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ABSTRACT

In specification-based test generation, sometimes having a formal

specification is not sufficient, since the specification may be in a

different formalism from that required by the generation approach

being used. In this paper, we deal with this problem specifically

in the context in which, while having a formal specification in

the form of an operational invariant written in a sequential pro-

gramming language, one needs, for test generation, a declarative

invariant in a logical formalism. We propose a genetic algorithm

that given a catalog of common properties of invariants, such as

acyclicity, sortedness and balance, attempts to evolve a conjunction

of these that most accurately approximates an original operational

specification. We present some details of the algorithm, and an

experimental evaluation based on a benchmark of data structures,

for which we evolve declarative logical invariants from operational

ones.

1 INTRODUCTION

Various approaches to automated test generation require a spec-

ification in order to automatically generate tests or test inputs.

Examples of these are test generation tools based on symbolic or

concolic execution [10, 17], tools that generate inputs from program

invariants [2, 9], and tools that combinatorially generate inputs

and use specifications for filtering [7]. However, not all tools use

the same specification formalism; some tools require specifications

to be given as operational predicates, i.e., as program routines in

a programming language [2, 10] (e.g., so called repOK routines are

class invariants captured operationally through a program); others

support constraints in a logical formalism [5, 9]; and a few are able

to combine different formalisms [4, 7, 15].

An issue that arises with the availability of multiple specification

formalisms is that many times one does count with a specification,

but this specification is not provided in the right language for the

use of a given test generation approach. For instance, one may

have a class invariant for a given Java class, written as a repOK

routine, but in order to use, say a SAT-solving based generation

mechanism, such invariant has to be somehow translated to an

appropriate logical formalism. This is particularly relevant with the

increasing growth of tools and techniques for program analysis, and

the potential combined use of these tools, which may be inhibited

by the “mismatch” in the specification styles required by the tools

involved. A concrete example of this situation can be observed, for

instance, in bounded lazy initialization with SAT support [16], where

a combination of symbolic execution and SAT solving requires the

user to provide two equivalent program invariants, one given as a

repOK routine (used for lazy initialization), and the other as a logical

specification (used for computing bounds and pruning symbolic

execution).

This is exactly the problem we are interested in, in this paper.

The problem is relevant because even in the case in which a trans-

lation from one formalism to the other is available, the “target”

specifications resulting from the translations may be unsuitable for

analysis reasons. For example, one can indeed translate a Java repOK

routine into Alloy’s relational logic [8], through the use of transla-

tions that capture programming language constructs in the logic,

as those embedded in some program analysis tools [3, 5]. But the

obtained logical formulas (that capture program executions) lead

to unacceptable performances if these are used for test generation.

To deal with the above situation, we propose a genetic algorithm,

that given a catalog of properties commonly used as part of invari-

ants, such as acyclicity, sortedness and balance, appropriately spec-

ified in relational logic, attempts to evolve the conjunction of these

that most accurately approximates an original operational speci-

fication, given as a repOK routine. We present some details of the

algorithm, and an experimental evaluation based on a benchmark

of data structures, for which we evolve declarative logical invari-

ants from operational ones. The experiments show that declarative

invariants that very precisely approximate provided operational

ones can be efficiently produced.



2 MOTIVATION

To motivate our approach, let us consider an implementation of 
lists given as heap allocated doubly linked lists, as shown in Fig-
ure 1. Suppose that we are interested in testing that a routine that 
manipulates such data structure, for example the insertion routine, 
works as expected, or in particular, that it preserves the representa-
tion invariant of doubly linked lists. To perform automated testing 
in this context, we would need a specification establishing when 
a given list is valid, both to be used for assertions in tests, as for 
automatically producing test inputs satisfying such specification. 
As put forward in [12], one can specify the representation invariant 
as a boolean routine, the repOK(), that returns true iff the structure 
it is applied to satisfies the corresponding representation invariant. 
In the case of doubly linked lists, this routine, shown in Figure 2, 
must state two points: first, header holds a cyclic linked list, and 
second, the number of nodes in the list coincides with the value in 
field size.

Some test generation tools, notably those based on constraint-
solving [5, 9], can profit from specifications written in a logical 
formalism, in contrast with the previously mentioned operational 
repOK routines. Indeed, some constraint-solving based approaches 
can more efficiently generate test inputs if invariants are given 
in a declarative formalism like JML or Alloy [8]. These languages 
offer a different specification “paradigm”, and properties such as 
reachability, (a)cyclicity and the like, are typically captured through 
some transitive closure expressions. As an example, Figure 3 shows 
a declarative predicate, in Alloy’s relational logic, that expresses an 
invariant equivalent to property repOK() of Figure 2.

public c l a s s Doub lyL inkedL i s t {

private Node header ;

pr ivate int s i z e ;

. . .

}

public c l a s s Node {

pr ivate int e lement ;

private Node nex t ;

private Node p r ev i ou s ;

. . .

/ / s e t t e r s and g e t t e r s

/ / o f t h e above f i e l d s

. . .

}

Figure 1: Java classes defining doubly linked lists.

Having the operational invariant specified through routine repOK()
enables the use of various tools for test generation that expect this

kind of property (e.g., Korat [2], where the doubly linked list ex-

ample was taken from, in one such tool). But if we need to use a

tool that expects the specification to be given declaratively (e.g.,

those in [1, 9]), our repOK is of little use. Even though one may em-

ploy a translation from operational specifications into declarative

specifications (in bounded contexts), like those provided in tools

like TACO [5, 6] and CBMC [11], the obtained specifications are

in general unsuitable for analysis. In particular, the excessive use

of quantifiers to capture program executions lead to specifications

public boolean repOK ( ) {

S e t v i s i t e d = new j a v a . u t i l . HashSet ( ) ;

v i s i t e d . add ( header ) ;

Ent ry c u r r e n t = header ;

while ( true ) {

Ent ry next = c u r r e n t . nex t ;

i f ( nex t == null ) return fa l s e ;

i f ( nex t . p r e v i ou s != c u r r e n t )

return fa l s e ;

c u r r e n t = nex t ;

i f ( ! v i s i t e d . add ( nex t ) ) break ;

}

i f ( c u r r e n t != header ) return fa l s e ;

i f ( v i s i t e d . s i z e ( ) != s i z e ) return fa l s e ;

return true ;

}

Figure 2: Operational version of the representation invari-

ant for doubly linked lists.

one sig Null { }

sig List { }

sig Node { }

pred repOK[thiz : List , header : List ->one Node+Null ,

next : Node -> one Node+Null] {

(all n : thiz.header .*( next+prev) | n=n.prev.next)

and #(thiz.header .*( next+prev)-Null) = thiz.size

}

Figure 3: Declarative version of the representation invariant

for doubly linked lists, in Alloy’s relational logic.

that are very costly to compile, that many times do not pass, in the

context of SAT-based test generation, the CNF generation phase.

The following section will describe our proposal to tackle this

problem, which in essence consists of taking a catalog of properties

that are commonly part of invariant specifications, appropriately

characterized in the target formalism (in our case, Alloy’s relational

logic), and using a genetic algorithm to evolve an expression (a

conjunction in our case) involving properties from the catalog, that

more closely approximate a given operational invariant.

3 THE GENETIC ALGORITHM

As we mentioned in previous sections, our objective is to generate

a declarative specification Φ that most accurately approximates

an operational specification Φop , by combining common invari-

ant properties taken from a catalog. Below we describe the main

components of the genetic algorithm designed for this purpose.

3.1 Genes and Chromosomes for Candidate

Specifications

In order to capture candidate specifications, we simply define chro-

mosomes as vectors of integer genes. Each chromosome has as

many genes as there are properties in the catalog, and the value

of each gene can be 0, 1 or 2. If the i-th gene has value 0, then the

i-th formula of the catalog is negated; if the gene has value 1, then



the i-th formula is considered positively; finally, if the gene has

value 2, then the i-th formula is disabled (not part of the candidate

specification). Thus, the candidate specification represented by a

given chromosome is the conjunction of the formulas obtained from

the interpretation of the genes, depending on their respective val-

ues. For instance, if the catalog is composed by the (ordered) set

of formulas { f0, f1, f2, f3, f4}, then chromosome [0, 1, 2, 0, 2] will
represent the specification ¬f0 ∧ f1 ∧ ¬f3.

In our experiments, the initial population is produced by gener-

ating all individuals with exactly one positive gene (value 1), and

all the others disabled (value 2). That is, we initially have as many

individuals as specifications in the catalog. The maximum size for

the population is set to 100.

3.2 Genetic Operators

Genetic operators are used to produce the search space, by gen-

erating new individuals from existing ones in a population. The

main mechanism to achieve this is by combining parts of existing

chromosomes through crossover. We use one-point crossover to

build new chromosomes, by randomly selecting a point to “split”

two chromosomes, and combining the initial (resp., final) part of

one of them with the final (resp., initial) part of the other. In our

experiments, we use a crossover rate of 35%.

The second mechanism to generate new chromosomes is muta-

tion, i.e., the generation of a new individual by randomly changing

characteristics of an existing one. Since in our case genes only have

three possible values (0,1 or 2), our mutation operator simply ran-

domly sets a value in the range [0, 2] with a probability of 1/12, of

each gene to be mutated.

3.3 Fitness of Candidate Specifications

Our fitness function is meant to assess how close are the corre-

sponding candidates to the desired specification, and is the most

important part of our algorithm. We exploit the operational specifi-

cation Φop , to (indirectly) compare candidate specifications against

this one. In order to do so, we automatically generate from Φop

a set of positive and negative examples. These are instances that

satisfy and do not satisfy Φop , respectively. These instances can be

generated using any test input generation mechanism that requires

an operational specification, e.g., [2]. We use an ad hoc variant of

Korat, that generates inputs using that “cover” different values for

object fields. The number of generated positive and negative cases

is limited to a provided bound k .

Fitness f (c) for a chromosome c is computed as follows. First, we

build the specification Φc corresponding to c , and evaluate whether

the positive and negative cases satisfy Φc . If any positive case fails

with Φc , meaning that there are cases that should be accepted

but our specification rejects them, then f (c) = 0. Instead, if the

candidate has only negative cases (cases that should not pass the

specification but do so), fitness is defined as follows:

f (c) = (MAX − neg(c)) +

(
1

len(spec(c)) + 1

)

whereMAX is a constant larger than k , the total number of negative

cases; neg(c) is the number of negative cases that satisfy Φc ; and

len(spec(c)) is the length of c , i.e., the number of formulas from the

catalog present in the conjuction.

The rationale for this definition of the fitness function has to do

with the fact that we attempt to over approximate the sought-for

specification. Thus, when a positive case is not accepted by a can-

didate, we will simply consider it unfit. Fitness for other candidates

has two parts. First, the fewer the “counterexamples”, the better;

second, the smaller the specification, the better. This last part can

be thought of as a penalty related to formula length, that will make

the genetic algorithm tend towards producing smaller formulas.

3.4 Selection

The selection operation determines which individuals are to be kept

in the next generation. Our selection operation is very simple. It

maintains a predefined amount of the fittest individuals by sorting

all the chromosomes by decreasing order according to their fitness

values, and then selecting the top individuals. This simple selection

mechanism results useful in our problem since the algorithm will

tend to keep the chromosomes representing specifications contain-

ing formulas with less negative cases that do not satisfy Φop (recall

that the higher the fitness value, the fewer counterexamples the

formula has).

4 EVALUATION

Our evaluation is based on invariants of the following data struc-

tures taken from Korat’s case studies: singly linked lists; sorted

singly linked lists; circular linked lists; doubly linked lists; binary

trees; binary search trees; heaps; (binary) directed acyclic graphs;

and red-black trees. The genetic algorithm has been implemented

using JGAP, and the experiments were run on a workstation with

Intel Core i7 2600, 3.40 Ghz, and 16Gb of RAM. The catalog for our

genetic algorithm is composed of properties commonly found in

invariants, with distinguishing cases for linear structures (struc-

tures with a single reference field per node) and n-ary (tree-like)

structures (e.g., binary trees). More precisely, for linear structures

we considered 23 properties, including (a)cyclicity, circularity, etc.,

the relationship between number of reachable nodes and integer-

typed fields, and ordering constraints. For n-ary structures, on the

other hand, we considered 28 properties, including all of the linear

cases, and other properties such as disjointness across different

fields, balance, etc.

For each case study, we ran the algorithm 10 times, with a limit

of 20 generations (i.e., evolutions of the genetic algorithm popula-

tion). Table 1 reports the minimum, maximum and average runs,

indicating the number of generations (g) and the time (t) in seconds,

that were necessary to obtain declarative invariants. We distinguish

between the cost of computing the first suitable invariant, and the

cost of computing the “best” invariant (the algorithm continues

running, trying to make it more concise). In all these cases the

obtained invariants were indeed equivalent to their corresponding

operational ones. Some results were surprising, e.g., an acyclicity

property indirectly captured via cardinality constraints:

(thiz.size = # thiz.head.*next - Null) and

not (thiz.size = # thiz.head.*next)

5 RELATEDWORK AND CONCLUSION

The problem of automatically producing specifications has been

extensively studied. In the context of Alloy, the approach in [13]



Table 1: Experimental Results corresponding to learning declarative invariants from operational ones, using our evolutionary

algorithm.

First Invariant Found Best Invariant Found

Data Min Max Avg Min Max Avg

Structure Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec.

s. linked lists 2 4 5 12 4 8 3 5 6 27 4 12

s. linked sort. lists 2 8 7 23 5 16 3 10 7 32 5 19

s. circular lists 2 6 3 16 2 10 2 6 4 20 3 13

doubly linked lists 1 8 5 35 3 24 1 8 5 35 3 25

binary trees 3 35 6 146 5 102 3 35 8 296 6 148

binary search trees 3 14 6 75 5 42 3 14 6 75 5 44

heaps 6 39 18 90 9 58 6 39 19 116 13 83

binary DAGs 2 3 4 10 3 7 2 3 4 10 3 7

red-black trees 7 95 15 242 12 171 7 112 20 303 15 225

is based solely on positive examples, as opposed to our case. The

work in [14] also uses genetic algorithms, but attempts to evolve

navigational expressions, as opposed to our (simpler) case based on

a specification catalog. Our approach is easier to extend to support

new properties, a limitation of [14].

In summary, we have presented an approach to compute a declar-

ative specification in Alloy’s relational logic from an operational

one in Java, based on a genetic algorithm. The approach considers

a catalog of common invariant properties and tries to achieve a

conjunction of these that approximates the original invariant. It

produces valid and invalid cases from the operational specifica-

tion, which are then used as part of the fitness function driving

the algorithm, to “grade” specification candidates. Our preliminary

experimental evaluation shows promising results.

We plan to further develop our approach, and in particular to

search for more general specification patterns to consider in speci-

fication catalogs. We also plan to incorporate our operational-to-

declarative translation mechanism in the context of BLISS [16],

to simplify the requirements for users of the technique to only

providing an operational invariant.
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