.45: Parameter values obtained for Agent 0, 1, 6 and 7 in Experiment 5.3.1.

Agent 0 ρ θ µ β δ1 δr
Front 3 1 1 2 1 1
Right 3 2 2 2 1 1
Back 3 0 3 3 1 1
Left 1 1 1 1 1 1

Agent 1 ρ θ µ β δ1 δr
Front 4 1 1 3 1 1
Right 1 1 1 1 1 1
Back 1 0 1 1 1 1
Left 4 2 -1 4 2 1

Agent 6 ρ θ µ β δ1 δr
Front 3 0 3 3 1 1
Right 2 1 2 1 1 1
Back 2 0 2 1 1 1
Left 3 1 2 1 2 1

Agent 7 ρ θ µ β δ1 δr
Front 5 0 5 5 1 1
Right 2 1 1 1 1 1
Back 1 0 1 1 1 1
Left 4 3 2 1 9 1

Table 5.46: Number of possible configurations for each agent for the obtained
sensing capability in Experiment 5.3.1.

Agent 0 1 6 7
Number of

512 2048 256 4608
Configurations

Table 5.47: Effectiveness and number of steps needed to reach the goal when
Agents 0, 1, 6 and 7 are tested with the five remaining agents fixed as shown in
Fig5.17.

Effectiveness
No. of steps
Avg Std

81.30 201.28 90.14

Table 5.49 displays the effectiveness and number of steps when a Random

Policy is used.
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Figure 5.17: Five agents fixed.

Table 5.48: Effectiveness and number of steps needed to reach the goal when nine
agents are tested in a 7× 7 and 8× 8 toroid.

Toroid
Effectiveness

No. of steps
dimension Avg Std

7 × 7 84.60 368.44 157.16
8 × 8 63.50 453.06 167.56

Table 5.49: Effectiveness and number of steps needed to reach the goal when a
Random Policy is used.

Effectiveness
No. of steps
Avg Std

12.00 397.61 75.89

5.3.2 Diagonal shape

In this experiment the proposed methods are applied to find the diagonal formation

shown in Fig. 5.18. As in the previous experiments, a Stochastic Policy is used.

The reasons are the same as those explained in Section 5.2, for the square shape.

In this particular shape it is possible to distinguish 4 classes of agents:

• The first class formed by Agents 0, named top agent.

• The second class formed by Agents 1, 3, 5 and 7, named right agents.

• The third class formed by Agents 2, 6 and 8, named left agents.

• The fourth class formed by Agent 9, named bottom agent.
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Figure 5.18: Diagonal shape in an 7× 7 toroid whit ten agents.

Agent 4 is used as a seed to determine where the desired shape will be formed.

For this reason, this agent is neither trained nor tested. One agent from each class

is used to be trained, in particular, Agents 0, 3, 6 and 9, are chosen. In this

particular case the chromosome has 96 genes (six parameters, four sensors, four

agents).

The sensing capability parameter values found with ObSenPar are displayed for

each agent in Table 5.50. Table 5.51 displays the number of possible configurations

for the obtained sensing capabilities for each trained agent.

Table 5.52 displays effectiveness and number of steps needed to reach the goal

when Agents 0, 3, 6 and 9 are testing (the six remaining agents are fixed as shown

in Fig 5.19).

Figure 5.19: Six agents fixed.

The next test is carried out by replicating the knowledge obtained during

training into the remaining agents in the corresponding class. Table 5.53 displays

the effectiveness and number of steps in these cases.
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Table 5.50: Parameter values obtained for Agent 0, 3, 6 and 9 in Experiment 5.3.2.

Agent 0 ρ θ µ β δ1 δr
Front 4 0 4 3 1 1
Right 2 0 2 2 1 1
Back 2 0 2 1 1 1
Left 1 1 1 1 1 1

Agent 3 ρ θ µ β δ1 δr
Front 1 0 1 1 1 1
Right 2 0 2 1 1 1
Back 5 0 5 2 1 1
Left 1 0 1 1 1 1

Agent 6 ρ θ µ β δ1 δr
Front 1 0 1 1 1 1
Right 3 1 2 2 1 2
Back 4 0 4 3 1 1
Left 1 0 1 1 1 1

Agent 9 ρ θ µ β δ1 δr
Front 2 0 2 1 1 1
Right 1 0 1 1 1 1
Back 1 0 1 1 1 1
Left 2 0 2 2 1 1

Table 5.51: Number of possible configurations for each agent for the obtained
sensing capability in Experiment 5.3.2.

Agent 0 3 6 9
Number of

256 64 512 64
Configurations

Table 5.52: Effectiveness and number of steps needed to reach the goal when
Agents 0, 3, 6 and 9 are tested with the six remaining agents fixed as shown in
Fig5.19.

Effectiveness
No. of steps
Avg Std

97.40 215.01 117.81

Table 5.54 displays the effectiveness and number of steps when a Random

Policy is used.
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Table 5.53: Effectiveness and number of steps needed to reach the goal when nine
agents are tested in a 7× 7 and 8× 8 toroid.

Toroid
Effectiveness

No. of steps
dimension Avg Std

7 × 7 91.60 310.83 115.93
8 × 8 78.80 356.35 119.62

Table 5.54: Effectiveness and number of steps needed to reach the goal when a
Random Policy is used.

Effectiveness
No. of steps
Avg Std

13.00 396.85 70.70

5.3.3 Results

Experiments in this section show that the proposed methods allow dealing with

different emergent behaviors. In other words, they allow learning individual be-

haviors and sensing capabilities even when differentiation of behaviors is required.



Chapter 6

Conclusions and Future Work

This work has introduced the methods ObIndBe and ObSenPar which efficiently

allow finding individual behaviors and the necessary sensing capability for a group

of agents in a multi-agent system, solving problems related to pattern formation,

seen as emergent behaviors of that system. Additionally, the Algorithm ExpDir,

which is embedded in ObIndBe, has been presented. This last algorithm allows

the agents to explore the environment (even at an advanced stage of the learn-

ing processes) taking into account two problematic characteristics to deal with:

perceptual aliasing and non-determinism.

It was experimentally demonstrated that the methods (ObIndBe and ObSen-

Par), working together, could learn homogeneous and heterogeneous behaviors

with their corresponding sensing capability. An aspect to point out, is that it was

only necessary to find behaviors for a few agents (one representative per class of

agents) and then use these behaviors with the remaining agents to complete the

task successfully.

It is important to notice that, although all agents in all experiments were

trained using Algorithm ObIndBe, performances differed among experiments of

the same type (grouping, square shape, triangular shape, diagonal shape). What

was different among them, was their sensing capabilities. It was necessary to

develop a method that allows finding certain sensing capabilities to solve the pro-

posed problems automatically. The Algorithm ObSenPar introduced here, allowed

this, improving not only the performance, but also minimizing the number of pos-

sible configurations. This happened both for homogeneous agents (grouping) as

for heterogeneous agents (square, triangular or diagonal shapes).

It is well known that, when perceptual aliasing is present the best behavior

90
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to use is a Stochastic Policy. In spite of that, in some particular cases a Deter-

ministic and a Stochastic Policy were found. When agents are homogeneous and

indistinguishable, if there is no requirement on a particular geometric shape (any

shape with agents touching side by side among them is a goal), the number of

possible solutions is very high. Even if conflictive perceptual aliasing is present

(given by the minimum sensing capability imposed on the agents) it appears that,

Deterministic Policy decisions can also lead to a state solution. When agents are

heterogeneous and distinguishable, requiring a particular geometric shape, a single

goal state exists. Furthermore, if the sensing capability presents conflictive per-

ceptual aliasing, a bad decision performed by a Deterministic Policy can lead the

agents into unsolvable situations making it impossible to reach a desired solution.

In these cases, a Stochastic Policy must be used even when the number of steps

needed to reach the goal increases. This kinds of policies ensure that agents, at

some point in their evolution, reach the required pattern. That is to say that, the

probability to get a sensing capability with a minimal number of possible config-

urations without conflictive perceptual aliasing is very low. Therefore, it is highly

unlikely that a Deterministic Policy can solve the problem efficiently. In other

words, when only one goal state exists, the system is more sensitive to conflictive

perceptual aliasing. For that reason, a Deterministic Policy could never find that

solution. However, in the case where many goal states are possible, being the

system less sensitive to bad sensing capabilities, a Deterministic Policy can work

properly even if bad decisions were taken in early states, because another final

state can be reached. In the clustering problem, it could be seen that the policies

learned by each agent, using Algorithm ObIndBe, could not be rejected, neither by

Deterministic nor Stochastic Policies. Although it was empirically demonstrated

that a Deterministic Policy can be found when there are many possible solutions

to the problem, and in particular when the agents involved in the problem are

homogeneous, a Stochastic Policy was obtained under the same conditions giving

a better effectiveness than the Deterministic Policy (see Experiment 1c). This jus-

tified the need for policies which cover everything learned by each agent in each

training process, resulting in the creation of Individual and General policies in the

deterministic case, and Homogeneous Stochastic Policies in the stochastic case.

The experiments showed that the Algorithm ObIndBe was able to find de-

terministic behavior for a small group of agents that allows grouping anywhere
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within a discrete toroid. To reach the goal it was only necessary to replicate this

knowledge in the remaining untrained agents.

At the end of these series of experiments involving grouping agents, it could be

seen that it was not necessary to train agents starting with initial distributions.

Five of them were trained to obtain sensing capability and behaviors with total

success in the effectiveness. It is worth mentioning that, in no case was there any

need to train all the agents involved in the solution of the problem. Moreover, less

than a half of the agents were trained to obtain behaviors and sensing capability.

When a square or a triangular shape is sought, not only were different behaviors

found but different sensing capabilities were obtained. It was only necessary to

detect classes of agents, depending on its position in the shape, and train only one

example of each class. In these experiments a remarkable decrease in the number

of possible configurations could be noticed.

The parameter values found in the experiments where agents had to group

in a discrete toroid, showed that the sensing capabilities obtained were minimal,

considering the number of possible configurations. Furthermore, the method Ob-

senpar has proved to be more effective to define the sensing parameter values,

than the definition made by hand by an expert in the problem.

It was empirically proven that the policies, both stochastic and deterministic,

worked much better than a purely Random one.

To sum up, the three questions raised in the introduction have been answered

empirically:

1. Can agents act in an autonomous way or do they need to be coordinated in

a central way?

Agents did not need a central coordination to achieve the goal. Moreover,

they could learn not only their behavior but also, their sensing capabilities

in an independent way. The only influence among agents was the change in

the environment, used as a kind of communication.

2. Must all agents have the same capabilities or can different types of agents

be used to solve the problem?

It was shown that, both kinds of behaviors, homogeneous and heterogeneous,

were found using the proposed methods. Furthermore, in the case of clus-

tering problem, where a homogeneous and deterministic behavior is needed,
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a Stochastic Policy could be used too. This Stochastic Policy was learned

using the proposed methods in this thesis.

3. Must each agent know how to solve the whole problem or may the problem

be solved by the interaction of many or all of the agents in the swarm?

The interaction of all agents in the swarm was necessary to solve the prob-

lems presented here, and the proposed methods allow learning the required

knowledge.

With regard to fault tolerance, and in the case of homogeneous behaviors, the

testing processes showed that agents can be added without any need for retraining.

Therefore, if some agents fail in solving the problem, it is only necessary to replace

them with other agents with similar characteristics. If the agents are heterogeneous

and some of them fail, it is only necessary to replace those agents with agents that

are member of the same class as the broken ones. These classes must be detected

before starting to use the proposed methods.

Future work will be devoted to the characterization of the perceptual aliasing,

specifically the detection of the hidden states that cause conflictive perceptual

aliasing. As it was stated in [34, 18], a hidden state arises when the mapping

between states of the world and what the agent is sensing is not one-to-one”. The

characterization of the hidden states will allow a premature rejection of configu-

rations coded in the chromosome, pruning the search space considerably.
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