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Abstract

Los Sistemas para el Soporte de Decisión (DSS) ayudan a las actividades para la toma

de decisiones en las organizaciones y los negocios. Hoy en d́ıa las organizaciones re-

quieren de DSS más sofisticados, capaces de manejar diferentes tipos de datos en forma

transparente. Esos datos puede estar en formato de información espacial, producida

por Sistemas de Información Geográfica (GIS), que manejan datos georeferenciados.

De este modo, aparece un nuevo concepto: DSS basado en GIS para análisis de datos

con respecto a información espacial.

Las herramientas para el procesamiento anaĺıtico en ĺınea (OLAP) son cruciales

para los DSS. En esta tesis primero proponemos un modelo formal, llamado Piet,

que permite la integración en un único marco, de datos espaciales y OLAP. También

introducimos un lenguaje formal que constituye la base para un lenguaje de consulta,

estilo SQL, que soporta el modelo Piet, llamado Piet-QL. Piet-QL permite expresar

complejas y poderosas consultas GIS y OLAP, extendiendo el concepto bien conocido

de SOLAP (Spatial OLAP).

Los objetos móviles (MOs) equipados con dispositivos que proporcionan posi-

ciones, producen trayectorias en la forma de tuplas (Oid, t, x, y) que contienen identi-

ficador de objetos e información espacio-temporal. Las trayectorias descriptas de esta

forma pueden ser reescritas in términos de lugares previamente definidos. Esta forma

de expresar trayectorias les agrega información semántica, permitiendo inferir intere-

santes patrones de movimiento que conducen al concepto de trayectoria semántica.

En esta tesis argumentamos que la información de trayectorias también puede ser

integrada con datos GIS y OLAP, generando un marco poderoso de análisis. Esta

integración es llevada a cabo en términos de un lenguaje basado en expresiones reg-

ulares que permite expresar patrones secuenciales por intensiø’n. Este lenguaje, lla-

mado RE-SPaM, puede ser utilizado dentro de un algoritmo de descubrimiento de
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patrones secuenciales para restringir la cantidad de secuencias a descubrirse, o como

un lenguaje de consulta sobre la base de datos de trayectorias. La principal novedad

en RE-SPaM es que no sólo soporta atributos en expresiones (los esfuerzos previos

solamente manejaron identificadores ) sino también atributos temporales, variables

y funciones. Extendiendo RE-SPaM con la habilidad de incluir consultas Piet-QL

en las expresiones regulares conduce a RE-SPaM++ el cual permite que el análisis

de los objetos móviles se relacione con el entorno geométrico en el cual las trayecto-

rias evolucionan. El caso de estudio muestra como todo este marco permite la ex-

tracción de información interesante a partir de la colección espacial, OLAP y objectos

móviles. Piet-QL, RE-SPaM, y RE-SPaM++ han sido implementados e integrados en

una herramienta, basada en la plataforma OpenJump, permitiendo tanto ediciones

de consultas como visualización y análisis de los resultados.



Abstract

Decision Support Systems (DSS) support business and organizational decision-making

activities. Nowadays, organizations require more sophisticated DSS, capable of han-

dling different kinds of data in a seamless fashion. These data maybe in the form

of spatial information, for example, information produced by Geographic Informa-

tion Systems (GIS), that deal georeferenced data. Thus, a new concept appears:

GIS-based DSS for analyzing data with respect to spatial information. On-Line An-

alytical processing (OLAP) tools are crucial to DSS. In this thesis we first propose a

formal model, denoted Piet, that makes it possible to integrate in a single framework,

spatial and OLAP data. We also introduce a formal query language, that constitutes

the basis of the SQL-Like query language supporting the Piet data model, denoted

Piet-QL. Piet-QL can express complex and powerful GIS and OLAP queries, extend-

ing the well-known notion of SOLAP (Spatial OLAP).

Moving objects (MOs) equipped with location-aware devices produce trajectory

data in the form of a sample of (Oid, t, x, y)-tuples that contain object identifier and

time-space information. Raw trajectories described in this way can be rewritten in

terms of places previously defined. This way of expressing trajectories adds semantic

information to them, allowing to infer interesting patterns of movement yielding the

concept of semantic trajectory. In this thesis we argue that trajectory information can

also be integrated with GIS and OLAP data, leading to a powerful analysis framework.

This integration is achieved by means of a regular expression-based language that

allows expressing sequential patterns in an intensional way. This language, denoted

RE-SPaM, can be used within a sequential pattern mining algorithm to restrict the

number of sequences that are discovered, or as a query language over a trajectory

database. The main novelty in RE-SPaM is that it not only supports attributes

in the expressions (former efforts only deal with item identifiers) but also temporal
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attributes, variables and functions. Expanding RE-SPaM with the ability of including

Piet-QL queries in the regular expressions leads to RE-SPaM++, which makes moving

object analysis aware of the geometric environment where the trajectories evolve.

A case study shows how all this framework can be used for extracting interesting

information from a collection of spatial, OLAP, and moving object data.

Piet-QL, RE-SPaM, and RE-SPaM++ have been implemented and integrated into

a tool, based on the Open Jump platform, allowing query editing and visualization

and analysis of the results.
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Chapter 1

Introduction

Geographic Information Systems (GIS) have been extensively used in various applica-

tion domains, ranging from economical, ecological and demographic analysis, to city

and route planning [60, 73]. The NCGIA1 defines a GIS as a system of hardware,

software and procedures to facilitate the management, manipulation, analysis, mod-

elling, representation and display of georeferenced data to solve complex problems

regarding planning and management of resources

In general, information in a GIS application is represented in several so-called

thematic layers or themes containing related data that deal with one thematic topic.

For example, rivers, volcanoes and regions can be organized in different layers. Infor-

mation in each layer consists of purely spatial data, associated with classical alpha-

numeric attribute data. Usually, data are stored in a relational database. The spatial

integration of these layers can be carried out by using a common coordinate system.

By overlapping layers we can obtain a unified spatial view for better analysis.

Geometric objects within themes can be stored in different data structures accord-

ing to different data models. Two main data models are used for the representation

of the spatial part of the information within one layer, the vector model and the

raster model. The choice of model typically depends on the data source from which

the information is imported into the GIS. The vector model is mostly used in current

GIS [41]. In the vector model, infinite sets of points in space are represented as finite

geometric structures, or geometries, like, for example, points, polylines and polygons.

1The National Center for Geographic Information and Analysis is an independent research con-
sortium dedicated to basic research and education in geographic information science and its related
technologies, including geographic information systems (GIS). See http://www.ncgia.ucsb.edu.
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More concretely, vector data within a layer consists in a finite number of tuples of the

form (geometry, attributes) where a geometry can be a point, a polyline or a polygon.

There are several possible data structures to actually store these geometries [73]. In

the raster model, the space is sampled into pixels or cells. For each cell or pixel, the

sample value of some function is computed and associated to the cell as an attribute

value, e.g., a numeric value or a color. Usually, these cells are organized into zones,

where the cells of a zone have the same value for some attribute(s). This model

has highly efficient indexing structures and it is very well-suited to model continuous

change but its disadvantages include its size and the cost of computing the zones.

Queries requiring map overlay (spatial joins) are more difficult to compute in the

vector model than in the raster model. On the other hand, the vector model offers

a concise representation of the data, independent from the resolution. For a uniform

treatment of different layers given in the vector or the raster model, in this thesis we

focus on the vector model. Indeed the raster model can be considered as a special

case of the vector model by considering each cell or zone as point or polygons, respec-

tively. Besides, the attribute value associated to the cell or pixel can be regarded as

an attribute in the vector model.

1.1 OLAP and Decision Support Systems

OLAP (On Line Analytical Processing) [37] comprises a set of tools and algorithms

that allow efficiently querying multidimensional databases, containing large amounts

of data, usually called Data Warehouses. In OLAP, data are organized as a set of

dimensions and fact tables. In this multidimensional model, data can be perceived

as a data cube, where each cell contains a measure or set of (probably aggregated)

measures of interest. OLAP dimensions are further organized in hierarchies that fa-

vor the data aggregation process [10]. Several techniques and algorithms have been

developed for query processing, most of them involving some kind of aggregate pre-

computation [32] (an idea we will use later in this paper). Three typical ways of

OLAP tools implementation exist: MOLAP (standing for multidimensional OLAP),

where data is stored in proprietary multidimensional structures, ROLAP (relational
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OLAP), where data is stored in (object) relational databases, and HOLAP (standing

for hybrid OLAP), which provides both solutions. In a ROLAP environment, data

is organized as a set of dimension tables and fact tables, and we assume this organi-

zation in the remainder of this thesis. There are a number of OLAP operations that

allow exploiting the dimensions and their hierarchies, thus providing an interactive

data analysis environment. Warehouse databases are optimized for OLAP operations

which, typically, imply data aggregation or de-aggregation along a dimension, called

roll-up and drill-down, respectively. Other operations involve selecting parts of a cube

(slice and dice) and re-orienting the multidimensional view of data (pivoting). In ad-

dition to the basic operations described above, OLAP tools provide a great variety

of mathematical, statistical, and financial operators for computing ratios, variances,

ranks, etc. It is an accepted fact that data warehouse conceptual design is still an

open issue in the field [62]. Most of the data models either provide a graphical

representation based on the Entity-Relationship (E/R) model or UML notations, or

they just provide some formal definitions without user-oriented graphical support.

Recently, Malinowsky and Zimányi [47] have proposed the MultiDim model. This

model is based on the E/R model and provides an intuitive graphical notation. Also

recently, Vaisman [67, 68] has introduced a methodology for requirement elicitation

in Decision Support Systems, arguing that methodologies used for OLTP systems are

not appropriate for OLAP.

Decision Support Systems (DSS) are information systems that support business

and organizational decision-making activities. A DSS is an interactive piece of soft-

ware intended to help decision makers to compile useful information from raw data,

documents, personal knowledge, and/or business models to identify and solve prob-

lems and make decisions. Most DSS are based on OLAP tools like the ones described

above. However, a DSS can include other kinds of software tools, like for instance,

Geographic Information Systems. The seamless integration of both OLAP and GIS

tools is one of the topics of this thesis, as we discuss below.
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1.2 Moving Object Databases (MOD)

In the last few years, the possibility of obtaining information of moving objects

through the use of Global Position Systems (GPS) or Radio Frequency IDentification

(RFID) [70] has been consistently increasing given that these devices have become

widely available. Moving objects carrying location-aware devices produce trajectory

data in the form of a sample of (Oid, t, x, y)-tuples, that contain object identifier and

time-space information. The analysis of these data can be of interest in many do-

mains, like traffic analysis, road planning, or location of advertisement in city streets,

among other ones. Research concerning moving objects was introduced by Wolfson

et al. [69, 71, 72].

Typical problems in this field concern the analysis of trajectory similarity, aggrega-

tion, and pattern discovery. Detecting trajectory similarity is a complex task, because

locations of different moving objects, represented by floating point coordinates, do

not necessary coincide. Some approaches try to detect moving object patterns with

different mining techniques. In any case, due to the huge volume of these trajectory

data any form of compression facilitates the data processing. Recently, the notions of

stops and moves were introduced [16, 64]. These concepts allow compressing trajec-

tory data produced by moving objects using application-dependent places of interest.

In this approach, a designer selects a set of places of interest that are relevant to

her application. For instance, in a tourist application, such places can be hotels,

restaurants and tourist attractions. In a traffic control application, they may be road

segments, traffic lights and junctions, stored in GIS layers. If a moving object spends

a sufficient amount of time in a place of interest, this place is considered a stop for

the object’s trajectory. Between stops, the trajectory is considered to have moves.

Thus, we can replace a raw trajectory given by (Oid, t, x, y)-tuples by a sequence of

application-relevant stops and moves, leading to the concept of semantic trajectories.

Hidden movement patterns in these kinds of trajectories can be discovered using dif-

ferent variations of existing data mining techniques, like the well-known Generalized

Sequential Patterns (GSP) algorithm [4, 65]. Also, some proposals allow expressing

patterns intensionally by means of regular expressions [16, 20] over the items that are

being mined. These techniques can take advantage of semantic information about the
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places of interest. Further, even more interesting patterns can be inferred if moving

objects are integrated with OLAP and GIS data in a common framework. We discuss

this integration in this thesis.

1.3 Thesis Contribution: Towards the Integration of GIS,

OLAP, and Moving Object Data

Nowadays, organizations need sophisticated GIS-based Decision Support System to

analyze their data with respect to geographic information. In this sense, OLAP

and GIS vendors are increasingly integrating their products2. Aggregate queries are

central to DSSs. Thus, classical aggregate queries (like “total sales of cars in Cali-

fornia”), and aggregation combined with complex queries involving geometric com-

ponents (“total sales in all villages crossed by the Mississippi river within a radius of

100 km around New Orleans”) must be efficiently supported. Moreover, navigation

of the results using typical OLAP operations like roll-up or drill-down is also re-

quired. These operations are not supported by commercial GIS in a straightforward

way. First, GIS data models were developed with ‘transactional’ queries in mind.

Thus, the databases storing non-spatial attributes or objects are designed to support

those (non-aggregate) kinds of queries. Decision support systems need a different

data model, where non-spatial data, consolidated from different sectors in an organi-

zation, is stored in a data warehouse. Here, numerical data are stored in fact tables

built along several dimensions. For instance, if we are interested in the sales of certain

products in stores in a given region, we may consider the sales amounts in a fact table

over the dimensions Store, Time and Product. Moreover, we mentioned above that

OLAP dimensions are organized into aggregation hierarchies. For example, stores can

aggregate over cities which in turn can aggregate into regions and countries. Each of

these aggregation levels can also hold descriptive attributes like city population, the

area of a region, etc. Integration between GIS and OLAP data requires warehouse

data to be linked to geographic data. For instance, a polygon representing a region

2See Microstrategy and MapInfo integration in http://www.microstrategy.com/,
http://www.mapinfo.com/
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must be associated to the region identifier in the warehouse. Second, system integra-

tion in commercial GIS is not an easy task. As a consequence, in current commercial

systems, the GIS and OLAP worlds must be integrated in an ad-hoc fashion, in a

different way each time an implementation is required.

The first contribution of this thesis is aimed at solving the problem of integrating

GIS and OLAP data. For this, we present a formal data model, denoted Piet, that

integrates GIS and OLAP in a unique framework. We also define a formal query

language that supports spatial aggregation. Based on this formal language, we in-

troduce an SQL-like query language denoted Piet-QL, that can express complex and

powerful GIS and OLAP queries in a natural and concise way. Piet-QL supports

four basic kinds of queries: (a) standard spatial queries; (b) standard OLAP queries;

(c) spatial queries filtered with an aggregation (i.e., filtered using a data cube); (d)

OLAP queries filtered with a spatial condition.

The integration mentioned above becomes more interesting when moving objects

are included in the picture. We have already commented that the notion of semantic

trajectories allows inferring interesting patterns of movement. Usually, this pattern

analysis is performed disregarding the information about the geographic location

where the moving objects evolve. As a second contribution of this thesis we propose

a language based on regular expressions, denoted RE-SPaM, that can intensionally

express sequential patterns by means of regular expressions built over constraints

defined over the attributes of the places of interest visited by the trajectories under

analysis. This language can express patterns of the form: “tourists first visit cheap

restaurants, then visit tourist attractions repeatedly, and finish at 3-star hotels”.

Integration of GIS, OLAP and moving object data is achieved by means of including

Piet-QL statements into the constraints that compose a RE-SPaM pattern. This is

the third contribution of this thesis. In other words, we make moving object analysis

aware of the geometric environment where the objects evolve.

As a fourth contribution of this thesis, we show, through a case study, how the

tools defined and implemented in this thesis can be put together for decision support

in the presence of the three kinds of data previously mentioned.

This thesis consolidates and expands a corpus of work previously published. In the
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field of OLAP-GIS integration, relevant work has been published in [17, 23]. Piet-QL

was first introduced in [26]. The concept of Places of Interest and Stops and Moves

has been discussed in [24]. Finally, RE-SPaM has been presented in [25].

1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2 we review related work in the field of

OLAP and Spatial Data Integration (also called SOLAP) and review MOD literature.

In Chapter 3 we propose a formal model, called Piet, for the integration of spatial

and OLAP data and introduce a formal query language based on the concept of

spatial aggregation. Then, in Chapter 4 we present a query language, called Piet-QL,

designed for Piet data model.

In Chapter 5 introduces the concept of semantic trajectories and how can be

used for compressing trajectories and enriching them with additional information. In

Chapter 6 we present the notion of trajectories semantically equivalent and propose

a mining algorithm, called RE-SPaM, to detect sequential behavior patterns over

them. Also, to reduce the number of sequences obtained during the mining process,

we propose a query language based on regular expressions, which supports variables,

functions and attributes. Although it can be applied to other scenarios, we will apply

it to MO setting. Chapter 7 shows how Piet-QL with RE-SPaM can be integrated,

resulting in the RE-SPaM++language that lets us find sequential patterns considering

the geographic environment in which MOs evolve. In Chapter 8 we discuss a complete

case study, analyze the visualizing of the result of the mining process and present

experimental results. Finally, in Chapter 9, we analyze future extensions of our work

and summarize the main features of our contribution.



Chapter 2

Related Work

In this chapter we review the efforts in OLAP and Spatial Data integration and

Moving Object Databases (MOD) literature. We compare the approaches discussed

here against our proposal at the end of each corresponding chapter.

2.1 GIS and OLAP Integration

In the last five years, the topic of spatial OLAP and spatio-temporal OLAP has

been attracting the attention of the database and GIS communities. In this section

we discuss advances and limitations that have been appearing, and classify them

according to different lines of research.

2.1.1 The concept of SOLAP

En 1997, Bédard introduce the concept of SOLAP (standing for Spatial OLAP) to

support spatio-temporal analysis and exploration of data according to a multidimen-

sional approach. Later, Bédard et al. describe the characteristics of a SOLAP user

interface tool capable of exploring spatial data by drilling on maps as it is performed

in OLAP with tables and charts [7], although in this proposal they do not have an

underlying formal model. Related to the concept of SOLAP, Shekhar et al. [63] intro-

duced MapCube, a visualization tool for spatial data cubes. MapCube is, basically,

an operator that given a so-called base map, cartographic preferences and an aggre-

gation hierarchy, produces an album of maps that can be navigated via roll-up and

drill-down operations.

8
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2.1.2 Conceptual Modeling

Stefanovic et al. [66] and Bédard et al. [6], classify spatial dimension hierarchies in:

(a) non-geometric; (b) geometric to non-geometric; and (c) fully geometric. Dimen-

sions of type (a) can be treated as any descriptive dimension. In dimensions of types

(b) and (c) a geometry is associated to members of the hierarchies. Malinowski and

Zimányi [46], in the Multidim model, extend this classification to consider that even

in the absence of spatial levels, a dimension can be considered spatial. If it is rep-

resented as a spatial data type (e.g., point, region), allowing linking spatial levels

through topological relationships (e.g., contains, overlaps). Thus, a spatial dimen-

sion is a dimension that contains at least one spatial hierarchy. This model is an

extension of a previous conceptual model for OLAP introduced by the same authors,

based on the well-known Entity-Relationship model [45]. In the models above, spatial

measures are characterized in two ways, namely: (a) measures representing a geom-

etry, which can be aggregated along the dimensions; (b) a numerical value, using a

topological or metric operator. Most proposals support option (a) either as a set of

coordinates [6, 8, 46, 61] or a set of pointers to geometric objects [66]. In partic-

ular, in [46], the authors define measures as attributes of an n-ary fact relationship

between dimensions. Further on, the same authors present a method to transform a

conceptual schema to a logical one expressed in the Object-Relational paradigm [48].

Fidalgo et al. [18] and da Silva et al. [13] introduced GeoDWFrame, a framework for

spatial OLAP, which classifies dimensions as geographic and hybrid, if they represent

only geographic data, or geographic and non-spatial data, respectively. Over this

framework, da Silva et al. [14] propose GeoMDQL, a query language based on Mul-

tidimensional Expressions (MDX)1 and OGC2 simple features for querying spatial

data cubes (see Section 2.1.4). Pourabbas introduces a conceptual model that uses

binding attributes to bridge the gap between spatial databases and a data cube [58].

No implementation of the proposal is discussed. Besides, this approach relies on the

1MDX was first introduced as part of the OLE DB for OLAP specification in 1997 from Microsoft.
While it was not an open standard, but rather a Microsoft owned specification, it was adopted by
the wide range of OLAP vendors.

2Open Geospatial Consortium, http:www.opengeospatial.org
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assumption that all the cells in the cube contain a value, which is not the usual case

in practice, as the author expresses. Moreover, the approach also requires modifying

the structure of the spatial data.

2.1.3 Spatial Aggregation

The notion of OLAP is closely related to data aggregation. In a spatial setting the

concept of spatial aggregation arises. Vega López et al. [44] present a comprehensive

survey on spatiotemporal aggregation that includes a section on spatial aggregation.

Pedersen and Tryfona [54] propose pre-aggregation of spatial facts. They analyze

that in the spatial setting traditional pre-aggregation techniques do not work due to

the properties of topological relationship between 2D spatial objects. In traditional

pre-aggregation techniques summarizability [43] must be satisfied, but in spatial data

it cannot be guaranteed due to geometry overlapping. Therefore, they propose a

method to take advantage of pre-aggregation in spatial data warehouses that consists

of pre-processing spatial facts by computing their disjoint parts. These facts could

be aggregated later, given that pre-aggregation works if the spatial properties of

the objects are distributive over some aggregate function. This proposal ignores the

geometry, and do not address forms other than polygons. Thus, queries like “Give me

the total population of cities crossed by a river” are not supported. The authors do not

report experimental results. Extending this model with the ability to represent partial

containment hierarchies (useful for a location-based services environment), Jensen

et al. [36] propose a multidimensional data model for mobile services, i.e., services

that deliver content to users, depending on their location. Like in the previously

commented proposals, this model omits considering the geometry, limiting the set of

queries that can be addressed.

With a different approach, Rao et al. [59], and Zang et al. [75] combine OLAP and

GIS for querying so-called spatial data warehouses, using R-trees for accessing data

in fact tables. The original star-schema does not need to be modified and the data

warehouse is then evaluated in the usual OLAP way. Thus, they take advantage of

OLAP hierarchies for locating information in the R-tree which indexes the fact table.

Here, although the measures are not spatial objects, they also ignore the geometric



11

part. It is assumed that some fact table containing the identifiers of spatial objects

exists. Moreover, these objects happen to be just points, which is quite unrealistic in a

GIS environment where different types of objects appear in the different layers. Other

proposals in the area of indexing spatial and spatio-temporal data warehouses [51, 52]

combine indexing with pre-aggregation resulting in a structure denoted Aggregation

R-tree (aRtree), an R-tree that annotates each Minimal Bounding Rectangle (MBR)

with the value of the aggregate function for all the objects that are enclosed by it.

This is a very efficient solution for some particular cases, specially when a query

is posed over a query region whose intersection with the objects in a map must

be computed on-the-fly. However, problems may appear when leaf entries partially

overlap the query window. In this case, the result must be estimated, or the actual

results computed using the base tables. Kuper and Scholl [41], suggest the possible

contribution of constraint database techniques to GIS. Nevertheless, they did not

consider spatial aggregation, nor OLAP techniques.

2.1.4 Implementation

SOLAP concepts and operators have been implemented in a commercial tool called

JMAP [1]. Han et al. [31] use OLAP techniques for materializing selected spatial

objects, and proposed a so-called Spatial Data Cube. This model only supports

aggregation of such spatial objects and not aggregation of non-spatial data subject to

geometric conditions. As for a query language Silva et al. [14] propose GeoMDQL, a

query language for SOLAP environments. This proposal, however, besides lacking an

underlying formal model, does not work over spatial data but over a data warehouse

which includes at least one geographic dimension. Thus, the language is limited to

an extension of MDX with geographic operators.

2.2 Moving Objects

The field of moving object databases (MODs) has been extensively studied in the last

ten years, specially regarding data modeling and indexing. Güting and Schneider [29]

provide a good reference to this large corpus of work.
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2.2.1 Trajectory Query Languages

Wolfson et al. [72] stated a set of capabilities that a moving object database must

have, and introduced the DOMINO system, which develops those features on top of

existing database management systems (DBMS) [71]. As moving objects report their

changes very frequently, MODs must deal with frequent updates. Thus, the proposal

consists of managing dynamic attributes instead of traditional static attributes. A

dynamic attribute changes its value continuously without being explicitly updated

(e.g. the position of an object). The main intention is to be able to analyze current

data (properties of a MO such as location and speed) to predict future positions. The

proposal does not deal with pattern detection, but introduces a new query language

called FTL (Future Temporal Language) which manages location uncertainty. For

instance, the query “which objects may/must intersect some region within the next 5

minutes?” is supported. Although they implemented MO using an object-relational

database and a GIS to allow users to interact with geographic objects within a map

(e.g. draw a region from scratch), no details are provided about the experiments,

number of MO analyzed, average length of trajectories, etc.

Hornsby and Egenhofer [33] introduced a framework for modeling MOs, which

supports viewing objects at different granularities, depending on the sampling time

interval. The idea is to model all the locations visited by an object by inferring

them from discrete samples. The basic modeling element they consider is a geospatial

lifeline, which is composed of triples of the form < Id, location, time >, where Id is the

identifier of the object, location is given by x-y coordinates, and time is the timestamp

of the observation. The possible positions of an object between two observations is

estimated to be within two inverted halfcones that conform a lifeline bead (also usually

called space-time prism), whose projection over the x-y plane is an ellipse. Thus, the

movement recorded by samples is generalized to a coarser view.

2.2.2 Trajectory Aggregation

In trajectory scenarios the idea of aggregation has been studied and it is related to

the problem of trajectory similarity. Detecting similarities among trajectories could

reduce their storage and facilitate their process.
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Existing work focuses on the spatial notion of similarity, sometimes borrowing

from the time-series analysis field. This is the approach followed by Pelekis et al. [57]

who introduce a framework consisting of a set of distance operators based on parame-

ters of trajectories like speed and direction, and propose distance operators based on

this. Frentzos et al. [19] propose an approximation method for supporting the k-most-

similar-trajectory search using R-tree structures. Meratnia and de By [50] tackle the

topic of aggregation of trajectories, identifying similar trajectories and merging them

in a single one, by dividing the area of study into homogeneous spatial units. Papa-

dias et al. [53] index historical aggregate information about moving objects. Finally,

Kuijpers et al. [39] propose a taxonomy of aggregation queries on moving object data.

2.2.3 Trajectory Pattern Detection

Data mining studies techniques to discover interesting patterns hidden in large vol-

umes of data. These techniques have also been applied to the field of MOD.

Clustering is a well-known mining algorithm for grouping together similar ob-

jects. Lee et al. [42] remark that by applying clustering to whole trajectories several

patterns could not be detected. Thus, their proposal aims at discovering common

sub-trajectories, and also use a partitioning strategy, proposing a partition-and-group

framework for clustering trajectories. For that, they produce a trajectory partition

into lines using the minimum description length (MDL) principle, and cluster those

segments to detect trajectory similarities.No temporal component is analyzed during

the mining process, i.e., they reduce trajectories to their spatial component (only the

shape of the trajectory is analyzed).

For mining trajectories constrained by road networks, Brakatsoulas et al. [9] pro-

pose to add spatial information to trajectories of moving objects. They consider to

incorporate information about the relationships between trajectories (e.g., intersect,

meets, near), and between a trajectory and the GIS environment (e.g. stay/with-

in/leave some building). They propose a mining language denoted SML (standing for

Spatial Mining Language), oriented to traffic networks. The language does not take

advantage of the particular characteristics that moving object data present. Also in

the framework of road traffic mining, Gonzalez et al. [27] use a partitioning approach
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for obtaining interesting driving and speed patterns from large sets of traffic data.

They compute frequent path-segments at the area level with a support relative to the

traffic in the area (i.e., a kind of adaptative support), and propose an algorithm to

automatically partition a road network and build a hierarchy of areas.

Classic data mining algorithms (in particular sequential pattern algorithms) can

be applied to trajectory databases if we view the latter as a collection of ordered se-

quences. Two main approaches had been followed in the field of pattern discovery in

sequences: the classic Agrawal and Srikant proposal [4], the approach of Mannila et

al. [49]. The former is aimed at discovering inter-transactions patterns, based on pre-

vious work [2, 3] dealing with detecting intra-transactions patterns. The information

to be mined is organized in transactions and the system returns the frequent sequen-

tial patterns among them. The latter, instead, considers the information to be mined

as a large single sequence. The choice of the algorithm depends on the application

domain. In their seminal work, Agrawal et al. [2, 3] propose data to be pre-processed

in a way such that each customer (in a market basket analysis scenario) is associated

with all her transactions ordered by time of occurrence. The idea is to find inter-

transaction patterns corresponding to the same customer with a certain support. An

interesting sequential pattern is one that appears in the database at least as many

times as an user-specified threshold. The support of a sequence is defined as the frac-

tion of the total number of transactions containing it. In further work, the authors

extend their proposal [65] in order to support three kinds of constraints: (a) time-

gap constraints; (b) taxonomies; (c) time windows. The resulting algorithm is called

Generalized Sequential Patterns (GSP). Although many frequent sequential patterns

could be obtained using GSP, it is likely that only a few of them could be relevant

to the user. To avoid this situation, Garofalakis et. al. [20, 21] propose a variation

of the GSP algorithm, denoted SPIRIT, where user-defined regular expressions are

used to prune the information obtained. Apriori-like algorithms are based on the

anti-monotony property. Although they take advantage of pruning, they generate

a generally huge number of candidate frequent patterns. To improve this, pattern-

growth methods have been proposed to avoid the generation of candidate sequences:

FreeSpan [30] and PrefixSpan [55]. In these methods, so-called projected databases



15

are built recursively, and these smaller databases are scanned to find locally frequent

sequences, avoiding scanning the original sequence database. These methods find the

full set of frequent subsequences. Then, constraint-based sequential pattern mining

based on constructing projected databases have been studied [56]. Further, to avoid

generating patterns that could be obtained from other ones, Yan et al. introduce the

CloSpan algorithm [74], which reduces the number of generated patterns by mining

only frequent closed subsequences, i.e., those containing no super-sequence with the

same support.

It is worth to remark that none of these sequential pattern mining algorithm

could be applied directly to raw trajectories, since the former are based on detecting

coincidence of object’s identifiers (nominal or integer), for instance, ISBN of books,

employee ID. Imagine that two sequences of positions of different objects, i.e., two

trajectories, could be similar enough but it is unrealistic to expect that their samples

(locations) coincide.

2.2.4 Semantic Trajectories

Techniques that add semantic information to trajectory data have been recently pro-

posed. Mouza and Rigaux [16] present a model where trajectories are represented

as a sequence of moves (zones represented by labels or IDs). They propose a query

language based on regular expressions aimed at obtaining so-called mobility patterns.

We postpone the analysis of this proposal to Chapter 6, where we compare it with

the language we present in this thesis.

Giannotti et al. [22] study trajectory pattern mining, based on Temporally Anno-

tated Sequences (TAS), an extension of sequential patterns, where there is a temporal

annotation between two nodes. In this way, ‘s1; 2; s2’ defines a pattern that starts at

s1 and after 2 seconds arrives at s2. In other words, a trajectory pattern is a set of

trajectories that visit the same sequence of places with similar travel times between

each one of them. They also propose three different mining methods and introduce

the concept of Region of Interest (RoI) which is dynamically computed from the

trajectories.

With a similar idea, Damiani et al. [64] introduce the concept of stops and moves,
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in order to enrich trajectories with semantically annotated data. Alvares et al. [5]

presented a framework for trajectory analysis based on stops and moves. The concept

of Stop differ from the RoI. The former is application-dependant, defined in advance

and really relevant to a trajectory. The latter is detected dynamically. Their work

proposes how to compress trajectories with the notion of stops and moves, and use

SQL to ask for trajectories which satisfy some conditions. No mining algorithm is

discussed to detect patterns within trajectories.

2.3 Summary

We have reviewed proposals in the field of SOLAP and Moving Object databases that

are relevant to this thesis. In the following chapters, as we introduce our proposal,

we compare it with the work discussed here.



Chapter 3

Data Model

In this chapter, we present a general framework to integrate OLAP and spatial data

in a single framework. We introduce a formal model and query language and compare

our approach with existing proposals.

3.1 An Introductory Example

We begin with an example that motivates our proposal. We selected five layers with

geographic features obtained from the spatial library of the GIS Center1, containing

cities, districts, provinces, regions and rivers in Belgium. Cities are represented by

points, rivers by polylines and the other ones as polygons, as shown in Figure 3.1. Also

numerical and textual information on the geographic components exists (e.g., number

of potatoes cultivated per hectare, number of agricultural employees, area), stored as

usual in a GIS. There is also a data warehouse that we created for this case study (i.e.,

it does not correspond to a real world situation), about sales in Belgium. It has a store

dimension, a product dimension and a time dimension. Dimensions are organized in

hierarchies. In particular, the store dimension contains the following spatial hierarchy

(represented by means of non-geometric data): Store Name → City→ District →

State → Country. The measures of the cube are Unit Sales, Store Cost, Store Sales

and Number of Products Sold. There are also fact data about sales. In this scenario,

sales information could be analyzed in the light of geographical features. For instance,

we can ask for “Unit Sales and Store Cost for stores in districts which belong to

1http://giscenter-sl.isu.edu

17
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Figure 3.1: Layers in Belgium Map

provinces crossed by at least 5 rivers”. In this case, information about regions could

be stored in a GIS layer, instead of in the data warehouse. Notice that this query

returns spatial data but the result is constrained by OLAP data.

3.2 Piet Data Model

In our proposal, denoted Piet (after Piet Mondrian, the painter whose name was

adopted for the open source OLAP system that we also use in our implementation), is

aimed at integrating in a single model, spatial and non-spatial information, probably

produced independently from each other. We assume, without loss of generality, that

non-spatial data are stored in a data warehouse following the standard OLAP notion

of dimension hierarchies and fact tables [10, 35]. We denote this approach loosely-

coupled, given that warehouse and spatial data are maintained independently from

each other. The main component of the model is denoted a GIS dimension. A GIS

dimension consists, as usual in databases, in a dimension schema that describes its

structure, and dimension instances. Each dimension is composed of a set of graphs,
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each one describing a set of geometries in a thematic layer. Figure 3.2 depicts a GIS

dimension schema, with three graphs representing three different layers, following our

running example: rivers (Lr), airports (La), and districts (Ld), respectively. Typically,

each layer contains a set of binary relations between geometries of a single kind

(although the latter is not mandatory). For example, an instance of the relationship

(line,polyline) stores the identifiers of the lines belonging to a polyline. We define three

sectors, denoted the Algebraic part, the Geometric part, and the Classical OLAP part.

• Algebraic part : Is the lowest level (i.e., the level with the finest granularity)

in the dimension schema, represented by a node with no incoming edges. We

assume that this level, called ‘point’, represents points in space. Here, data in

each layer are represented as infinite sets of points (x, y), finitely described by

means of linear algebraic equalities and inequalities [40].

• Geometric part : Consists of a finite number of elements of certain geometries

(represented by geometric object identifiers). This part is used for solving the

geometric part of a query, for instance to find all polygons that compose the

shape of a country. Each point in the Algebraic part corresponds to one or more

elements in the Geometric part. Note that, for example, a point may correspond

to two adjacent polygons, or to the intersection of two or more roads. Moreover,

a line may correspond to more than one polygon. There is also a distinguished

level, denoted ‘All’, with no outgoing edges.

• OLAP part : Consists in a set of OLAP hierarchies and fact tables in the usual

OLAP sense. Dimensions can be spatial or non-spatial. In the former case, di-

mension levels can be associated with levels in the geometric part. For example,

information about districts, stored in a data warehouse, can be associated to

polygons, or information about rivers, to polylines.

Example 1. In Figure 3.2, the schema is composed of three graphs. The graph

for rivers contains edges saying that a point (x, y) in the algebraic part relates to

a line identifier in the geometric part, and that the latter corresponds to a polyline

identifier. Besides, the level polygon in layer Ld is associated with two dimension
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Figure 3.2: An example of a GIS dimension schema

levels, district and region, where district → region (“A → B” means that there is

a functional dependency from level A to level B in the OLAP part [10]). Each level

may have attributes associated, like population or income. Both layers are associated

with the OLAP part, i.e. a geometrically-represented component is associated with a

dimension level in the OLAP part. For example, the level river in the OLAP hierarchy

(a spatial dimension with non-spatial levels) is associated to the layer Lr at the level

of polyline (geometric part). Notice that since dimension levels are associated to

geometries, it is straightforward to associate facts stored in a data warehouse in the

OLAP part in order to aggregate these facts along geometric dimensions. Finally, in

the algebraic part, the relationship 〈point, polygon〉 associates infinite point sets with

polygons.

Formally, assume there is a set of layer names L, and a set G of geometry names,

which contains at least the following geometries: point, node, line, polyline, polygon

and the distinguished element “All”. Each geometry G of G has an associated domain

dom(G). The domain of Point, dom(Point), for example, is the set of all pairs in R
2.

The domain of All = {all}. The domain of the elements G of G, except Point and

All, is a set of geometry identifiers, gid, i.e., gid are identifiers of geometry instances,

like polylines or polygons.
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Definition 1. [GIS Dimension Schema] A GIS dimension schema is a tuple dGISsch =

〈H,Fatt,D〉 where H is a finite set of graphs, Fatt a set of functions, and D a set of

OLAP dimension schemas. We define these sets below.

Given a layer L ∈ L, H(L), is a graph where: (a) there is a node for each kind

of geometry G ∈ G in L; (b) there is an edge between two nodes Gi and Gj if Gj

is composed by geometries of type Gi (i.e., the granularity of Gj is coarser than that

of Gi); (c) there is a distinguished member All that has no outgoing edges; (d) there

is exactly one node representing the geometry 〈point〉 with no incoming edges. The

dimension schemas D ∈ D are tuples of the form 〈dname,Levels ,�〉, such that dname

is the name of the dimension, Levels is a set of dimension level names, and � is

a partial order between levels (see [35]). Finally, Fatt contains partial functions

(denoted Att) mapping attributes in OLAP dimensions to geometries in the layers.

Example 2. The GIS dimension depicted in Figure 3.2 has the schema: dGISsch =

〈{(H1(Lr), (H2(La), H3(Ld)}, {Att(district), Att(river)}, {Rivers, Districts}〉. In

this schema, for example, H1(Lr) = ({point, line, polyline, All}, {(point, line), (line,

polyline), (polyline, All)}). For the OLAP dimensions Rivers and Districts, the Att

functions in Fatt are: Att(district, Districts) = (polygon, Ld) (meaning that the at-

tribute district maps to polygons in layer Ld), and Att(river, Rivers) = (polyline, Lr)

(i.e., the attribute river maps to polylines in the layer Lr).

Definition 2. [GIS Dimension Instance] Let dGISsch = 〈H,Fatt,D〉 be a GIS dimen-

sion schema. A GIS dimension instance is a tuple 〈dGISsch, ralg, r, α, Dinst〉, where:

(a) ralg is a 5-ary relation representing the rollup between the algebraic and geometric

parts. Thus, it is a tuple of the form 〈Li, Gj, x, y, gid〉, where Li is a layer name, Gj is

the geometry in the geometric part to which point rolls up, x, y are the coordinates of a

point, and gid is the identifier of the object associated to x, y in the geometric part; (b)

r is a 5-ary relation representing the rollup between objects in the geometric part. It is

of the form 〈Li, Gi, Gj, gidi
, gidj
〉, where Li is a layer name, Gi and Gj are geometries
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Figure 3.3: A portion of a GIS dimension instance in Figure 3.2.

in the geometric part such that the former rolls up to the latter (i.e., there is an edge

Gi → Gj in H(Li) in dGISsch), and gidi
and gidj

are instances of these geometries.

We denote ralg and r rollup relations. The function α maps a member in a level

denote level in an OLAP dimension D, to an object gid in a geometry G in a layer

L. This mapping corresponds to the functions in Fatt. Intuitively, α provides a link

between a data warehouse instance and an instance of the hierarchy graph. Finally,

for each dimension schema D ∈ D there is a dimension instance in Dinst, composed

of a set of rollup functions [35] that relate elements in the different dimension levels

(these functions indicate how dimension level members are aggregated).

Example 3. Figure 3.3 shows a portion of an instance of the GIS dimension schema

of Figure 3.2. A member (‘Dijle’) of the level river in the OLAP dimension Rivers,

is mapped (through the function α) to the polyline pl1, in layer Lr. We show four

points at the point level {(x1, y1), . . . , (x4, y4)} (recall that the points at this level are

actually infinite and described by algebraic expressions). We also show the relations

ralg and r containing the association of points to lines and lines to polylines, respec-

tively. For example, ralg contains the tuple 〈Lr, line, x4, y4, l2〉 and r contains the tuple

〈Lr, line, polyline, lid, plid〉.
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Elements in the geometric part in Definition 1 can be associated with facts, each

fact being quantified by one or more measures, in the usual OLAP sense.

Definition 3. [GIS Fact Table] Given a Geometry G in a graph H(L) of a GIS

dimension schema, and a list M of measures (M1, . . . , Mk), a GIS Fact Table schema

is a tuple FT = (G, L, M). A Base GIS Fact Table schema is a tuple BFT =

(point, L, M), that means, a fact table with the finest geometric granularity. A GIS

Fact Table instance is a function ft mapping values in dom(G) × L to values in

dom(M1)× · · · × dom(Mk). A Base GIS Fact Table instance maps values in R
2 × L

to values in dom(M1)× · · · × dom(Mk).

Example 4. Consider a fact table containing state populations in our running exam-

ple, stored at the polygon level. The fact table schema would be (polyId, Le, population),

where population is the measure. If information about, for example, temperature

data, is stored at the point level, we would have a base fact table with schema (point,

Le, temperature), with instances like (x1, y1, Le, 25). Note that temporal information

could be also stored in these fact tables, by simply adding the time dimension to the

fact table. This would allow to store temperature information all throughout time.

Basically, a GIS fact table is a standard OLAP fact table where one of the dimen-

sions is composed of geometric objects in a layer. Classical fact tables in the OLAP

part, defined in terms of the OLAP dimension schemas can also exist. For instance,

instead of storing the population associated to a polygon identifier, as in Example 4,

this information may reside in a data warehouse.

3.3 Comparison of our proposal with Related Work

As we remarked in Chapter 2, Bédard et al. [7] propose a taxonomy where they

classify spatial dimension as non-geometric, geometric and mixed. Spatial measures

are classified as sets of pointers to geometries and numeric measures. The Piet data

model includes all these spatial dimensions. A non-geometric spatial dimension can

be found when we have a spatial hierarchy represented as non spatial data. In our
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example we have a hierarchy in the warehouse relating the name of stores, cities,

districts, states and countries. The geometric spatial dimension is the one given by

the geometries in the GIS dimension part of the model. The mixed spatial dimension

can store geometries and text. Bédard also defines two kinds of spatial measures

that would be desirable to be supported: numerical and geometric measures. The

former contains only numerical data and results, for instance, from the computation

of spatial metrics. The latter are sets of geometries corresponding to a particular

combination of dimension members from geometric or mixed spatial dimensions. We

also support both kinds of measures. In the case of numerical measures, we can apply

area, length or other operators to geometries in the GIS. In the case of geometric

measures, applying union or intersection to aggregate geometries. We remark that

we do not store the geometries in the DW as in other proposals. We store the pointers

to the geometries that bind GIS with DW (we called this a loosely-coupled approach);

thus, we apply those functions after de-referencing the pointers.

Stefanovic [66] and also Malinowski and Zimányi [46] propose to model the spatial

components in the warehouse as a star schema [37]. In their proposal they build a data

cube incorporating geometries (or pointers of geometries). These conceptual models

follow what we have denoted as a tightly-coupled approach between the GIS and OLAP

components, given that the spatial objects are included in the data warehouse. On the

contrary, we follow a loosely-coupled approach, where GIS maps and data warehouses

are maintained in a separate fashion, and bound by means of a matching function

(α). We believe that this approach favors autonomy, updating and maintenance of

the databases. In our proposal, it is only necessary to bind geographic elements in

the maps to the existing data cube(s) that integrate organizational information, and

the system is ready to receive queries.

It is worth noting that in the tightly-coupled approach it is unnatural to model

some scenarios. This occurs when there is geographic information that we may want

to include, but that is not directly related with the warehouse information. In our

running example we may want to include information about volcanoes. It would be

unnatural to include this information in a spatial star-schema.

In some sense, our proposal is similar to the one of Pourabbas [58], because her
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conceptual model binds attributes between spatial databases and a data cube. How-

ever, the model of Pourabbas requires modifying the structure of the spatial data and

relies on the assumption that all the cells in the cube contain a value, which is not

the usual case in practice, as the author expresses.

3.4 Spatial Aggregation

The formal model introduced in Section 3.2 allows us to define a formal query language

over it making use of the elements defined in the model. This language is based on

the notion of spatial aggregation. Thus, we start by defining this notion in order to

give a precise definition of the kinds of queries that our proposal addresses.

3.4.1 Geometric Aggregation

Definition 4. [Geometric Aggregation] Given a GIS dimension as introduced in Def-

initions 1 and 2, a Geometric Aggregation is the expression

∫ ∫
R2

δC(x, y) h(x, y) dx dy,

where C = {(x, y) ∈ R
2 | ϕ(x, y)}2, and δC is defined as follows:

δC(x, y) = 1 on the two-dimensional parts of C is a Dirac delta function [15]

on the zero-dimensional parts of C; and it is the product of a Dirac delta function

with a combination of Heaviside step functions [34] for the one-dimensional parts of

C. Also, ϕ is a first-order (FO) formula in a multi-sorted logic L over the reals,

geometric objects, and dimension level members. The vocabulary of L contains the

relations r, ralg, and the function α, together with the binary functions + and × on real

numbers, the binary predicate < on real numbers and the real constants 0 and 13. Also

constants for layers, dimension names, dimension level names, and geometry names

2The sets C in Definition 4 are known in mathematics as semi-algebraic sets. In the GIS practice,
only linear sets (points, polylines and polygons) are used. Therefore, it could suffice to work with
addition over the reals only, leaving out multiplication.

3The first-order logic over the structure (R, +,×, <, 0, 1) is well-known as the first-order logic
with polynomial constraints over the reals. This logic is well-studied as a data model and query
language in the field of constraint databases [40].
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may appear in L4. Atomic formulas in L are combined with the standard logical

operators ∧, ∨ and ¬ and existential and universal quantifiers over real variables,

variables for geometric objects identifiers, and variables for dimension level members.

Finally, h is an integrable function constructed from elements of {1, ft} (ft stands

for fact table), using arithmetic operations.

Note that this definition gives the basic construct for geometric aggregation queries.

More involved queries can be written as combinations of this construct (e.g., “total

number of airports per square kilometer” would require dividing the geometric aggre-

gation that computes the number of airports in the query region, by the aggregation

computing the area of such region)5.

Example 5. The following queries refer to Example 1. The layers containing rivers

and districts are labeled Lr and Ld, respectively. The population for each coordinate

in Ld is stored in a base fact table ftpop (we assume it is stored in some finite

way, i.e., using polynomial equations over the real numbers). In what follows, we

abbreviate Point, Polygon and PolyLine by Pt, Pg and Pl respectively. Also, Di and

Ri stand for the attributes district and river, respectively. Furthermore, all constants

are capitalized, to distinguish them from variables in our expressions. Finally, in the

queries below, the Dirac delta function is such that δC(x, y) = 1, inside the region C,

and δC(x, y) = 0, outside this region.

• Q1: Total population of districts within 100km from Antwerpen.

Q1 ≡

∫ ∫
C1

ftpop(x, y) dx dy,

where C1 is defined by the expression:

4We may also quantify over layer variables, dimension level variables, etc., but we have chosen
not to do this, for the sake of clarity.

5For the language L, as usual in relational database theory, we assume set semantics, while in
Chapter 4, set, bag, and mixed bag-set semantics [12] are supported through the SQL-like query
language Piet-QL.
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C1 = {(x, y) ∈ R
2 | (∃x′)( ∃y′)(∃x′′)( ∃y′′)( ∃pg1)( ∃pg2)(∃d)

(α(Ld, Districts, Di, Pg,Antwerpen) = pg1 ∧ ralg(Ld, Pg, x′, y′, pg1) ∧

α(Ld, Districts, Di, Pg, d) = pg2 ∧ ralg(Ld, Pg, x′′, y′′, pg2) ∧

pg2 6= pg1 ∧ ((x′′ − x′)2 + (y′′ − y′)2 ≤ 1002) ∧ ralg(Ld, Pg, x, y, pg2))}.

Here, α(Ld, Districts, Di, Pg, Antwerpen) maps the district of Antwerpen (an

instance of the level Di in dimension Districts), to a polygon pg1 in layer Ld.

The third and fourth lines find the districts within 100 Km of Antwerpen, and

the relation ralg(Ld, Pg, x, y, pg2), with the mapping between the points and the

polygons that satisfy the condition. We are interested in the points that belong

to pg2.

• Q2: Total population of the districts crossed by the Dijle river.

Q2 ≡

∫ ∫
C2

ftpop(x, y) dx dy,

C2 = {(x, y) ∈ R
2 | (∃x′)( ∃y′)( ∃pg1)(∃d)

(ralg(Ld, Pl, x′, y′, α(Lr, Rivers, Ri, Pl,Dijle)) ∧

α(Ld, Districts, Di, Pg, d) = pg1 ∧ ralg(Ld, Pg, x′, y′, pg1) ∧

ralg(Ld, Pg, x, y, pg1))}.

This notion of geometric aggregation characterizes a wide range of aggregate

queries over regions defined as semi-algebraic sets. Although general enough to ex-

press queries, some of them can be hard to compute in a real-world GIS environment

because they involve computing an integral over a certain area. Thus, we identify the

class of summable queries, which can be efficiently evaluated replacing this integral

with a sum of functions of geometric objects.
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3.4.2 Summable Queries

We identify a subclass of geometric aggregate queries that simplifies the computation

of the integral of the functions h(x, y) of Definition 4. In Example 5, the sets C1

and C2 return a finite set of polygons, representing districts. If the function ftpop is

constant for each district, it suffices to compute ftpop once for each polygon, and then

multiply this value by the area of the polygon. Summing up the products would yield

the correct result, without the need of integrating ftpop over the area C1 or C2. This

is exactly the subclass of queries we want to propose, those that can be rewritten as

sums of functions of geometric objects returned by condition ‘C’. We denote these

queries summable.

Definition 5. [Summable Query] A geometric aggregation query Q =∫ ∫
R2 δC(x, y) h(x, y) dx dy is summable if and only if:

1. C =
⋃

g∈G ext(g), where G is a set of geometric objects, and ext(g) means the

geometric extension of g, that is, the subset of R
2 that g occupies (e.g, a polygon

or a polyline, as a subset of R
2).

2. There exists h′, constructed using {1, ft} and arithmetic operators, such that

Q =
∑
g∈S

h′(g),

with h′(g) =
∫ ∫

R2 δext(g)(x, y) h(x, y) dx dy.

Working with less accurate functions for this type of queries means that the Base

GIS fact table instances of Definition 3 will be defined as mappings from values in

dom(G)× L to values in dom(M1)× · · · × dom(Mk) (where the elements in dom(G)

are the geometric objects g ∈ G such that ralg(L, G, x, y, g)), instead of mappings

from values in R
2 × L to values in dom(M1)× · · · × dom(Mk).

Note that Definition 5 implies that the three summarizability conditions defined by

Lenz et al. [43] must be preserved. The first two conditions (disjointness of categorical

attributes, and completeness, respectively) are satisfied by our definition of a GIS

dimension. The third condition requires function h′(g) to be summarizable over g. The
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functions we use (typically sums, averages and maximum/minimum) satisfy the third

condition in [43]. Since the integration region is replaced by geometric identifiers, set

semantics expresses correctly the most usual summable queries of interest6.

Example 6. Let us reconsider query Q2 from Example 5. The function ftpop (i.e.,

the fact table) now maps elements of dom(Polygon) to populations. Note that C ′2

returns a finite set of polygons, indicated by their ids (denoted gid).

• Q2: Total population of the districts crossed by the Dijle river.

Q2 ≡
∑

gid∈C′

2

ftpop(gid).

C ′2 = {gid | (∃x)( ∃y)(∃d)

(ralg(Lr, Pl, x, y, α(Lr, Rivers, Ri, Pl,Dijle)) ∧

α(Ld, Districts, Di, Pg, d) = gid ∧ ralg(Ld, Pg, x, y, gid))}.

Queries aggregating over zero or one-dimensional regions (such as queries requiring

counting the number of occurrences of some phenomena) can also be summable. For

example, counting the number of airports over a certain region, can be expressed as

Q ≡
∑

gid∈C 1.

Summable queries are useful in practice because, most of the time, we do not

have information about parts of an object, like, for instance, the population of a

part of a district. On the contrary, populations are often given by totals per district

or province, etc. In this case, we may divide the district, for example, in a set of

sub-polygons such that each sub-polygon represents a neighborhood. Thus, queries

asking for information on such neighborhoods become summable.

6This can be extended to support bag semantics [28, 38], at the expense of increasing the presen-
tation formal overload, and we chose to avoid this. Moreover, queries requiring bag semantics, like
“Total number of rivers in Antwerpen and Ghent” (where, if a river crosses both district must be
counted twice), can be written using combinations of the basic construct (splitting the query and
adding the results), as we commented in Section 3.4.1.
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3.5 Summary

In this chapter we introduced a formal model that integrates GIS and OLAP ap-

plications in an elegant way, and formalized the notion of spatial aggregation that

characterizes a wide range of aggregate queries over regions defined as semi-algebraic

sets. We also identified a class of queries, denoted summable, which can be evaluated

efficiently without accessing the algebraic part of the GIS dimensions. This formal

language constitutes the formal basic for a more user-friendly language, Piet-QL, that

we introduce next.



Chapter 4

Piet-QL : A Query Language for

Piet

We now present a query language based on the formal one introduced in Chapter 3.

We provide the syntax and semantics of the language and a comprehensive set of

examples that illustrate its use.

4.1 Language Design

The language was designed along the lines of the syntax of the OpenGIS1 and MDX

standard operators, in order to be familiar to users of GIS and OLAP worlds. Be-

sides, the operators and functions proposed by OpenGIS are supported. The idea

underlying the choice of combining the two languages was to preserve the GIS and

OLAP standards as much as possible. Typically, four kinds of queries need to be

supported in an OLAP and GIS integrated scenario:

• GIS queries filtered by geometric conditions.

• GIS queries filtered by OLAP conditions.

• OLAP queries filtered by geometric conditions.

• OLAP queries filtered by OLAP conditions.

1The Open Geospatial Consortium,Inc, http://www.opengeospatial.org/standards/sfs

31
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In fact, the first and last ones were introduced to give completeness to the lan-

guage, in the sense that the language can be also able to support standard OLAP

and GIS queries.

4.2 Piet-QL by Example

We first provide a comprehensive set of examples to illustrate the capabilities of Piet-

QL using our running example. Note that in this example we have a non-spatial

hierarchy in the OLAP part, containing only non-spatial elements. On the other

hand, the maps in the GIS part define mixed hierarchies, that we need to adapt in

order to obtain consisten answers to the queries. In this case, the name of the levels

do not coincide, and there are levels in one hierarchy that cannot match any level in

the other one. Figure 4.1 depicts the hierarchy mapping. Thus, in the queries, ‘state’

will have the same meaning as ‘province’ (actually, Belgium is divided in provinces).

Figure 4.1: The store dimension in OLAP (left). The mixed spatial dimension in GIS
(right)

Example 7. Q1 (OLAP-GIS): “Unit Sales, Store Cost and Store Sales of stores in

districts crossed by the Dijle river, in 2007”, this query reads in Piet-QL:
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SELECT CUBE [Measures].[Unit Sales], [Measures].[Store Cost],

[Measures].[Store Sales] ON COLUMNS

FROM [Sales]

WHERE [Store].[All Stores] IN(

SELECT GIS bel_prov

FROM bel_prov, bel_river

WHERE ST_INTERSECTS(bel_river.the_geom,bel_prov.the_geom)

AND bel_river.name=’Dijle’

)

SLICE [Time].[2007]

Here, the keyword CUBE indicates that an OLAP query follows (and cube elements

will be returned). Analogously, the keyword GIS indicates that a spatial query follows

(and spatial elements will be returned) The geometric part corresponds to the inner

subquery and returns provinces crossed by the Dijle river. The OLAP part returns

the information of sales constrained by stores in these provinces, by using the IN

predicate.

Example 8. Q2 (OLAP-GIS): “Unit Sales of stores in cities which belong to provinces

crossed by rivers. The analysis is constrained to single customers who purchased

something during 2007”. The query reads:

SELECT CUBE [Measures].[Unit Sales] ON ROWS,

[Product].[All Products] ON COLUMNS

FROM [sales]

WHERE [Store].[All Stores].[Store City] IN(

SELECT GIS bel_city

FROM bel_city, bel_prov AS bp, bel_river AS lr

WHERE Intersects(bp, lr) AND Contains(bp,bel_city)

)

SLICE ([Marital Status].[All Marital Status].[S], [Time].[2007])
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This query is similar to Q1, but here we use a slice to filter specific conditions

not only about the year of the sales but also about features of the customer dimension

(although the information of this dimension is not displayed in the result).

Example 9. Q3 (Pure OLAP): “Store Sales and Store Cost for products and promo-

tion media offered by stores in provinces (states) with sales greater than 5000”. This

query reads:

SELECT CUBE [Measures].[Store cost],

[Measures].[Store sales] ON COLUMNS,

[Promotion Media].[All Media],

[Product].[All Products] ON ROWS

FROM [Sales]

WHERE [Store].[All Stores] IN(

SELECT CUBE filter([Store].[All Stores].[BELGIUM].Children,

[Measures].[Unit Sales]>5000)

FROM [SALES] )

Here, all the parts are solved by the OLAP engine. The inner subquery, via the

MDX expression [BELGIUM].Children, finds provinces (since in the store hierarchy

provinces aggregate over countries) with stores with units sales greater than 5000.

Example 10. Q4 (GIS-OLAP): “Names and geometries of cities of Belgium in the

Nijvel district such that their stores had sales during 2007”. The query reads:

SELECT GIS bel_city.name, bel_city.the_geom

FROM bel_city

WHERE bel_city IN(

SELECT CUBE filter([Store].[Store District].[Nijvel].Children,

[Measures].[Unit Sales]>0)

FROM [Sales]

slice [Time].[2007] )
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The OLAP part corresponds to the inner subquery, which returns cities in the

Nijvel district with stores that sold something during 2007. Remark that this subquery

returns cities, i.e. identifiers.

Example 11. Q5 (GIS-OLAP): “Names and geometries of cities in provinces crossed

by the river Dijle. Restrict these cities to the ones with sales greater than 5000 and

that belong to provinces with stores that sold more than 100000 units”

SELECT GIS lc1.name, lc1.the_geom

FROM bel_city AS lc1, bel_prov AS lp2, bel_river AS lr2

WHERE contains(lp2, lc1) AND

intersects(lp2, lr2) AND lr2.name=’Dijle’

AND lc1 IN(

SELECT CUBE

filter([Store].[Store City].Members,

[Measures].[Unit Sales]>5000)

FROM [Sales])

AND lp2 IN(

SELECT CUBE

filter([Store].[Store State].Members,[Measures].

[Unit Sales]>100000)

FROM [Sales])

Here we have two OLAP inner queries. The former about cities, the latter about

provinces. The GIS outer query uses both of these lists in its WHERE clause.

Example 12. Q6 (Pure GIS): “Names and geometries of cities in provinces crossed

by a river”
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SELECT GIS bel_city.name, bel_city.the_geom

FROM bel_city

WHERE ( bel_city IN(

SELECT GIS bel_city

FROM bel_city, bel_prov, bel_river

WHERE INTERSECTS(bel_prov.the_geom, bel_river.the_geom ) AND

CONTAINS(bel_prov.the_geom,bel_city.the_geom) ))

This is a typical spatial query. Although it could be expressed in only one query,

we use the IN predicate to illustrate Piet-QL features.

4.3 Syntax

Listing 4.1 depicts the syntax of Piet-QL in Backus-Naur Form.

The language uses the basic data types Number (real, integer) and String. Geo-

metric data, like Point, Linestring and Polygon, Multi-Point (collections of Points),

Multi-Linestring (collections of Linestrings) and Multi-Polygon (collections of Poly-

gons) are expressed via strings in OpenGIS. For example, ‘Point(10 20)’, ‘Line(5 10,

16 2)’ and ‘Polygon((10 20, 30 30, 50 20, 10 20))’ are valid geometries in Piet-QL.

We define the sets:

• Layers: a set of thematic layers in GIS.

• Geometries: a set of points, lines, polygons that belong to a GIS layer.

• GISIDs: a set of the identifiers of the elements in Geometries.

• Attributes: a set of attributes of a geometric object in a layer.

• Cubes: a set of OLAP data cubes.

• Members: a set composed of all members in a data cube, according to the MDX

specification. For instance, in the path Argentina.BuenosAires each element is

a member in the hierarchy of a geographic dimension going from country to

province.
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• Levels: a set composed of all levels in a data cube, according to the MDX

specification. For instance, city and country are levels in the hierarchy of a

geographic dimension.

• Dimensions: a set composed of all dimensions in a cube.

• Measures: a set composed of all measures in a cube.

• GISOLAP Tuples: a set of tuples that associate a geometric object with a

dimension member. This means that there is a tuple (m, i) such as m ∈Members

and i ∈ GISIDs.

The syntax shown in Listing 4.1 uses the following terminal symbols:

• LITERAL$: a basic data type.

• GIS ATTR$: references an attribute in the set Attributes, associated to a ge-

ometry of a layer. For instance, layer city.name references the name of each

geometry in a city layer.

• GIS LAYER$: references a GIS layer in the set Layers.

• GIS FN$: one of the following GIS functions:

– Buffer or ST Buffer2

Syntax:

Buffer: Geometries × Number → Geometries

ST Buffer: Geometries × Number → Geometries

– Area or ST Area

Syntax:

Area: Geometries → Number

ST Area: Geometries → Number

2Most of the functions and predicates in GIS have two similar notations. This is because there
exist two specifications for spatial operators: OpenGIS and SQL/MM Part 3. Their differences are
not substantial, but after several years, OpenGIS adopted SQL/MM operators.
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– Length or ST Length

Syntax:

Length: Geometries → Number

ST Length: Geometries → Number

– Intersection or ST Intersection

Syntax:

Intersection: Geometries × Geometries → Geometries

ST Intersection: Geometries × Geometries → Geometries

• GIS PREDICATE$: one of the following GIS predicate:

– Intersects or ST Intersects

Syntax:

Intersects: Geometries × Geometries → Boolean

ST Intersects: Geometries × Geometries → Boolean

– Contains or ST Contains

Syntax:

Contains: Geometries × Geometries → Boolean

ST Contains: Geometries × Geometries → Boolean

– Within or ST Within

Syntax:

Within: Geometries × Geometries → Boolean

ST Within: Geometries × Geometries → Boolean
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– Crosses or ST Crosses

Syntax:

Crosses: Geometries × Geometries → Boolean

ST Crosses: Geometries × Geometries → Boolean

– Overlaps or ST Overlaps

Syntax:

Overlaps: Geometries × Geometries → Boolean

ST Overlaps: Geometries × Geometries → Boolean

– Touches or ST Touches

Syntax:

Touches: Geometries × Geometries → Boolean

ST Touches: Geometries × Geometries → Boolean

• OLAP FN$: At this time we support the following filtering function:

– Filter

Syntax:

Filter: 2Members × Expressions → 2Members

Where ‘Expressions’ is a set of comparison predicates with infix notation.

∗ Comparison predicates, one of =, >, <, <=, >=, <>

Syntax:

operator: Measures × Number → Boolean

• OLAP CUBE$: references an OLAP data cube in Cubes.

• OLAP MEMBER$: references a member in the set Members.

• OLAP LEVEL$: references a level in the set Levels.
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• General predicate:

– IN

Syntax:

IN: GISIDs × 2GISIDS → Boolean

IN: GISIDs × 2Members → Boolean

IN: Members × 2GISIDS → Boolean

IN: Members × 2Members → Boolean

4.4 Semantics

4.4.1 GIS

OpenGIS predicates follow the so-called calculus-based method (CBM)[11]. The CBM

allows to model the topological relationships between two 2-D spatial objects (point/-

multipoint, line/multiline, polygon/multipolygon). To be more precise, let us intro-

duce some concepts that allows to define those topological relationships:

• A point set S in R
2 is open if for each of its points p there exists an ǫ ∈ R, ǫ >

0, such that the disk with radius ǫ and center p is contained in S. S is closed if

R
2 - S is open.

• A spatial object is a non-empty set of points.

• The interior of a spatial object is the largest open set contained in it. The

interior of a geometry g is called I(g).

• The closure of an spatial object is the intersection of all closed sets that contain

it.

• The boundary of a spatial object is the difference between its closure and its

interior.

• The exterior of a spatial object (with respect to the embedding space R
2, also

so-called complement) is the difference between R
2 and its closure.
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• The dimensionality of a geometry g is called d(g). For points/multipoints,

lines/multilines and polygons/multipolygons the dimensionality is 0, 1 and 2,

respectively.

We remark that the boundary of a line is composed by its starting and ending

points (could be more than one), the other points are their interior. Besides, a point

has interior but not boundary.

Now, we are ready to define the semantics of the Piet-QL predicates as follows:

• Intersects(g1, g2) or ST Intersect(g1, g2): Returns TRUE if g1 ∩ g2 6= φ. Oth-

erwise, returns FALSE.

• Within(g1, g2) or ST Within(g1, g2): Returns TRUE if

g1 ∩ g2 = g1 ∧ I(g1) ∩ I(g2) 6= φ. Otherwise, returns FALSE.

• Contains(g1, g2) or ST Contains(g1, g2): Returns TRUE iff Within(g2, g1).

• Overlaps(g1, g2) or ST Overlaps(g1, g2): Returns TRUE if

dim(I(g1)) = dim(I(g2)) = dim(I(g1) ∩ I(g2)) ∧ g1 ∩ g2 6= g1 ∧ g1 ∩ g2 6= g2.

Otherwise, returns FALSE. Remark that if dim(I(g1)) 6= dim(I(g2)), returns

FALSE.

• Crosses(g1, g2) or ST Crosses(g1, g2): Returns TRUE if

((dim(g1) 6= 2 ∨ dim(g2) 6= 2) ∧ (dim(g1) 6= 0 ∨ dim(g2) 6= 0)) ∧

dim(I(g1)∩I(g2)) < max(dim(I(g1)), dim(I(g2))) ∧g1∩g2 6= g1 ∧g1∩g2 6= g2.

Otherwise, returns FALSE. Remark that if both geometries are polygon or both

are points, returns FALSE.

• Touches(g1, g2) or ST Touches(g1, g2): Returns TRUE if

d(g1) 6= 0∧ d(g2) 6= 0∧ Int(g1)∩ Int(g2) = φ∧ g1∩ g2 6= φ. Otherwise, return

FALSE. Remark that if both geometries are points, returns FALSE.

The semantics of the functions are defined as follows:
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• Buffer(g, n) or ST Buffer(g, n). Returns a geometry containing all points whose

distance from g is less than or equal to the distance expressed by n.

• Area(g) or ST Area(g): Returns the area of the geometry g if d(g) = 2. Other-

wise, returns 0.

• Length(g) or ST Length(g): Returns the area of the geometry g if d(g) = 1.

Otherwise, returns 0.

• Intersection(g1, g2) or ST Intersection(g1, g2): Returns the set g1 ∩ g2.

4.4.2 OLAP

We manage only one function, called filter. Recall that this expression is of the

form: filter(m, e) The semantics is that filter(m, e) returns a new set composed by

those elements in m which verify the MDX logical expression e. For example, fil-

ter([Store].[Store City].Members, [Measures].[Unit Sales]>5000), returns those mem-

bers in stores in cities with sales greater than 5000. The semantics of the MDX logical

expression has the usual first order logic meaning.

4.4.3 GIS-OLAP and OLAP-GIS

The predicate IN materializes the filter between GIS-OLAP or OLAP-GIS queries.

Recall that this infix predicate is of the form: id IN (setofIDs), where id could be

a spatial object identifier or an OLAP member. It has the following meaning: the

predicate returns TRUE if the ‘id’ belongs to the set of identifiers. These identifiers,

depending on the type of query, can be of spatial or non-spatial type. In other words,

a IN S returns TRUE if (a, x ) is a gisolap tuple, and x ∈ S.

4.4.4 Clauses

We summarize Piet-QL semantics in Table 4.1. Given that we have defined four basic

forms of a query, in the first three columns on the left we indicate which component

the clause in the fourth column applies to. For example, the third line in the table



43

indicates that the SELECT CUBE statement applies to a sub-query in a query of GIS-

OLAP type, and the fifth column explains the semantics of the OLAP sub-query.

Applies to query Clause Semantics

GIS OLAP SUB

SELECT CLAUSE

NO YES NO SELECT CUBE <olap-list>

ON ROWS [<olap-list> ON

COLUMNS <olap-from-clause>

Selects the members and/or levels of the cube

in <olap-from-clause>. Also indicates the axes

in which the results will be returned (rows or

columns). Each element selected must belong

to the cube mentioned in <olap-from-clause>

YES NO NO SELECT GIS <gis-list> <gis-

from-clause>

Selects the attributes of the GIS layers defined

in <gis-from-clause>. Each element selected

must belong to some layer in <gis-from-clause>

NO NO YES SELECT CUBE

OLAP MEMBERS$ <olap-from-

clause>

Selects the members whose ids will be used in

the IN predicate of which subquery is an argu-

ment.

NO NO YES SELECT GIS GIS LAYER$ <gis-

from-clause>

Selects a layer from <gis-from-clause>. The

identifiers in this layer are used for evaluating

the IN predicate associated to the subquery

FROM CLAUSE

NO YES YES ... FROM OLAP CUBE$ Defines the cube over which the query will be

executed. Only one cube is allowed.

YES NO YES ... FROM <layer-list> Defines the GIS layers that will participate in

the query. The semantics is SQL-like, i.e., the

cartesian product of the geometric elements in

the layers mentioned in <layer-list>

WHERE CLAUSE

NO YES YES ... WHERE <olap-filter> Selects the tuples that verify the <olap-filter>

predicate.

YES NO YES ... WHERE <gis-filter> Filters the results of the cartesian product of

the elements in <layer-list> allowing the tuples

that verify the predicate <gis-filter>

SLICE CLAUSE

NO YES YES ... SLICE <olap-list> Takes the portion of the cube corresponding to

<olap-list>. All the members in the <olap-

list> must belong to different dimensions.

Table 4.1: Piet-QL Semantics
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Listing 4.1: Piet-QL Syntax

1 <query> : := SELECT GIS <g i s−heading> | SELECT GIS D i s t i n c t ( <g i s−heading> ) |

SELECT CUBE <olap−heading>

2

3 <g i s−heading> : := <g i s− l i s t > <g i s−from−c l ause> [ <g i s−where−c l ause> ] [ <group

−by−c l ause> ]

4 <g i s− l i s t > : := GIS ATTR$ [ , <g i s− l i s t > ] | GIS FN$ [ , <g i s− l i s t > ]

5 <g i s−f r om c lause> : := FROM < l a y e r l i s t >

6 <l ayer− l i s t > : := GIS LAYER$ [ , <l ayer− l i s t > ]

7 <g i s−where−c l ause> : := WHERE <g i s− f i l t e r >

8 <g i s− f i l t e r > : := <g i s−pred i cate > AND <g i s− f i l t e r > | <g i s−pred i cate > OR <g i s−

f i l t e r > | [NOT] ( <g i s− f i l t e r > )

9 <g i s−pred i cate > : := GIS ATTR$ IN ( <s i ng l e−r e su l t−subquery> ) | GIS PRED$ |

GIS FN$ = LITERAL$ | GIS ATTR$ = LITERAL$

10 <group−by−c l ause> : := <g i s− l i s t >

11

12 <olap−heading> : := <olap− l i s t > ON ROWS [ <olap− l i s t > ON COLUMNS ] <olap−from−

c l ause> [ <olap−where−c l ause> ] [ <olap−s l i c e −c l ause> ] | <olap− l i s t > ON

COLUMNS [ <olap− l i s t > ON ROWS ] <olap−f r om c lause> [ <olap−where−c l ause> ]

[ <olap−s l i c e −c l ause> ]

13 <olap− l i s t > : := OLAP MEMBER$ [ , <o l a p l i s t > ] | OLAP LEVEL$ [ , <olap− l i s t > ]

| OLAP FN$ [ , <g i s− l i s t > ]

14 <olap−from−c l ause> : := FROM OLAP CUBE$

15 <olap−where−c l ause> : := WHERE <olap− f i l t e r >

16 <olap− f i l t e r > : := <olap−pred i cate > [ OR <olap− f i l t e r > ] | [NOT] ( <olap− f i l t e r

> )

17 <olap−s l i c e −c l ause> : := SLICE <olap− l i s t >

18 <olap−pred i cate > : := OLAP MEMBER$ IN ( <s i ng l e−r e su l t−subquery> ) |

OLAP LEVEL$ IN ( <s i ng l e−r e su l t−subquery> ) | OLAP FN$ IN ( <s i ng l e−

r e su l t−subquery> )

19

20 <s i ng l e−r e su l t−subquery> : := SELECT GIS GIS LAYER$ <g i s−from−c l ause> [ <g i s−

where−c l ause> ] | SELECT CUBE OLAP MEMBER$ <olap−from−c l ause> [ <olap−

where−c l ause> ] [ <olap−s l i c e −c l ause> ] |

21 SELECT CUBE OLAP LEVEL$ <olap−from−c l ause> [ <olap−where−c l ause> ] [ <olap−

s l i c e −c l ause> ] |

22 SELECT CUBE OLAP FN$ <olap−from−c l ause> [ <olap−where−c l ause> ] [ <olap−s l i c e −

c l ause> ] |
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4.5 Implementation Details

In our implementation, data is stored in the PostgreSQL3 RDBMS. To solve the ge-

ometric part of a query related to the geometric section of the data model, we use

Postgis4, a plugin that adds support for geographic objects to the PostgreSQL. Ac-

tually, it enhances PostgreSQL by allowing to use it as a backend spatial database

for geographic information systems. PostGIS follows the OpenGIS “Simple Features

Specification for SQL” and has been certified as compliant with the “Types and Func-

tions” profile. As our framework was developed in Java5, we use the JTS Topology

Suite6 library, a wrapper for manipulating 2-dimensional linear geometries and also

conforms to the Simple Features Specification for SQL published by the Open GIS

Consortium. To solve the OLAP part of a query related to the OLAP section of the

data model, we use Mondrian7, a ROLAP server written in Java. Finally, our client

is based on OpenJUMP8, a Java-based GIS software.

When a Piet-QL query is submitted a parser decomposes it into the GIS and

OLAP parts, and each one of them is executed in its corresponding engine, the former

in Postgres/Postgis and the latter on Mondrian Server. The query is split into GIS

and OLAP parts using IN predicate. The inner query is executed first, and the

intermediate result set obtained is used. This result set is used to rewrite the external

query. In order to clarify the process we next show two queries. The first one is a GIS

query filtered by OLAP one. The latter is the opposite case (i.e., an OLAP query

filtered with a GIS query).

Example 13. We begin with the GIS-OLAP query Q7: “Names and geometries of

districts crossed by the river Nete, only for those districts which contain at least one

city with stores where sales have been greater than 5000”.

This query is expressed in Piet-QL as shown in Listing 4.2

3http://www.postgresql.org.
4http://www.postgis.org.
5http://java.sun.com.
6http://www.vividsolutions.com/jts.
7 http://mondrian.pentaho.org.
8 http://www.openjump.org.
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Listing 4.2: GIS-OLAP Piet-QL query

1 SELECT GIS d i s t i n c t ( b e l d i s t . name , b e l d i s t . the geom )

2 FROM b e l c i t y , b e l d i s t , b e l r i v e r

3 WHERE Contains ( b e l d i s t , b e l c i t y ) AND I n t e r s e c t s ( b e l d i s t , b e l r i v e r ) AND

4 b e l r i v e r . name= ’Nete ’ AND b e l c i t y IN (

5 SELECT CUBE f i l t e r ( [ S tore ] . [ S tore Ci ty ] . Members ,

6 [ Measures ] . [ Unit Sa l e s ] >5000) FROM [ Sa l e s ] )

Since the outer query is a GIS one, its result could be visualized in a map. In

fact, there are 40 of the 43 districts in Belgium which are crossed by rivers. But only

three of them contain a city with sales greater than 5000 (in our running example),

namely, Antwerpen, Mechelen and Turnhout. Only the first two districts are crossed

by the Nete river as shown in Figure4.2.

Figure 4.2: Visualizing in OpenJump the result of GIS-OLAP query Q7 in Example
13

The parser fist identifies two subqueries using the IN predicate: the subquery from

lines 7 to 8 in Listing 4.2 is the inner one and it is solved first. Since the expression

begins with SELECT CUBE, it is an OLAP subquery, thus, it is translated to MDX as



47

follows:

SELECT filter([Store].[Store City].Members,

[Measures].[Unit Sales]>5000) ON ROWS

FROM [Sales]

and is executed on the Mondrian server. The result set obtained is shown in

Table 4.2 and corresponds to cities with stores with sales greater than 5000.

Cities Antwerpen Essen Lier Ravels
Sales 49,113 25,635 75,764 116,261

Table 4.2: Cities with stores that have sales greater than 5000

The IN predicate needs the GIS identifiers of those cities. Thus, the GIS-OLAP

metadata should be queried. As we explained in Chapter3, the GIS layer city has a

binding with OLAP data, it is stored in the GIS-OLAP metadata. We only show the

portion of interest of these metadata in Listing 4.3

Listing 4.3: Portion of GIS and GIS-OLAP Metadata

1 <?xml v e r s i on =”1.0”?>

2 <GISSchema name=”FoodMart ”

3 xmlns : x s i=”h t t p ://www.w3 . org /2001/XMLSchema−i n s t anc e ”

4 x s i : noNamespaceSchemaLocation=”Pi e t . xsd”>

5 . . .

6 <!−−Ci ty l ayer−−>

7 <Layer name=” b e l c i t y ” t a b l e=” b e l c i t y ” primaryKey=”PIET ID”

8 geometry=”the geom” d e s c r i p t i o nF i e l d=”name”>

9 . . .

10 <OLAPRelation t a b l e=” g i s o l a p c i t i e s ”

11 g i s I d=” g i s i d ” o l ap Id=”o l a p i d ”

12 olapDimensionName=”Store ” olapLevelName=”Store Ci ty”>

13 <OlapTab le name=”s t o r e ” i d=” c i t y i d ”

14 hierarchyNameFie ld =” s t o r e c i t y ”/>

15 </OLAPRelation>

16 </Layer>

17 . . .

18 </GISSchema>
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In line 10 of Listing4.3, we can see that the name of the mapping table is gis olap cities,

and the attributes are denoted gisid and olapId for GIS and OLAP, respectively.

Thus, joining gis olap cities and the Store dimensional table Store, we can find the

ids of those cities on the GIS side. In our example these values are 111, 243, 412

and 528. Now, we can rewrite the GIS subquery with these ids, obtaining an SQL

expression that can be run in the PostgreSQL database:

SELECT distinct bel_dist.name, bel_dist.the_geom

FROM bel_city , bel_dist , bel_river

WHERE Contains(bel_dist.the_geom, bel_city.the_geom) AND

Intersects(bel_dist.the_geom, bel_river.the_geom) AND

bel_river.name= ’Nete’ AND

bel_city.piet_id IN (111, 242, 412, 528)

Example 14. The analysis of a OLAP-GIS query is a bit more involved, because the

MDX expression must be rewritten, but there is no such IN predicate in the MDX

language. Suppose we submit the query Q8: “Unit Sales, Store Cost and Store Sales

for the products and promotion media offered by stores in districts crossed by rivers,

in 2007”. This query is expressed in Piet-QL as shown in Listing 4.4

Listing 4.4: OLAP-GIS Piet-QL query

1 SELECT CUBE [ Measures ] . [ Unit Sa l e s ] , [ Measures ] . [ S tore Cost ] ,

2 [ Measures ] . [ S tore Sa l e s ] ON COLUMNS,

3 [ Promotion Media ] . [ A l l Media ] , Product . [ A l l Products ] ON ROWS

4 FROM [ Sa l e s ]

5 WHERE [ Store ] . [ A l l S t o r e s ] IN (

6 SELECT GIS b e l d i s t

7 FROM b e l d i s t , b e l r i v e r

8 WHERE i n t e r s e c t s ( b e l r i v e r , b e l d i s t ) )

9 SLICE [ Time ] . [ 2 0 0 7 ]
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The outer query is an OLAP one. Thus, its result could be browsed, rolled up,

sliced, etc. The result is show in Figure4.3.

Figure 4.3: Visualizing in a web browser the result of the OLAP-GIS query Q8 of
Example 14

The parser identifies two subqueries using the IN predicate: the subquery from

lines 6 to 8 in Listing 4.4 is the inner one and it is solved first. Since the expression

begins with SELECT GIS, i.e. it is a GIS subquery. First, it is translated into SQL:

SELECT bel_dist.piet_id

FROM bel_dist, bel_river

WHERE intersects(bel_river.the_geom,bel_dist.the_geom)

and can be executed in PostgreSQL database. The result set contains the 40 dis-

tricts of Belgium crossed by rivers. Analogously to the previous example, we query
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the GIS-OLAP metadata to find out the name of the table which contains the binding

between OLAP ids and GIS ids. In this case the table is gis olap districts. Thus,

joining the gis olap districts and the table where the district layer is stored (bel dist),

we can find the ids of the districts on the OLAP side. Then, we must build the hier-

archy in the OLAP store dimension using the OLAP metadata. Figure 4.4 shows the

Store dimension table containing this information, that is used to build the following

MDX expressions:

[Belgium].[Antwerpen].[Antwerpen],

[Belgium].[Antwerpen].[Mechelen],

[Belgium].[Antwerpen].[Turnhout],

[Belgium].[Brabant].[Brussel-Hoofdstad],

[Belgium].[Bravant].[Nijvel],

[Belgium].[Namue].[Namen]

Figure 4.4: The members and levels used to build the hierarchy

Finally, the original OLAP query is rewritten as a crossjoin of these hierarchies

and run on the Mondrian OLAP server:
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SELECT {[Measures].[Unit Sales],[Measures].[Store Cost],

[Measures].[Store Sales]} ON COLUMNS,

Crossjoin( Hierarchize(

{[Store].[All Stores].[Belgium].[Antwerpen].[Antwerpen],

[Store].[All Stores].[Belgium].[Namur].[Namen],

[Store].[All Stores].[Belgium].[Brabant].[Nijvel],

[Store].[All Stores].[Belgium].[Brabant].[Brussel-Hoofdstad],

[Store].[All Stores].[Belgium].[Antwerpen].[Mechelen],

[Store].[All Stores].[Belgium].[Antwerpen].[Turnhout]} ),

{([Promotion Media].[All Media],[Product].[All Products])} ) ON ROWS

FROM [Sales]

WHERE [Time].[2007]

4.6 Piet-QL theoretical foundation

In Section 3.4 we defined a formal FO-language based on the notion of geometric ag-

gregation, and introduced the concept of summable queries. This language, although

powerful, is clearly not appropriate for an end user, although it provides the theo-

retical basis for a more practical query language along the lines of the well-known

SQL. Let us consider the following summable query “Total population of the dis-

tricts crossed by the Dijle river”, where the function ftpop (i.e., the fact table) maps

elements of dom(Polygon) to populations. It reads in our formal language:

∑
pgid∈C

ftpop(pgid).

C = {pgid | (∃x)( ∃y)(∃plid)(∃d)

(α(Lr, Rivers, Ri, Pl, Dijle) = plid ∧ ralg(Lr, Pl, x, y, plid) ∧

ralg(Ld, Pg, x, y, pgid) ∧ α(Ld, Districts, Di, Pg, d) = pgid)}.
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Implementing a query language using the operators defined by OpenGIS we can

simplify this expression. For this, we can get rid of the algebraic part of the formal

data model (ralg), replacing it by conditions over geometries as we show below. We

make a substantial change to the original language with the introduction of variables

that range over the extensions of the geometric objects. These variables can also be

existentially or universally quantified, and provide a natural link between theory and

implementation, since the extensions can be mapped to data of the types supported

by standard GIS languages. We add the following terms to the language:

• a 3-ary relation, rext representing that a geometry extent corresponds to a ge-

ometry identifier in the geometric part. It is of the form 〈Li, gid, gext〉, where

Li is a layer name, gid is an instance of a geometry and gext is an extent of a

geometry.

• the OpenGIS predicates treated as relations.

In the example above, the sub-expression

ralg(Lr, Pl, x, y, plid) ∧ ralg(Ld, Pg, x, y, pgid).

can be replaced by

rext(Lr, plid, plext) ∧ rext(Lg, pgid, pgext) ∧ intersects(plext, pgext).

Finally, the original summable query is rewritten by means of OpenGIS operators

and the new rext relation, as follows:

∑
pgid∈C′

2

ftpop(pgid).

C ′2 = {pgid | (∃plext)( ∃pgext)(∃plid)(∃d)

(α(Lr, Rivers, Ri, Pl, Dijle) = plid ∧ rext(Lr, plid, plext) ∧ rext(Ld, pgid, pgext) ∧

intersects(plext, pgext) ∧ α(Ld, Districts, Di, Pg, d) = pgid)}.
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This simplified model provides the formal basis of the spatial aggregation of Piet-

QL.

Example 15. Consider the Piet-QL query

Q9 (OLAP-GIS): “Store Cost of stores in provinces crossed by rivers”, reads in Piet-

QL:

SELECT CUBE [Measures].[Store Cost] ON COLUMNS

FROM [Sales]

WHERE [Store].[All Stores] IN(

SELECT GIS bel_prov

FROM bel_prov, bel_river

WHERE ST_INTERSECTS(bel_river.the_geom,bel_prov.the_geom)

)

This query contains an aggregation over the measure “store cost”. This aggrega-

tion must be calculated over the stores in provinces crossed by rivers. The geometric

part is expressed in the simplified formal language by building the set C with the

extents of provinces crossed by rivers. In the simplified formal language it reads:

∑
pgid∈C

ftcost(pgid).

C = {pgid | (∃plext)( ∃pgext)(∃plid)(∃d)

(rext(Lr, plid, plext) ∧ rext(Lp, pgid, pgext) ∧

intersects(plext, pgext) ∧ α(Lp, State, Si, Pg, d) = pgid)}.
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4.7 Comparison of our proposal with Related Work

Shekhar et al. [63] introduced MapCube, a visualization tool for spatial data cubes.

MapCube is an operator built for spatial data warehouses. By taking a base map,

cartographic preferences and an aggregation hierarchy, MapCube produces an album

of maps to browse results of aggregation via roll-up and drill-down operations. In

than sense, it is more aligned with the idea of maps navigation. Our Piet-QL im-

plementation allows displaying geometries in maps when the spatial component is

returned by a query but cannot be drilled-down or rolled-up á la SOLAP, as, for

example, in the map cube operator commented above. Although navigation with

(map) cubes are necessary when interactive queries are posed by analysts, our query

language was designed with the idea of integrating spatial and OLAP information

with moving objects scenarios. That is the reason why we prefer to focus on how to

use the result set answer by the engine as part of a more powerful query language

instead of adding navigation features.

GeoMDQL [14] proposal consists in defining a so-called Geographic Data Ware-

house (GDW) and a Geographical Data Cube. The GDW stores geographic objects,

instead of other tightly-coupled approaches that store in the data warehouse point-

ers to geographic objects. The query language of GeoMDQL is completely based on

MDX. This MDX extension is designed to deal with geographic objects. Instead, we

propose a mixed query language with the goal of using SQL for the GIS query part.

Similarly to our approach, they show the query result in tables and if possible in a

map. The information on tables can be browsed with typical OLAP operators (as

our Piet-QL Web implementation 9), but the information visualized on maps does not

provide this interaction (unlike our Piet-QL stand-alone OpenJump implementation,

that provides it). A very important difference is that GeoMDQL cannot deal with

spatial measures. Piet-QL supports spatial measures, as we can manage spatial ag-

gregation in GIS-OLAP and Pure GIS queries. Related with this, GeoMDQL cannot

run pure GIS queries.

9http://piet.exp.dc.uba.ar/pietql
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4.8 Summary

We presented a query language, denoted Piet-QL, supporting the Piet data model,

which can express complex integrated GIS and OLAP queries in a natural an concise

way. Its spatial aggregation part is based on the FO language proposed in Chapter

3. Piet-QL supports the operators proposed by the Open Geospatial Consortium for

SQL. In addition, it incorporates the necessary syntax to integrate OLAP operations

through the OLAP standard MDX. We gave detail of Piet-QL syntax and semantics

and provide an extensive set of queries that show the power of the language and its

main features, and show how the queries are translated to the underlying database

languages.



Chapter 5

Moving Object Trajectories

Moving objects carrying location-aware devices produce trajectory data in the form

of a sample of (Oid, t, x, y)-tuples, that contain object identifier and time-space infor-

mation. In this Chapter we introduce a formal model for integrating moving object

data with the Piet data model (Chapter 3). We then study the representation of

trajectory data produced by moving objects using the notion of semantic trajectories

and discuss its consequences.

5.1 Introductory Example

We motivate our work with the following example. Figure 5.1 (left) shows a simplified

map of Belgium, containing two hotels, denoted Hotel 1 and Hotel 2 (H1 and H2 from

here on), the Cathedral of Our Lady and the Eclair Bruxelles Sport Club. We consider

three moving objects: O1, O2 and O3. Object O1 goes from H1 to the Cathedral, the

Eclair, spends just a few minutes there, and returns to the hotel. Object O2 goes from

H2 to the Cathedral, the Eclair (spending a couple of hours visiting each place), and

returns to the hotel. Object O3 leaves H2 to the Eclair, visits the place, and returns

to H2. Figure 5.1 (center) shows part of a table containing the raw trajectories (i.e.,

expressed for each object as 〈t, x, y〉 > tuples). All points of the same trajectory are

temporally ordered and stored together (i.e., the raw trajectories table is sorted by

Oid and t). In what follows, we use the object identifier as the trajectory identifier,

unless specified.

Many useful applications arise in this scenario. For instance, a GIS user may be
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O3

O3

O2

O2

O2

O1

O1

O1

Hotel 2

Hotel 1

Cathedral

Eclair

Oid t x y

O1 1 x1 y1

O1 2 x2 y2

O1 3 x3 y3

O1 4 x4 y4

... ... ... ...
O2 5 x5 y5

O2 6 x6 y6

O2 7 x7 y7

... ... ... ...
O3 4 x5 y5

O3 5 x8 y8

O3 6 x9 y9

... ... ... ...

Oid gid ts tf
O1 H1 1 10
O1 C 20 30
O1 H1 100 140
O2 H2 5 20
O2 C 25 40
O2 E 50 80
O2 H2 120 140
O3 H2 4 10
O3 E 15 40
O3 H2 60 140

Figure 5.1: Running example (left), its moving object fact table (center), and its
compressed fact table (right)

interested in finding out trajectory information, like “number of persons going from

H1 to the Cathedral of Our Lady and then to the Eclair Sport Club (stopping to

visit both places) in the same day”. An analyst may also want to discover hidden

information using data mining techniques. For instance, she would like to identify

interesting patterns in the trajectory data using association rule mining. She may

also want to verify a certain pattern, like “people do not visit two castles in the same

day”. Complex queries that aggregate non-spatial information and also involve GIS

and moving object data must also be addressed. For instance, “total sales in stores

located on the left bank of the Rupel river, such that people visit them before going

to the Castle of Veves in the same day”.

To address these problems, we need a common framework that can integrate

moving objects, GIS data and non-spatial data. In this chapter we show that the

Piet data model can be naturally extended to provide this capability.

5.2 Trajectories

We define a fact table denoted Moving Object Fact Table (MOFT), that stores a

collection of moving objects spatiotemporal locations. Ordering this locations over

time, leads to the concept of trajectory. Let us first define this concept formally.
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Definition 6. [Trajectory]A trajectory is a list of time-space points 〈(t0, x0, y0), (t1,

x1, y1), ..., (tN , xN , yN)〉, where ti, xi, yi ∈ R for i = 0, ..., N and t0 < t1 < · · · < tN .

We call the interval [t0, tN ] the time domain of the trajectory.

For the sake of finite representability, we may assume that the time-space points

(ti, xi, yi) have rational coordinates. A MOFT (see the table in the center of Fig-

ure 5.1) contains a finite number of identified trajectories.

Definition 7. [Moving Object Fact Table]Given a finite set T of trajectories, a Mov-

ing Object Fact Table (MOFT) for T is a relation with schema < Oid, T, X, Y >,

where Oid is the identifier of the moving object, T represents time instants, and X

and Y represent the spatial coordinates of the objects. An instance M of the above

schema contains a finite number of tuples of the form (Oid, t, x, y), that represent the

position (x, y) of the object Oid at instant t for the trajectories in T .

5.3 A Data Model for Compressed Trajectories

In practice, the MOFTs can contain huge amounts of data. For instance, suppose

that a GPS takes observations of daily movements of one thousand people, every ten

seconds, during one month. This gives a MOFT of 1000×360× 24× 30 = 259,200,000

records. In this scenario, querying raw trajectory data may become extremely expen-

sive. Moreover, note that a MOFT only provides the position of objects at a given

instant. Sometimes we are not interested in such level of detail, but we look for more

aggregated information instead. For example, we may want to know how many peo-

ple go from a hotel to a sport club on weekdays. Or we can even want to perform

data mining tasks like inferring trajectory patterns that are hidden in the MOFT.

These tasks require semantic information, not present in the MOFT. In the best case,

obtaining this information from that table will be expensive, because it would imply

a join between this table an the spatial data. As a solution, we propose to use the no-

tion of stops and moves in order to obtain a more concise MOFT, that can represent

a trajectory in terms of places of interest for a particular application, characterized

as stops. This table cannot replace the whole information provided by the MOFT,
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but allows to quickly obtain information of interest without accessing the complete

data set.

We first define the notion of “place of interest of an application” and then formalize

the concept of stops and moves. We base ourselves on the definition by Alvarez et

al [5].

Definition 8. [Place of Interest] A place of interest (PoI) C is a tuple (RC , ∆C),

where RC is a (topologically closed) polygon, polyline or point in R
2 and ∆C is a

strictly positive real number. The set RC is called the geometry of C and ∆C is

called its minimum duration. The places of interest of an application PA is a finite

collection of PoIs with mutually disjoint geometries.

Definition 9. [Stops and Moves of a Trajectory] Let T = 〈(t0, x0, y0), (t1, x1, y1), ..., (tn,

xn, yn)〉 be a trajectory. Also, PA = {C1 = (RC1
, ∆C1

), ..., CN = (RCN
, ∆CN

)}.

A stop of T with respect to PA is a maximal contiguous sub-trajectory 〈(ti, xi,

yi), (ti+1, xi+1, yi+1), ..., (ti+ℓ, xi+ℓ, yi+ℓ)〉 of T such that for some k ∈ {1, ..., N} the

following holds: (a) (xi+j , yi+j) ∈ RCk
for j = 0, 1, ..., ℓ; (b) ti+ℓ − ti > ∆Ck

.

A move of T with respect to PA is: (a) a maximal contiguous subtrajectory of T

in between two temporally consecutive stops of T ; (b) maximal contiguous subtrajec-

tory of T in between the starting point of T and the first stop of T ; (c) a maximal

contiguous subtrajectory of T in between the last stop of T and ending point of T ; (d)

the trajectory T itself, if T has no stops.

Figure 5.2 illustrates these concepts. Here, there are four places of interest with

geometries RC1
, RC2

, RC3
and RC4

. The trajectory T is depicted by linearly interpo-

lating between its sample points, to indicate their order. Let us imagine that T is

run through from left to right. If the three sample points in RC1
are temporally far

enough apart (longer than ∆C1
), they form a stop. Imagine that further on, only the

two sample points in RC4
are temporally far enough apart to form a stop. Then we

have two stops in this example and three moves.

We remark that our definition of stops and moves of a trajectory is arbitrary

and can be modified in many ways. For example, if we would work with linear
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interpolation of trajectory samples, rather than with samples, we see in Figure 5.2,

that the trajectory briefly leaves RC1
(not in a sample point, but in the interpolation).

We could incorporate a tolerance for this kind of small exits from PoIs in the definition,

if we define stops and moves in terms of continuous trajectories, rather than on terms

of samples. Finally, in what follows we assume that samples are taken at regular and

relatively short intervals. The following property is straightforward.

RC1

RC2

RC3
RC4

Figure 5.2: An example of a trajectory with two stops and three moves.

Proposition 1. There is an algorithm that returns, for any input (PA, T ) with PA the

places of interest of an application, and T a trajectory 〈(t0, x0, y0), (t1, x1, y1), ..., (tn,

xn, yn)〉, the stops of T with respect to PA. This algorithm works in time O(n · p),

where p is the complexity of answering the point-query [60].

Proof. We provide the algorithm in Section 5.3.2.

5.3.1 Compressing the MOFT

In this section, we describe how we go from MOFTs to application-dependent com-

pressed MOFTs, where (Oid, ti, xi, yi) tuples are replaced by (Oid, gid, ts, tf) tuples.

In the latter, Oid is a moving object identifier, gid is an identifier of the geometry

of a place of interest and ts and tf are two instants that encode the time interval

[ts, tf ] of a stop. The idea is to replace the MOFT (containing the raw trajectories)

by other table that represents the same trajectory more concisely by listing its stops

and the time intervals spent in them. In this sense, the concise MOFT, which we

denote SM-MOFT (standing for Stops and Moves-MOFT), behaves like a summa-

rized materialized view of the MOFT. The SM-MOFT contain the object identifier,
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the identifier of the geometries representing the Stops, and the interval [ts, tf ] of the

stop duration. Notice that we do not need to store the information about the moves,

which remains implicit, because we know that between two stops there could only be

a move. Also, if trajectory passes through a PoI, but remains there an insufficient

amount of time for considering the place a trajectory stop, the stop is not recorded

in the SM-MOFT.

Definition 10. [SM -MOFT] Let PA = {C1 = (RC1
, ∆C1

), ..., CN = (RCN
, ∆CN

)} be

the PoIs of an application, and letM be a MOFT. The SM -MOFTMsm ofM with

respect to PA consist of the tuples (Oid, gid, ts, tf) such that (a) Oid is the identifier of

a trajectory inM1; (b) gid is the identifier of the geometry of a PoI Ck = (RCk
, ∆Ck

)

of PA such that the trajectory with identifier Oid in M has a stop in this PoI during

the time interval [ts, tf ]. This interval is called the stop interval of this stop.

Figure 5.1 (right) shows the SM -MOFT for our running example.

5.3.2 Computing the SM-MOFT

We first give details of the computation of the SM-MOFT from the MOFT containing

the raw trajectories. We process the MOFT one trajectory at a time. A cursor is

placed at the first tuple of the trajectory, and only two points need to be in main

memory at the same time. We use the automaton shown in Figure 5.3 to detect

the sequence of PoIs that can become a stop in a trajectory. The transitions in this

automaton can be either a readPoint() action, or the empty string λ. There are four

states in the automaton: StartTrajectory, EndTrajetory, InsidePOI and OutsidePOI.

StartTrajectory : This is the initial state. If the first point in the trajectory belongs

to a PoI, the transition is to the InsidePOI state (we have recognized the beginning

of a PoI). If not, the transition is to the OutsidePOI state.

InsidePOI : This state can be reached from any state, except EndTrajectory. Dif-

ferent situations must be analyzed:

1We could also use a trajectory identifier other than the object’s id, if we want to analyze several
trajectories of an object in different days. We use this approach in Section 2.1.4)
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• The previous states were OutsidePOI or StartTrajectory. In the first case, the

previous point must belong to a move. In the latter, we are at the start of

trajectory. The current point corresponds to a PoI, which is a candidate to

become a stop (we call this a candidate stop). This time instant of the PoI

becomes the initial time of the interval of this potential stop.

• The previous state was InsidePOI : if two consecutive points (the previous and

the current ones) are both inside the same PoI, then the action will be: read

the next input (i.e., move to the next point). Otherwise, we have reached the

boundary of the PoI, and we are entering another one; thus, before reading

the next input, we need to compute the duration of the interval in order to

check if the sub-trajectory inside the PoI was actually a stop. If we are using

trajectory sampling, the timestamp of the previous point is the ending time of

the stop interval. The timestamp of the current point is used as the starting

time of the interval of the new PoI the object is entering. If we are using linear

interpolation, we build a line between both points and calculate the intersection

between this line and the PoI (and, of course, the corresponding time instant).

OutsidePOI : this intermediate state can be reached from any state, except End-

Trajectory. Again, different situations must be analyzed:

• The previous states were OutsidePOI or StartTrajectory. In the first case, the

previous point must belong to a move. In the latter we are at the start of the

trajectory. The algorithm reads the next input point.

• The previous state was InsidePOI : the automaton has detected that the object

has left a candidate stop, and proceeds as explained above, computing the

duration of the candidate stop top define if the object is still within a move, or

if it has found a stop.

EndTrajectory : the last state when the cursor has consumed all the tuples in the

MOFT.

To give an idea of practical results, in our case study, starting from a MOFT

containing 30,808,296 tuples, we obtained an SM-MOFT with 105,684 tuples (i.e.,

0.343% of the original size).
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Figure 5.3: Automata for Stops and Moves calculation

5.4 Summary

We have proposed to rewrite a raw trajectory using the concept of stops and moves.

The benefits of the approach are twofold. On the one hand, it leads to compressed

trajectories, a desirable feature in MO databases. On the other hand, since those

PoIs are application-dependant, they can contain additional interesting information

which enriches the physical locations of those places and expands the scope on the

analysis.



Chapter 6

RE-SPaM: A Data Mining

Language for Semantic Trajectories

In this chapter we show how we can apply sequential pattern mining algorithms to

semantic trajectories, in order to obtain interesting information from a collection of

trajectory samples. These algorithms are based on the apriori principle, first applied

in the field of Association Rule Mining [3]. A problem with the usual apriori-based

algorithms is that they return all frequent sequences present in a database, although

in general only a few ones are interesting from a user’s point of view. Thus, post-

processing tasks are required in order to discard uninteresting sequences. In scenarios

dealing with a large number of patterns this strategy could be tedious and costly. To

avoid this drawback, languages based on regular expressions (REs) were proposed to

restrict frequent sequences to the ones that satisfy user-specified constraints. Propos-

als like SPIRIT [20, 21] are aimed at pruning uninteresting sequences using regular

expressions to express these constraints. However, when mining huge volumes of data

and we need to express complex constraints, existing approaches do not suffice for an

effective pruning phase. For instance, in all of these languages, REs are applied over

items, which limits their applicability in complex real-world situations. In this chapter

we present a more powerful language, based on regular expressions, denoted RE-SPaM

(standing for Regular Expression over Sequential Pattern Mining), where the basic

elements are constraints defined over the (temporal and non-temporal) attributes of

the items to be mined. Expressions in this language may include attributes, functions

over attributes, and variables. We specify the syntax and semantics of RE-SPaM, and

64
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present a comprehensive set of examples to illustrate its expressive power. We also

study in detail how the expressions can be used to prune the resulting sequences in the

mining process. In addition, we introduce techniques that allow pruning sequences in

the early stages of the process, reducing the need of accessing the database, making

use of the categorization of the attributes that compose the items, and of the au-

tomaton that accepts the language generated by the RE. Note that although in this

thesis we focus on trajectory databases, our mining approach is general enough for

being applied to other settings.

6.1 Motivation

In Chapter 5 we defined the concept of semantic trajectories, which are produced

replacing a sequence of <t, x, y>-tuples by a sequence of stops and moves, defined

from the collection of PoIs. To introduce the problem, let us consider a set of PoIs

corresponding to restaurants and banks. Assume that restaurants are characterized

by their specialities, i.e., French and Italian food. Figure 6.1 depicts a simplified

view of those PoIs. Banks are represented by orange circles, Italian restaurants by

purple circles and French restaurants by green ones. There are also three compressed

trajectories, let us call them t1, t2 and t3, respectively. Trajectories t1 and t3 visit

exactly the same sequence of PoIs. Trajectory t2 visits the same bank, then an Italian

restaurant (different than the one visited by t1 and t3), the same French restaurant

than t1 and t3, and finishes at a bank (again, not the same bank than in the other

trajectories). Trajectories t1 and t2 present the same movement pattern (they visit

exactly the same places), but t3 may appear to follow a different one. However, for

many applications, we may consider all the Italian restaurants as equivalent with

respect to the attribute type of food. Analogously, if we consider that all banks offer

basically the same service, we can say that t1, t2 and t3 are semantically equivalent

(i.e., equivalent with respect to some property or set of properties).

Traditional approaches only use implicitly the notion of equality of places, i.e.,

they consider that two trajectories are similar if they visit the same places. We

believe that when dealing with semantic trajectories the notion of equality of places
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Figure 6.1: Trajectories semantically equivalent

must be relaxed, meaning that the concept of semantic equivalence of places must

be considered. Intuitively, two places are semantically equivalent if both of them

are characterized by the same value of some relevant/s attribute/s. In our example

above, the two Italian restaurants were considered semantically equivalent because

they serve the same speciality. Other attributes could be considered, for instance

their prices (expensive, cheap), the rule of accepting or not pets, etc. Notice that the

notion of equality of places implies the notion of equivalence of places, but the latter

lets us detect new behavioral patterns impossible to discover using the comparison of

places in a strict sense. With this in mind, we present a mining algorithm where the

output can be restricted to the patterns that satisfy a set of constraints expressed

by means of regular expressions over the attributes of the PoIs. This language also

supports variables and functions, as we explain below.

Throughout the chapter we refer to a tourist application in Belgium. The items

to be mined are sequences of stops composed of the PoIs visited by tourists, the

time spent by each moving object at each stop, and the attributes of the PoIs. Each

item can be classified as belonging to a category described by a set of attributes.

In our example we have four categories: hotels, restaurants, castles and zoos, with

different attributes and number of occurrences. In this scenario our ultimate goal is to

discover frequent sequential patterns for moving objects (although the approach could
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be used in any application domain), restricting these patterns to the ones that satisfy

a set of constraints, specified by means of regular expressions over the attributes of

the objects. These constraints are of the form “trajectories that first visit cheap

restaurants, then go to a 3-star hotel, and finish at the first restaurant”.

6.2 Data Model

Our sequential pattern algorithm is based on the ideas of the Generalized Sequential

Patterns algorithm (GSP) [65], but restricts the patterns to be obtained via a regular

expression. Regular expressions in RE-SPaM can contain constants, attributes, and

variables in a way that substantially expands the expressiveness of the constraints

considered in previous proposals. We also allow functions over attributes. These

functions can be defined, for instance, in a relational database, a multidimensional

database (in the form of a rollup function [10]), or as a Web Service. We also remark

that, in the work of Srikant et al. [65], only items (IDs) are allowed to participate

on hierarchies. We extend this idea allowing any kind of attribute (including tem-

poral ones) in such hierarchies. We show that supporting attribute, variables, and

categorization, implies not merely an extension of previous proposals, but introduces

new theoretical and practical problems, providing a powerful language for sequential

pattern mining, relevant to many real-world applications, in particular MO scenarios.

Remark 1. The incorporation of functions in the RE-SPaM regular expression lets

us bind stops and moves with the Piet data model, materializing the integration of

the three worlds mentioned in Section 1.3. This will become clear in the next chapter.

Before introducing the language we present a formal model and then define the

regular language supporting it. As usual in databases, we work with the notion of a

schema and its associated instances. We have a set of attribute names A, and a set

of identifier names I. Each attribute attr ∈ A is associated with a set of values in

dom(attr), and each identifier ID ∈ I is associated with a set of values in dom(ID).
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Definition 11. [Category Schema] A category schema S is a pair (ID ,A), where

ID ∈ I is a distinguished attribute denoted identifier, and A = {attr|attr ∈ A}.

Without loss of generality, and for simplicity, in what follows we consider the set A

ordered. Thus, S has the form (ID , attr1, ..., attrn).

Definition 12. [Category Occurrence] Given a category schema S , a category occur-

rence for S is the pair (〈ID, id〉,P), where ID is the ID attribute of Definition 11

above, id ∈ dom(ID), and P is the set of pairs [(attr1, v1), ..., (attrn, vn)], where: (a)

attri = A(i) (remember that A is considered ordered); (b) vi ∈ dom(attri), ∀i, i = 1..n;

(c) All the occurrences of the same category have the same set of attributes; (d) ID

is unique for a category occurrence, meaning that no two occurrences of the same

category can have the same value for ID (see below).

Remark 2. In what follows, for clarity reasons, we assume that attr0 stands for ID.

Thus, a category occurrence is the set of pairs [(attr0, v0), (attr1, v1), ..., (attrn, vn)].

Definition 13. [Category Instance] A set of occurrences of the same category is

denoted a category instance. Also, given set of category instances (see Table 6.2), we

extend the fourth condition in Definition 12 to hold for the whole set: ID is unique

for a set of category instances, meaning that no two occurrences of categories in the

set can have the same value for ID .

Example 16. The schemas of the four categories in our running example are shown

in Table 6.1. The corresponding set of category instances is shown in Table 6.2 (for

example, the category hotels has two occurrences).

Adding a time interval to a category occurrence, produces an item. The time

interval of an item is described by its initial and final instants, and denoted [ts, tf].

Definition 14 spells the above out.
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Category Schema

hotels [ID, categoryName, geom, star]

restaurants [ID, categoryName, geom, price, typeOfFood ]

castles [ID, categoryName, geom, name]

zoos [ID, categoryName, geom, price]

Table 6.1: Schema of the categories in the running example

Category Instance

hotels
(2 occurrences)

[(ID, H1), (categoryName, hotel), (geom, pol1), (star, 3)]

[(ID, H2), (categoryName, hotel), (geom, pol2), (star, 5)]

restaurants
(3 occurrences)

[ (ID, R1), (categoryName, restaurant), (geom, pol3), (price, cheap),
(typeOfFood, F rench) ]

[ (ID, R2), (categoryName, restaurant), (geom, pol4), (price, expensive),
(typeOfFood, F rench) ]

[ (ID, R3), (categoryName, restaurant), (geom, pol5), (price, cheap),
(typeOfFood, Italian) ]

castles
(1 occurrence)

[(ID, B), (categoryName, castle), (geom, pol6), (name, Belfort Castle)]

zoos
(1 occurrence)

[(ID, Z), (categoryName, zoo), (geom, pol7), (price, cheap)]

Table 6.2: Set of instances for the categories in Table 6.1

Definition 14. [Item] Let S be a category schema, and O(S ) a category occurrence

of the form [(ID, v), (attr1, v1),...,(attrn, vn)]. An item I associated with O(S ) is the

set of pairs: [(ts, vts), (tf, vtf ), (ID, v), (attr1, v1), (attrn, vn)], where ts and tf are

temporal attributes corresponding to the beginning and ending of the time interval of

the occurrence, and vts and vtf are actual values for these attributes.

Remark 3. In the sequel, we decompose the temporal attributes ts and tf into date and

time parts of the form ts date, ts time, tf date and tf time, respectively. This allows,

for example, to talk easily about the different parts of the day, and an implementation

can make use of the many features provided by DBMSs to handle temporal data types.

Nevertheless, it must be clear that we can indistinctly use both forms of referring to

temporal attributes.
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Definition 15. [Itemset] An itemset (i1, i2, ...in) is a non-empty set of items, where

n ≥ 1, and ∀ ik, k = 1..n, the ts, tf values are the same. The starting time and

ending time value of an itemset g is denoted vts(g) and vtf (g), respectively.

Remark 4. In the moving object setting, since each moving object can be in only one

place at each moment, all itemsets belonging to the same OID contain exactly one

item.

Definition 16. [Strict Time Interval Overlap] Let I1 = [ts1, tf1 ] and I2 = [ts2, tf2 ],

be two time intervals. We say that there is a Strict Time Interval Overlap between

them, if I1 6= I2 and neither tf1 precedes ts2 nor tf2 precedes ts1.

Definition 17. [Table of Items] Given a finite set of items I, the schema of a Table

Of Items (ToI) for I is the pair T = (OID, Items). An instance of T is a finite

set of tuples of the form 〈Oj, ik〉 where ik ∈ I is an item associated with the object

Oj. Given 〈Oj, ik〉 and 〈Oj, im〉, two tuples corresponding to the same object, then,

either both time intervals of ik and im are the same, or there is no strict time interval

overlap between them.

Example 17. Table 6.3 shows an instance of a ToI corresponding to the category

instances of Table 6.2. Note that the first two items for OID = O2 have the same

ID because they correspond to the same category occurrence: [(categoryName, zoo),

(ID, Z), (geom, pol7), (price, cheap)]. For the attribute geom, we assume that pol7

stores the geometric extension of Z.

6.3 Sequential Expressions

We begin with a simple language, based on paths over constraints, that we use later

to elaborate the concept of support of regular expressions. This language is the

cornerstone of our theory. In short, we define a language that expresses paths of

constraints (denoted sequential expressions), and define the support of these paths.

First, we define the syntax of this language.
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OID Items

O1

([(ts date,04/08/2008), (ts time,14:05), (tf date,04/08/2008), (tf time,14:33),
(ID,R2),(categoryName,restaurant), (geom,pol4), (price,expensive), (typeOfFood,French) ])

([(ts date,04/08/2008), (ts time,15:10), (tf date,04/08/2008), (tf time,16:05),
(ID,B), (categoryName,castle), (geom,pol6), (name,BelfortCastle)])

([(ts date,04/08/2008), (ts time,17:30), (tf date,04/08/2008), (tf time,18:48),
(ID,R3),(categoryName,restaurant), (geom,pol5), (price,cheap), (typeOfFood,Italian)])

([(ts date,08/08/2008), (ts time,06:22), (tf date,08/08/2008), (tf time,07:05),
(ID,R1), (categoryName,restaurant), (geom,pol3), (price,cheap), (typeOfFood,French) ])

([(ts date,08/08/2008), (ts time,10:00), (tf date,08/08/2008), (tf time,13:00),
(ID,B), (categoryName,castle), (geom,pol6), (name,BelfortCastle)])

([(ts date,08/08/2008), (ts time,17:10), (tf date,08/08/2008), (tf time,18:17),
(ID,R1), (categoryName,restaurant), (geom,pol3), (price,cheap), (typeOfFood,French)])

O2

([(ts date,03/08/2008), (ts time,11:00), (tf date,03/08/2008), (tf time,11:15),
(ID,Z),(categoryName,zoo),(geom,pol7), (price,cheap)])

([(ts date,08/08/2008), (ts time,18:30), (tf date,08/08/2008), (tf time,21:00),
(ID,Z),(categoryName,zoo),(geom,pol7), (price,cheap)])

([(ts date,19/08/2008), (ts time,09:00), (tf date,19/08/2008), (tf time,10:20),
(ID,R1), (categoryName,restaurant), (geom,pol3), (price,cheap), (typeOfFood,French)])

([(ts date,19/08/2008), (ts time,17:00), (tf date,19/08/2008), (tf time,18:12),
(ID,R2), (categoryName,restaurant), (geom,pol4), (price,expensive), (typeOfFood,French)])

Table 6.3: An instance of the ToI

Definition 18. [Terms] There exist no term other than the following ones: (1) Con-

stants: a literal enclosed by simple quotes. For example, ‘3’ for the integer three,

‘12/10/2007’ for a date. (2) Attributes of two types: (a) non-temporal, i.e., at-

tributes which are elements in the category schema (e.g., categoryName, ID, geom,

price); (b) temporal attributes, i.e., attributes which identify temporal occurrences of

an item. They are denoted ts date, tf date, ts time and tf time. (3) Variables: a lit-

eral that begins with the ‘@’ symbol. For example, @x, @Y1, etc. (4) Functions of n

arguments: An expression fn(attribute, ‘ct1’, ‘ct2’, ... , ‘ctn−1’), n ≥ 1, is a function

where the first parameter is an attribute and all the other ones are constants.

Definition 19. [Formula] Let C, V, A and F be a set of constants, variables, at-

tributes and functions, respectively. The expression term1 = term2 is a formula,

where term1 ∈ A ∪ F, term2 ∈ C ∪ V, and ‘=’ is the equality symbol. Moreover, if

F1 and F2 are formulas, F1 ∧ F2 is also a formula.
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Definition 20. [Constraint and Formula of a Constraint] A constraint is a formula

(See Definition 19) enclosed in squared brackets or the empty constraint, denoted as

‘[ ]’. If C is not an empty constraint we denote F(C) the formula of C.

Definitions from 18 through 20 are summarized in Table 6.4.

R1 CONSTRAINT ← [ CONDITION ]

R2 CONDITION ← λ

R2 CONDITION ← EQ

R2 CONDITION ← EQ ∧ CONDITION

R3 EQ ← attr = ‘constant’

R3 EQ ← attr = @vble

R3 EQ ← functionName(attr, ...) = ‘constant’

R3 EQ ← functionName(attr, ...) = @vble

Table 6.4: Grammar for constraints

Now, we can define what a sequential expression is.

Definition 21. [Sequential Expression] A sequential expression (SE) of length n is

an ordered list of n sub-expressions c1.c2.c3...cn, where each ci is a constraint, ∀i, i =

1..n

Example 18. The sequential expression of length two [].[price = ‘cheap′] is composed

of two constraints. The first one is an empty constraint. The second one expresses

the equality condition.

Constraints can include functions over attributes. In our running example we use

functions over OLAP hierarchies. These functions have the form rollup(attribute,

‘level i’, ‘dimension k’). The meaning is that in a dimension called dimension k,

where attribute is the bottom level, a member of this level rolls up to a member

of the level ‘level i’. That is, dom(level i) is the range of the rollup function. We

can take advantage of the fact that our model supports a family of functions defined

above to integrate an OLAP and GIS environment in this setting. Other (application-

dependant) functions can be defined ad-hoc. In Section 6.4, we give an example of

the use of these rollup functions in RE-SPaM.
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Now we can formalize the semantics of SE.

Definition 22. [Satisfability of a Constraint] Given a constraint C and an Item I,

we say that I satisfies C if one of the following conditions hold:

• if C is the empty constraint ‘[]’.

• if F(C) is an atom of the form attr = ‘ct’ where attr is an attribute in any

of the I, ‘ct ′ is a constant in dom(attr), and the instantiation of attr with its

value in I, equals ‘ct ′.

• if F(C) is an atom of the form attr = @x where attr is an attribute in any of

the I, @x is a variable in dom(attr).

• if F(C) is an atom of the form fn(attr , ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = ‘ct’, where attr

is an attribute in any of I, ‘ct ′ is a constant in dom(attr), and the instantiation

of attr in fn with its value in I, makes the equality true.

• if F(C) is an atom of the form fn(attr , ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = @x, where attr

is an attribute in any of I, @x is a variable in dom(attr).

• if F(C) is a formula of the form F1 ∧ F2, and F1 and F2 are satisfied by E.

Example 19. The sequential expression SE=[].[price = ‘cheap′] includes two con-

straints. The first one is an empty constraint, satisfied by all the items in an instance

of a ToI. The second one expresses the equality condition. In our running example it

is satisfied by the items with category occurrence identifier Z, R1 or R3.

Definition 23. [Bounded Variables of a Constraint in an Item] Given an item I and

a constraint C = [a1 ∧ a2 ∧ ...an], with n ≥1, let us denote V the set of all variables

in ai, ∀i, i = 1..n. If @x ∈ V then the set BV(@x, C, I) is composed of values v where

∀i = 1..n:
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• if ai is an atom of the form attr = @x then v is the result of all possible

instantiations of attr with its corresponding value in I.

• if ai is an atom of the form fn(attr , ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = @x, then v is the

result of all possible instantiations of attr in fn with its value in I.

Example 20. Given the constraint C=[geom = @x ∧ price = @w] and the item

I= ([(ts date, 03/08/2008), (ts time, 11:00), (tf date, 03/08/2008), (tf time, 11:15),

(ID, Z), (geom, pol7), (price, cheap)]). Then, BV(@x, C, I)={pol7} , and BV(@w,

C, I)={cheap}.

Example 21. Given the constraint C=[geom = @x ∧ price = @x] and the item

I= ([(ts date, 03/08/2008), (ts time, 11:00), (tf date, 03/08/2008), (tf time, 11:15),

(ID, Z), (geom, pol7), (price, cheap)]). We have two instantiations of the same vari-

able B(@x, C, I)=pol7 and B(@x, C, I)=cheap. Thus, BV(@x, C, I)={pol7, cheap}.

Definition 24. [Contiguous List] Given a ToI instance with tuples of the form 〈Oj, ik〉,

let us denote Itemset(Oj) the set of itemsets associated with Oj. We say that CL(Oj)=

〈g1, g2, ..., gn〉 is a contiguous list for Oj if the following conditions hold:

• ∀h ∈ Itemset(Oj) and h 6= gi ∀i, i = 1..n, vts(h) < vts(g1) or vts(gn) < vts(h)

• ∀i, i = 1..n ∀j, j = 1..n vts(gi) < vts(gj)

• ∀i, i = 1..n gi ∈ Itemset(Oj)

Definition 25. [Satisfability of a Sequential Expression] Given a ToI instance and a

contiguous list CL(Oj)=〈g1, g2, ..., gn〉 with n≥1, a sequential expression SE=c1.c2....cn

is satisfied by CL(Oj) if the following conditions hold:
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• an item in gj satisfies cj (Definition 22), ∀ j, j = 1..n.

• ∀p, p = 1..n; ∀q, q = 1..n; if @x appears in cp and cq, cp 6= cq, then exists an

item igp
in gp, an item igq

in gq such that BV(@x, cp, igp
) = BV(@x, cq, igq

)

and BV(@x, cp, igp
) and BV(@x, cq, igq

) are singletons1.

Note that a contiguous list CL(Oj) satisfies SE of length n if there are n items

with different starting time (each one belonging to the different n itemsets). Each of

these items are composed, by definition, by a temporal part and a category occurrence.

Removing the temporal part, we obtain a list composed of only the parts corresponding

to the category occurrence of these n items. We denote this list LCat(Oj, SE).

Definition 26. [Matching of a Sequential Expression] Given a sequential expression

SE and a ToI instance with tuples of the form 〈Oj, ik〉, we say that an object Oj

matches SE, if there exists at least one CL(Oj) that satisfies SE.

Example 22. For the SE of Example 19 and the ToI of Table 6.3, object O1 matches

SE, using the second and third items in Table 6.3, call them g1 and g2, respectively.

Also object O2 matches SE, using the seventh and eight items in the mentioned table,

call them g3 and g4, respectively. We can see that both objects O1 and O2 match

SE using different items, illustrating the idea of semantically equivalent trajectories

previously introduced.

Now we are ready to give a precise definition of the notion of Support of a sequen-

tial expression.

Definition 27. [Support of a Sequential Expression] Given a sequential expression

SE and a ToI instance with tuples of the form 〈Oj, ik〉. The support of SE is the

fraction of the different objects Oj in the ToI, that match SE. We denote the support

of SE as Supp(SE) and the set of objects that match SE as ObjMatches(SE).

1This condition implies that all occurrences of the same variable must have the same value when
instantiated.
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Given a set of category occurrences M, a sequential expression SE, a ToI instance

T , and a parameter called minsup ∈ [0, 1] ⊆ R, the frequent patterns in T restricted

by SE, are defined as the sequences of category occurrences in LCat(Oj, SE), ∀Oj ∈

ObjMatches(SE), such that Supp(SE) ≥ms.

Example 23. In the example 22 the support of the SE is 100%. Moreover, the se-

quences identified by IDs {B R3} and {Z Z} are discovered whatever the minimum

support be.

Example 24. The support of SE=[name=‘BelfortCastle’].[typeOfFood=‘French’ ∧

price=‘cheap’] is 50%, and the sequence identified by IDs {B R1} is discovered.

As a final example, we illustrate definitions 15 through 27 through an example

outside the MOD domain. To be more general, we choose an scenario where itemsets

are of size > 1. Example 25 below is adapted from the classical data mining litera-

ture [65], and shows that our approach is general enough to capture other domains.

Example 25. Consider the taxonomy shown in Figure 6.2, and a corresponding ToI

instance in Table 6.5. The taxonomy can be seen as two rollup functions where,

for example, rollup(F)=‘Tolkien’, and rollup(I)=‘Clarke’2. There are two different

objects in the ToI, namely C1 and C2. We show below that the sequential expres-

sion SE=[ID=‘F’].[rollup(ID)=‘Tolkien’] has a support of 100% using the concepts

explained above. We also have a contiguous list CL(C1)=〈g2, g3〉 where itemset g2

is composed of the second item of Table 6.5, and g3 is composed of third and fourth

items.

We first analyze if CL(C1) satisfies SE. First, g2 is composed of one item:

g2= ([(ts date, 10/10/99), (ts time, 00:02), (tf date, 10/10/99), (tf time, 00:02),

(categoryName, Book), (ID, F )]) and the constraint [ID = ‘F ′] is satisfied by the

only item composing g2, since the instantiation of ID with the value in the item equals

‘F’.

2We use a simplified notation for the rollup function, since we do not deal here with dimensions
and dimension levels, but simple taxonomies.
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Second, g3 is composed of two items: g3= ([(ts date, 10/10/99), (ts time, 00:15),

(tf date, 10/10/99), (tf time, 00:15), (categoryName, Book), (ID, J)], [(ts date,

10/10/99), (ts time, 00:15), (tf date, 10/10/99), (tf time, 00:15), (categoryName,

Book), (ID, H)]) and the constraint [rollup(ID) = ‘Tolkien′] is satisfied by the sec-

ond item of g3, since the instantiation of ID in the function rollup with its value in

this item (i.e., rollup(H)) equals ‘Tolkien‘.

Thus, CL(C1) satisfies SE. We can conclude that the object C1 matches SE and

contributes to the support of the sequential expression SE. With a similar analysis,

we can show that C2 also contributes to the support of SE. Then, we conclude that

the support of the sequential expression SE is 100%.

Tolkien Clarke

F G H

I J

Figure 6.2: A taxonomy for Example 25

6.4 The RE-SPaM Language

We now introduce a language, denoted RE-SPaM, based on regular expressions where

instead of atomic items (as in previous proposals), the atoms are constraints expressed

as formulas over attributes of the complex items defined in Section 6.2. We formalize

the language in the remainder of this section.

Intuitively a sequential expression lets us restrict the number of sequences we

can obtain from a ToI. Moreover, if we consider an alphabet over constraints, a

sequential expression is a simple regular expression which supports concatenation

over constraints. If we have different sequential expressions, each one accepting a

regular language we can build a deterministic finite automaton (DFA) that accepts

the union of those languages. However, this raises the question of how to define the
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ID Items

C1
[(ts date,10/10/99), (ts time,00:01), (tf date,10/10/99), (tf time,00:01),
(categoryName,Book), (ID,I)]

C1
[(ts date,10/10/99), (ts time,00:02), (tf date,10/10/99), (tf time,00:02),
(categoryName,Book), (ID,F)]

C1

[(ts date,10/10/99), ((ts time,00:15), (tf date,10/10/99), (tf time,00:15),
(categoryName,Book), (ID,J)]

[(ts date,10/10/99), ((ts time,00:15), (tf date,10/10/99), (tf time,00:15),
(categoryName,Book), (ID,H)]

C2

[(ts date,10/10/99), ((ts time,00:01), (tf date,10/10/99), (tf time,00:01),
(categoryName,Book), (ID,F)]

[(ts date,10/10/99), ((ts time,00:01), (tf date,10/10/99), (tf time,00:01),
(categoryName,Book), (ID,I)]

C2
[(ts date,10/10/99), ((ts time,00:20), (tf date,10/10/99), (tf time,00:20),
(categoryName,Book), (ID,G)]

C2
[(ts date,10/10/99), ((ts time,00:50), (tf date,10/10/99), (tf time,00:50),
(categoryName,Book), ((ID,J]

Table 6.5: Instance of a ToI containing two objects (C1, C2)

support of the regular expression RE accepted by this automaton. We discuss the

issue in this section.

6.4.1 Syntax and Semantics

Definition 28. [RE over constraints] A regular expression over the constraints of

Definition 20, is an expression generated by the grammar

E ←− C / E|E / E? / E∗ / E+ / E.E / E / ǫ

where C is a constraint, and ǫ represents the empty expression. The meaning of

each operator is shown in Table 6.6. The precedence is the usual one.

Remark 5. Given a regular expression R we can always build the Deterministic

Finite Automation (DFA) AR that accepts R. The set of words accepted by AR is

composed of constraints (recall that our alphabet is composed of constraints, i.e., the

words accepted by AR are sequential expressions).
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Symbol Meaning

| Disjunction. For example, C | D expresses ‘C’ or ‘D’.

.
Concatenation. For example, C.D expresses that constraint ‘D’
immediately follows constraint ‘C’.

*
Zero or more occurrences. For example, C∗ expresses that constraint “C”
holds zero or more times.

+
One or more occurrences. For example, C+ expresses that constraint “C”
holds one or more times.

? Zero or one occurrence. For example, C? expresses that ‘C’ is optional.

Table 6.6: Regular Expression operators

Definition 29. [Matching of a RE] Consider a regular expression R generated by

the grammar of Table 6.6, the DFA AR that accepts R, and W(AR) the set of words

accepted by AR. There is also a ToI instance with tuples of the form 〈Oj, ik〉. We say

that Oj matches RE, if there exists at least one contiguous list CL(Oj) that matches

a word w ∈ W(AR). We denote LCat(Oj, RE) the ordered list obtained removing the

temporal part from the items in CL(Oj) that match the RE (i.e., the list containing

only the category occurrences of the items in such contiguous list).

Now we can express the support of RE.

Definition 30. [Support of a RE] Given a regular expression R and a ToI instance

with tuples of the form 〈Oj, ik〉, the support of RE is the fraction of the different

objects Oj in the ToI, associated with a contiguous list CL(Oj) that matches R. We

denote Supp(RE) the support of RE, and ObjMatches(RE) the set of objects that math

RE.

Given a set of category occurrences M, a sequential expression SE, a ToI instance

T , and minsup ∈ [0,1] ⊆ R, the frequent patterns in T restricted by RE are the

sequences of category occurrences in LCat(Oj, RE), ∀Oj ∈ ObjMatches(RE), such

that Supp(RE) ≥ms.
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Example 26. Consider the RE-SPaM expression:

R = [price = @x].[] ∗ .

[price = @x ∧ rollup(ts date, ‘Quarter’, ‘Time’) = ‘Q3’ ∧ typeOfFood = ‘French’]

Figure 6.3 shows the DFA that accepts the language generated by R.

a

b c

[price=@x]

[]

[price=@x ∧ rollup(ts date, ‘Quarter’, ‘Time’)=‘Q3’ ∧ typeOfFood=‘French’]

Figure 6.3: Automaton for Q0

We want to check if the trajectory of object O1 in Table 6.3 matches R. Consider

the contiguous list CL(O1) composed of the third and fourth itemsets, denoted as g1

and g2, respectively:

g1= ([(ts date,04/08/2008), (ts time,17:30), (tf date,04/08/2008), (tf time,18:48),

(ID,R3), (categoryName,restaurant),(geom,pol5),(price,cheap),(typeOfFood,Italian)])

g2= ([(ts date,08/08/2008), (ts time,06:22), (tf date,08/08/2008), (tf time,07:05),

(ID,R1), (categoryName,restaurant),(geom,pol3),(price,cheap),(typeOfFood,French)])

and the SE of length 2 accepted by AR:

SE = [price = @x].

[price = @x ∧ rollup(ts date, quarter, T ime) = ‘Q3’ ∧ typeOfFood = ‘French’]

For simplicity we call c1 the first constraint and c2 the second one. The first (and

only) item in g1 (call it i1) satisfies c1, since c1 contains the attribute price and a

variable. Moreover, BV(@x, c1, i1)={cheap} since the value of the price attribute in



81

this item is cheap. Analogously, the first (and only) item in g2 (call it i2), satisfies

c2, since c2 contains a conjunction composed of: (a) an equality condition between

an attribute and a variable; (b) an equality between a function and a constant such

as the instantiation of the attribute ts date in the rollup function with its value in

i2 yields ‘Q3’; (c) an equality condition between an attribute and a constant, and

the instantiation of the attribute typeOfFood with its value in i2 yields ‘French’, and

coincides with the constant in c2. Also, BV(@x, c2, i2)={cheap}. We can see that

BV(@x, c1, i1)= BV(@x, c2, i2) and both BVs are singletons. We have found a

contiguous list CL(O1) that satisfies SE, and we can conclude that CL(O1) matches

SE. Summarizing, a contiguous list CL(O1) composed by the items identified by R3

and R1 was found. Analogously, object O2 matches SE by means of a contiguous

list of length 2 composed of its second and third itemsets. In this case, a sequence

composed by the items identified by Z and R1 is found.

Note that, even the contiguous list {R3 R1} and {Z R1} are not exactly the same,

they can be considered semantically equivalent with respect to the attribute price, i.e.,

both of them are associated with a ‘cheap’ price.

6.4.2 RE-SPaM by Example

In this section through a set of queries, we give the reader the intuition of what RE-

SPaM can express and how it differs from and substantially improves other proposals.

For example, existing efforts force the user to enumerate the IDs of the items to ex-

press disjunctions like (A|B|C|D)∗. In practice, when the number of items is large,

this solution would not be applicable. RE-SPaM allows writing concise expressions

using the semantic information available. Expressions can be built with attributes,

functions, constants and variables. We now present examples of the different kinds

of expressions supported by RE-SPaM, in our running example.

Constraints without Variables.

Q1: “Trajectories of tourists who visit hotel H1, then optionally stop at restaurant
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R3 and the Zoo, and either end at H1 or visiting the Belfort Castle”.

[ID=‘H1’].([ID=‘R3’])∗.([ID=‘Z’])∗.([ID=‘B’]|[ID=‘H1’])

Note that Q1 uses only ID attributes in all its subexpressions.

Q2: “Trajectories that visit hotel H1, then, optionally visit different places, and

finish at the Belfort Castle Tower or going back to H1”.

[ID=‘H1’].[]∗.([ID=‘B’]|[ID=‘H1’])

The use of the empty constraint allows avoiding the enumeration of all the items.

If an expression includes an empty constraint, during the mining process it is instan-

tiated with all the IDs of the category instances. Figure 6.4 shows the DFA that

accepts the language generated by this expression.

a b c
[ID=‘H1’]

[]

[ID=‘B’]

[ID=‘H1’]

Figure 6.4: Automaton for Q2

Q3: “Trajectories of tourists who visit hotel H1 and then a cheap place or a place

serving French food”.

[ID=‘H1’].([price=‘cheap’]|[typeOfFood=‘French’])

Q3 contains a subexpression with no ID. The disjunction is evaluated as follows.

Places with cheap prices are R1, R3 and Z, and places that serve French food are R1

and R2. During sequential pattern mining we compute the items which satisfy these

conditions, without the need of explicitly enumerating all the possibilities (note that

the expression is equivalent to

[ID=‘H1’]([ID=‘R1’] | [ID=‘R3’] | [ID=‘Z’] | [ID=‘R2’]).

Q4: “Trajectories that visited hotel H1 and then some cheap place, on 10/10/2007”.

[ID=‘H1’].([ts date=‘10/10/2007’ ∧ price=‘cheap’ ])

Q4 contains a subexpression with a temporal attribute, which characterizes the

occurrences of items in the database of sequences (i.e., the ToI).

Q5: “Trajectories that visit a cheap place during the third quarter of any year”.

[rollup(ts date, ‘quarter’, ‘Time’)=‘Q3’ ∧ price=‘cheap’]



83

Q5 contains a rollup function over time. Like in the previous query, during min-

ing, by accessing the ToI we compute the items that satisfy the temporal constraint.

Constraints with Variables.

Q6: “Trajectories that start at a place characterized by price (i.e., price is an

attribute of the item representing this kind of place), then stop either at the zoo or

the Belfort Castle, and end up going to a place that serves French food, and has the

same price range as the initial stop”.

[price=@x].([ID=‘Z’] | [ID=‘B’]).[typeOfFood=‘French’ ∧ price=@x]

Figure 6.5 shows the DFA that accepts the language generated by the expres-

sion. In our running example, ‘cheap’ and ‘expensive’ are the only possible values for

prices; thus, the only valid combinations are: cheap-cheap and expensive-expensive.

Sequences in objects of ToI such as {H1 Z R1} and {Z B R2} do not satisfy the

query. The first one because hotel H1 is not characterized by price, the second one

because Z has cheap prices but R2 is an expensive restaurant. The sequence {Z Z

R3} satisfies the expression. In our implementation, variables are bound to items

during the mining process as we explain later.

a b c d
[price=@x]

[ID=‘Z’] | [ID=‘B’]

[typeOfFood=‘French’ ∧ price=@x]

Figure 6.5: Automaton for Q6

Q7: “Trajectories that stopped at two places (the second one having cheap prices),

at the same part of the day (e.g., both of them during the morning) on October 10th,

2008”.

[rollup(ts time, ‘range’, ‘Time’)=@z ∧ ts date=‘10/10/2008’].

[rollup(ts time, ‘range’, ‘Time’)=@z ∧ ts date=‘10/10/2008’ ∧ price=‘cheap’]

Here, Q7 uses variables that the system binds (during the mining process), to the

result of applying a function over temporal attributes.
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Metadata Constraints.

Although, in general, variables are used to express matching conditions between

different subexpressions, they can also be used to constraint items according to their

structure. We call these kinds of expressions, metadata constraints.

Q8: “Trajectories that visited a place characterized by price”.

[price=@Z]

The semantics here is: a sequence is in the result if it contains an item with an

attribute price in it. As a more involved example, the constraint [price=@x]+ is veri-

fied by sequences of one or more item (not necessary the same ones), all of them with

the same price. In our running example, Z, R1, R2 and R3 are the items that satisfy

this constraint. Let us analyze another example.

Q9: “Trajectories that visited a place characterized by price, and finished on

October 10th, 2006”.

[price=@x].[ts date=‘10/10/2006’]

In our running example, only items Z, R1, R2 and R3 satisfy the first constraint.

6.5 RE-SPaM Evaluation

6.5.1 Preliminary Considerations

We explained in Section 6.2 that the ToI is composed of itemsets such that items

are associated with an object identifier OID. In the MO setting, at every time in-

stant each OID can only be in exactly only one place, meaning that itemsets are of

length one. However, the algorithm we present here can be applied to itemsets of

any length. We work with the category instances depicted in Table 6.2. Temporal

information associated with item occurrences is stored in the ToI (Table 6.3), which

in our implementation is decomposed (i.e., normalized) as follows: we have a table

with schema (OID, ts date, ts time, tf date, tf time, ID), where ID is the identifier of

the corresponding category instance. All other attributes of the ToI are stored in a

different structure, and retrieved via the ID. Moreover, we implemented two alterna-

tive approaches: (a) information about category instances is stored in an XML file;
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(b) information about category instances is stored in a relational table, accessing the

data through a join operation. Table 6.7 shows the normalized ToI instance for our

running example.

OID Items

O1

([(ts date,04/08/2008), (ts time,14:05), (tf date,04/08/2008), (tf time,14:33), (ID,R2)])

([(ts date,04/08/2008), (ts time,15:10), (tf date,04/08/2008), (tf time,16:05), (ID,B)])

([(ts date,04/08/2008), (ts time,17:30), (tf date,04/08/2008), (tf time,18:48), (ID,R3)])

([(ts date,08/08/2008), (ts time,06:22), (tf date,08/08/2008), (tf time,07:05), (ID,R1)])

([(ts date,08/08/2008), (ts time,10:00), (tf date,08/08/2008), (tf time,13:00), (ID,B)])

([(ts date,08/08/2008), (ts time,17:10), (tf date,08/08/2008), (tf time,18:17), (ID,R1)])

O2

([(ts date,03/08/2008), (ts time,11:00), (tf date,03/08/2008), (tf time,11:15), (ID,Z)])

([(ts date,08/08/2008), (ts time,18:30), (tf date,08/08/2008), (tf time,21:00), (ID,Z)])

([(ts date,19/08/2008), (ts time,09:00), (tf date,19/08/2008), (tf time,10:20), (ID,R1)])

([(ts date,19/08/2008), (ts time,17:00), (tf date,19/08/2008), (tf time,18:12), (ID,R2)])

Table 6.7: Normalized ToI instance

6.6 The Data Mining Process

Typically, in GSP-based algorithms, frequent sequences with an user-specified mini-

mum support are computed in incremental phases. At each intermediate step k, the

following occurs: (1) A temporary set Ck is built using the previous set Ck−1. Its

elements are candidate sequences of length k. (2) Each element in Ck which contains

at least one sub-sequence with support less than the minimum is discarded due to

anti-monotony property (Ck−1 is analyzed). (3) The database is accessed in order to

analyze support, and each element in Ck with at least minimum support is added to

the set F of frequent sequences. (4) When an empty Ck set is obtained, F contains

the frequent sequences with minimum support.

We already explained that in RE-SPaM, a constraint is expressed as a regular

expression R; to evaluate if a sequence satisfies it, we build a DFA, denoted AR

which accepts the language generated by R. For example, Figure 6.5 shows the DFA

that accepts the language generated by the regular expression in Q6 in Section 6.4.2

(we use this automaton later). The idea of using AR for pruning Ck before querying

the database was first proposed in the SPIRIT algorithm. There, instead of using the
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original constraint C, a relaxed constraint C’ (not necessarily anti-monotonic) is used

during the mining process. When C’ is not anti-monotonic, the second phase above

is replaced with a strategy consisting in pruning the sequences in Ck which contain at

least one subsequence which satisfies C’ and does not have minimum support. In the

last phase, F is analyzed to obtain the frequent sequences that satisfy C, i.e., a strict

C verification is carried out. In what follows, we use a relaxed constraint C’ that

accepts the sequences (denoted legal) which correspond to a path in AR. Informally,

if the automaton accepts only two words “abbd” and “acabd”, then the sequence

“cab” is not pruned because it is a substring of the second one, but the sequence

“cbd” is pruned because it is not a substring of any of these words.

We identify three phases when building Ck: (i) Ck population: Ck is populated

using the information previously obtained. (ii) Ck pruning by AR: Ck is pruned using

the automaton and perhaps some extra information. If a candidate sequence does not

satisfy the relaxed constraint C’ it is discarded at this moment. (iii) Ck pruning by

the ToI instance: Ck is pruned using the ToI instance, as we explain later, and added

to a set F of frequent candidate sequences. Finally, F is pruned using the original

constraint C.

6.6.1 The RE-SPaM Algorithm

Using AR During the candidate generation step, sequences that do not satisfy

the constraints are pruned, given that they do not contribute to the result. We

discuss here how RE-SPaM uses the automaton to prune candidate sequences while

generating intermediate Ck’s, without accessing the ToI. In step k, once Ck has been

populated with candidate sequences of length k, we use AR for pruning (AR is stored

in main memory). Using AR we check which candidate sequences satisfy the relaxed

constraint C’. In this step, the algorithm finds out whether or not the conditions

in the edges of paths of length k in AR are satisfied by candidate sequences in Ck.

Note that the edges of the automaton are labeled with constraints. This is a relevant

difference with existing approaches (where edges are labeled with IDs).

Let p={e1, e2, ..., ek} be a path of length k in AR, and let cs = {ID=‘ID1’,

ID=‘ID2’, ..., ID=‘IDk’} be a candidate sequence in Ck. We use AR to determine
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whether or not each one of the items identified by IDj, j ∈ 1..k, satisfies the con-

straint that labels the edge ej . Thus, we need to find the values of the attributes

that characterize the item identified by IDj. Note that our intention is to prune Ck

without accessing the ToI; thus, the only sources of information we can use are the

automaton and the category instances (this table is also likely to be stored in main

memory), and the only kinds of attributes that can be analyzed at this point are the

ones in categories. The analysis of temporal attributes is postponed to a later stage.

In summary, during this step we only use the automaton and category instances to

verify the sub-conditions that do not involve temporal attributes, and postpone the

evaluation of the conditions over temporal attributes.

Example 27. In query Q6, the sub-conditions to evaluate are four: price=@x, ID=‘Z’,

ID=‘B’ and typeOfFood=‘French’. As none of them involves temporal attributes, all

of them can be analyzed using AR and category instances.

However, in the case of query Q7, the sub-conditions are three: rollup(ts time,

‘range’, ‘time dimension’)=@z, ts date=‘10/10/2008’ and price=‘cheap’. The only

sub-condition that can be analyzed using AR and category instances is price=‘cheap’.

Handling Variables We have said that, in general, variables are used to match

different constraints within the same expression. However, in the intermediate phases,

when building set Ck, only sub-paths of length k are considered. If the same variable

is used in both extremes of a path of length k, sets Cj with j<k are not useful for

checking if these variables coincide.

Another question that arises is: which is the best strategy when a variable appears

only once in an expression? We study two possibilities regarding the moment when

the verification phase for non-temporal attributes can take place: early evaluation

and late or postponed evaluation. In the former, the system determines if a sub-

condition with no temporal attributes belonging to an edge of the automaton is

verified by an item when building Ck, and before querying the ToI instance. In the

latter, the verification occurs when the algorithm enters its final phase, i.e., when it

must prune the set F using the original (not relaxed) constraint C. Thus, verification
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is postponed until the final phase and constraints are not checked while building

intermediate Ck’s. Obviously, late or early evaluation only affects performance, not

the the final result. Deciding which strategy is better can be somehow tricky, as

the following example shows. In the remainder, except when noted, we assume the

following: early evaluation for conditions that involve non-temporal attributes and

constants, and late evaluation for conditions that involve non-temporal attributes and

variables.

Example 28. Expression Q6 looks for a matching in the prices at the beginning and

end of a path. The set C1 is composed of sequences of one item that satisfy the con-

straints [price = @x], [ID = ‘Z’], [ID = ‘B’] and [typeOfFood = ‘French’ ∧ price =

@x]. Also, C2 is composed of sequences of two items that satisfy the constraints

[price = @x].[ID = ‘Z’], [price = @x].[ID = ‘B’], [ID = ‘Z’].[typeOfFood =

‘French’ ∧ price = @x] and [ID = ‘B’].[typeOfFood = ’French’ ∧ price = @x].

Therefore, the binding of the variable @x is not used in these two phases (we are

interested in matching both extremes). Only during C3 this is relevant, because both

bindings can be compared, and perhaps some candidate sequences could be pruned. For

example, the sequence {Z Z R2} does not satisfy this constraint because Z is cheap

and R2 is expensive.

Using the ToI We now discuss the use of the ToI for pruning candidate sequences

with support less than the minimum. Assume we have computed Ck, which now

contains the candidate sequences that satisfy the subexpression of length k. We

continue with the analysis of Q6, and we now want to find out the sequences that

satisfy the constraint, with a support of 100%. At a first glance, in Table 6.7 there

is one sequence generated from OID= O1, which satisfies the constraint: {R1, B,

R1}. With a similar analysis, there exists only one sequence generated from OID=

O2, which satisfies Q6: {Z, Z, R1}. Since we are interested in categorical mining, not

just in counting strict occurrences of items, we have to modify the way of counting

support. Although none of the two transactions in Table 6.7 contains the same

sequence, both satisfy Q6. Here, Z and R1 are semantically equivalent with respect
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to Q6 because both have cheap price associated with them. This is the reason why

the algorithm cannot discard a candidate sequence (although it has support less than

the minimum), if it is supported by at least one transaction (see Remark 6 below).

Figure 6.6 depicts the three steps for computing C1. Note that AR prunes H1 and

H2 in step2, because they do not match any of the edges of the automaton.

Remark 6. If we had followed the SPIRIT strategy, C1 would have only contained

R1 and R2. Items Z, B, and R3, would have been pruned, because their support is

less than the minimum (each of them are in only one transactions). Moreover, no

sequential pattern with this support would have been found, given that the regular

expression requires that the trajectory stops at Z or B.

IDs
H1
H2
R1
R2
R3
B
Z

IDs
R1
R2
R3
B
Z

IDs
R1
R2
R3
B
Z

Figure 6.6: Computing C1: Step 1 (left), Step 2 (Legal) (center), Step 3 (right)

In the third step of the computing of Ck, the ToI is scanned for pruning the

candidate sequences not present in any transaction. After this, Ck is added to the

temporary set F. Figures 6.7 and 6.8 show how C2 and C3 are computed. Given that

C4 is empty, the algorithm enters its final phase, i.e., the strict verification of the

sequences in F.

The final phase uses all sequences in the temporary set F and proceeds as follows.

First, it uses the automaton to prune all sequences which are not accepted. Notice

that here we are using the automaton for acceptance verification and not for legal

verification. Also note that using the automaton to find sequential patterns with

minimum support does not suffice, i.e., the ToI must be scanned. This scan has dif-

ferent goals: for verification of the conditions that have been postponed (for example,

expressions which involve variables or temporal constraints), and for calculation of

minimum support. Until this phase we only know that the sequences in F are present

in some transaction. Now, we have to check which sequences in the set F have enough
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IDs
R1 R1
R1 R2
R1 R3
R1 B
R1 Z
R2 R1
... ...
R3 R1
R3 R2
... ...
B R1
... ...
B Z
Z R1
... ...
Z Z

IDs
R1 B
R1 Z
R2 B
R2 Z
R3 B
R3 Z
B R1
B R2
Z R1
Z R2
Z B
Z Z

IDs
R1 B
R2 B
B R1
Z R1
Z Z

Figure 6.7: Computing C2: Step 1 (left), Step 2 (Legal) (center), Step 3 (right)

IDs
R1 B R1
R2 B R1
B R1 B
Z R1 B
Z Z R1
Z Z Z

IDs
R1 B R1
R2 B R1
Z Z R1

IDs
R1 B R1
Z Z R1

Figure 6.8: Computing C3: Step 1 (left), Step 2 (Legal) (center), Step 3 (right)

support. Recall that we consider all sequences in F equivalent with respect to the

regular expression under analysis. In our example, OID=O1 supports {R1 B R1}

and OID=O2 supports {Z Z R1}. Thus, all of these sequences verify the original

expression, yielding a support of 100%. Figure 6.9 shows the set F before and after

automaton verification, and set F after the ToI is scanned. As our expression does

not involve temporal attributes, the ToI scan does not change the sequences in the

set F. However, this scan is necessary to compute the support.

Algorithm Details Algorithm 1 sketches the procedure for mining sequential pat-

terns using the approach described above.

Once the user defines the regular expression RE and the minimum support, the

DFA automaton is built. The relaxation constraint C’ is also defined. The algorithm

proceeds in incremental phases until the final condition holds, which depends on the

relaxation choice. Garofalakis et al [20, 21] proposed four variations of the algorithm,

namely Näıve, Legal, Valid WRT, Regular. For example, in the Legal algorithm

(which we have used in the discussion above), the final state is reached when no legal
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Algorithm 1 RE-SPaM Algorithm

01. minSupport := ReadSupport()

02. query := ReadQuery()

03. AR := BuildAutomaton(query)

04. C’ := define C relaxation

05. //Incremental phases

06. k := 1

07. REPEAT

08. // Add sequences of length k which verify C’ to set F

09. // Populate Ck

10. Ck := { ck | ck is a candidate sequence of length k }

11. // Update Ck using AR and category instances

12. tmp := { ck | ck is not verified by any path of length k in AR }

13.

14. Ck := Ck - tmp

15. // Update Ck using ToI instances

16. tmp := { ck | ck is not verified by any sequence of any OID }

17.

18. Ck := Ck - tmp

19. // Update F

20. F := F ∪ Ck

21. UNTIL FinalConditionHolds or MinSupport(F ) < minSupport

22. // Final phase

23. // Eliminate from F sequences that do not satisfy constraint C

24. F := VerifyOriginalConstraint(F , minSupport)

25. ListSequences(F )

sequences of length k with respect the start state of the automaton can be generated.

The main loop is the core of the algorithm. Line 10 corresponds to the generation

of candidate sequences. For example, in the Legal and Valid WRT algorithms this
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IDs
R1
R2
R3
B
Z
R1 B
R2 B
B R1
Z R1
Z Z
R1 B R1
Z Z R1

IDs
R1 B R1
Z Z R1

IDs
R1 B R1
Z Z R1

Figure 6.9: Set F: Initial (left); Accepted by automaton (center); After the ToI scan
(right)

step corresponds to the generation of Ck using Ck−1. However, adopting the Valid

variation would require using F and the automaton. Steps 12-14 analyze each of

the candidate sequences ci ∈ Ck. The idea consists in detecting all the paths in the

automaton, which in fact represent sequences of conditions satisfied by ci. To do this

we need the information stored in the automaton and the category instances. If ci

does not verify any path of length k, it is pruned. Steps 16-18 scan the ToI instance

to compute support. If we are using early evaluation for the temporal attributes,

here is where the ToI is used to validate temporal conditions. For each OID the

algorithm calculates the ci ∈ Ck supported by consecutive sequences. Given that

we are introducing semantic information into the mining process and we consider

equivalent sequences to be interchangeable, we add all the sequences ci supported by

at least one OID to the set F, and prune the ones not supported by any OID. While the

support of the set F is equal or greater than the minimum, the algorithm continues.

In the final phase (Step 24-25), the algorithm repeats the sequence performed inside

the loop, but using C instead of C’.

Either using early or late evaluation, we need to bind a variable to a value. In

RE-SPaM, there is no limit on the number of variables that can be defined. Thus, we

use a hashing structure to store and check if a variable has already been bound. This

structure is built for each one of the candidate sequences, i.e., the bindings cannot

be shared between sequences. For each item in a candidate sequence we analyze the

variables involved. For each variable that appears, it may happen that: (a) it is

the first time that this variable is instantiated; thus, the variable and the value are
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hashed in a structure of variable bindings; (b) the variable has been already bound

to a value; thus, the new binding is compared with the previous one. For an efficient

support count, we also use hashing structures to store sequences and the OIDs which

support them.

Example 29. For query [price = @x]+, suppose we obtain a candidate sequence

{R1 R2}. Due to the item identified by R1, @x is stored in a hash table with its

corresponding value (‘cheap’). Later, analyzing the price associated with the item R2,

we obtain the value ‘expensive’, which does not match the previous one. Thus, the

candidate sequence does not verify the expression.

6.6.2 Complexity

We now analyze the complexity of Algorithm 1. Each step of the algorithm is com-

posed of three phases. Each phase generates candidate sequences of the same length

(i.e., at each step k, candidate sequences of length k are computed in three phases).

The elements in Ck (line 10, first phase) are computed using the sequences in the set

Ck−1. We compute Ck by means of a self-join between the sequences in Ck−1, and

discard the ones such that their suffixes and prefixes of length k − 2 do not match.

For example, when joining the sequences ‘ABC’ and ‘BCD’, we generate ‘ABCD’ (the

suffix and prefix ‘BC’ is the same for both sequences). In the worst case, this oper-

ation has complexity O(|Ck−1|
2), where |Ck−1| is the number of candidate sequences

in Ck−1.

The second phase (see lines 12, 13 and 14) consists in using Ck and pruning it with

the automaton generated from the constraints used in the query (i.e., the automaton

is used to verify if a candidate sequence of IDs in Ck satisfies some path of length k). If

|AR| is the number of states of the automaton, then, in the worst case the algorithm

performs |AR|
(k+1) comparisons to detect if a k-sequence of IDs in Ck satisfies an

expression in a path of length k in the automaton. Since |AR| is the number of nodes

of the graph representing the automaton, the number of paths of length k could be

at most |AR|
(k+1), because the automaton accepts loops. Checking which sequences

in set Ck (generated in the previous phase) satisfy the constraints in the automaton,
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takes, in the worst case O(|Ck| ∗ |AR|
(k+1)). All these sequences of candidate Ck are

organized in a hash table, for the following phase.

The last phase of step k consists in pruning using the ToI, thus, accessing the

database (lines 16, 17 and 18). A database scan must be performed in order to

build contiguous lists (see Definition 24) of length k. Let us denote |Items| the

number of items in the ToI. In the worst case, all these items belong to the same

object and the number of consecutive lists (each one of these lists is composed of

IDs.) of length k that are generated is given by |Items| − k + 1. This is an upper

bound. If these items were distributed among different objects (transactions) the

number of lists would become considerably smaller. The candidate sequences in

Ck are organized in a hash table; thus, checking if a list of IDs belonging to the

ToI matches a list of IDs in Ck could be done in O(1). Depending on the query,

this phase requires more than a simple matching between IDs in the list and IDs

in some element in Ck. Recall that we do not evaluate only coincidence here. For

example, if a sequence in Ck is ‘ABA’ and there is a list ‘ABA’ in the database, we

may initially think that this sequence satisfies the query. However, let us consider the

[ts = @x∧price = ‘cheap’].[tf = @x∧food = ‘Italian’]. Although ‘AB’ is a candidate

sequence in C2 (because A verifies the price=‘cheap’ and B verifies food=‘Italian’),

we must postpone the evaluation of ts and tf to the database scan stage. We cannot

do this with the automaton because temporal attributes are not part of category

occurrences. Thus, the database scan is not only for evaluating support. Then, in

the worst case, this phase can be done in O(|Items| − k + 1). These three phases

are preformed repeatedly until no more candidate sequences are generated or the

candidate sequences in Ck are all pruned accessing the ToI, because there does not

exist any useful list in the database of length k.

The last part of the algorithm (line 24) is analogous to the former ones, except

for the first phase (generation of Ck). Phases two and three use all the candidate

sequences not pruned in previous steps, to detect if they are recognized by the au-

tomaton and have the required support.
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6.7 Comparison of our Proposal with Related Work

Gianotti et al. [22] introduced t-patterns for mining sequential patterns on regions of

interest. A t-pattern is of the form Railway Station 1h10min> Castle Square 2h15min>

Museum’. These patterns are basically defined by extension. On the contrary, regular

expressions allow us to define more complex patterns in an intensional fashion.

Mouza and Rigaux [16] propose a query language based on regular expressions.

Our language differs considerably from theirs because they work with IDs or names.

Moreover, they do not relate trajectories with the GIS environment and/or non-

spatial data. On the contrary, the query language we propose uses functions, which

bind MO information with attributes of the PoIs and other external information. In

this chapter our examples were restricted to rollup functions over temporal attributes,

but other possibilities will be discussed in Chapter 7, showing how we support even

more powerful expressions. The regular expressions proposed by Mouza and Rigaux

talks about zones represented by some label (a constant) or a variable (@x). In this

language, each occurrence of a variable in the pattern is instantiated with the same

value. The units of time spent by the moving object inside some zone are expressed

with the symbol + (undetermined time) or via the temporal constraint boundaries

{min, max}. The query “objects that started in zone A, visited another zone and

five minutes later came back to A”, is expressed in this language as: ‘A,7.@X+A,12’.

Variables can only be associated with places (represented by labels or IDs) visited by

objects. Thus, the language cannot deal with time constraints or categories. On the

contrary, our approach allows variables associated with any attribute of an item. For

example, we can express “trajectories that visit two places with the same price” with

the query [price=@x].[price=@x] where the variable @x is instantiated with prices.

Giannotti et al. also introduced the concept of Region of Interest (RoI). Although

with similar goals, our work clearly differs from [22] in several ways. First, we work

with stops and moves instead of pre-defined regions of interest. This allows to identify

which of the RoIs are really relevant to a trajectory. We also use these stops and

moves to “encode” or compress a trajectory, which, in many practical situations is

enough to identify interesting sequences very efficiently. Second, in [22] the authors

focus on computing the RoIs dynamically from the trajectories. On the contrary, in
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our approach the user defines the places of interest of an application in advance, and

from them the stops and moves are computed prior to performing trajectory mining.

Finally, our work approach, allows integration between trajectories and background

geographic data, an issue mentioned albeit not addressed in [22].

Brakatsoulas et al. [9] enrich trajectories with the relationship between trajectories

and between a trajectory and the GIS environment (via topological functions like

intersect, meets), but their approach requires all information on moving objects to be

processed. In our proposal, on the contrary, we use semantic information to reduce,

whenever possible, the amount of data to be considered.

We remark that all of these proposals cannot detect if trajectories are semantically

equivalent, they only work with the classical notion of similarity.

Now, regarding the sequential pattern mining algorithm we presented in this chap-

ter, we would like to point out several issues. In the work of Srikant et al. [65] only

items (IDs) can participate in hierarchies. We extended this idea allowing any kind of

attribute (including temporal ones), and showed that supporting attribute, variables,

and categorization yields a much powerful language for sequential pattern mining.

In SPIRIT [20, 21], regular expressions are used to restrict the sequences produced

by the mining algorithm. However, SPIRIT deals only with the IDs of items. We

explained above that using attributes lets us avoid item enumeration. But, besides

writing concise queries, our proposal supports the binding of variables to any attribute

(or function over an attribute) during the mining process. As far as we are concerned,

this is the first proposal in this sense, in sequential pattern discovery.

The original idea of counting for sequences support has been maintained, although

regular expressions have been introduced to constrain the number of sequences to be

obtained. As a simple example, the expression (A|B).C is satisfied by sequences

like A.C or B.C. Even though the semantics of this RE suggests that both of them

are equally interesting to the user, if neither of them verifies a minimum support

(although altogether they do), they would not be retrieved. Suppose that a database

contains two transactions, the first one with two itemsets < (A)(C) > and the second

one with two itemsets < (B)(C) >. In SPIRIT, no sequences expressed by the RE

(A|B).C with minimum support 75% would be retrieved. This is because during
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the mining process the itemsets of length 1 are composed of the items A, B and C,

although only C is maintained as the other ones are considered separately and they

do not have minimum support (i.e., A has 50% support and B has 50% support). We

count support in a different way because we consider both, A.C and B.C equivalent

under the RE. Thus, our algorithm returns these two sequences as the ones that

satisfy the RE and have minimum support.

6.8 Summary

In this chapter we proposed an Apriori-like mining algorithm. Although it is general

enough to be applied to different settings, we focused our discussion on the MO

setting. To reduce the number of sequences obtained by the mining process we defined

a language denoted RE-SPaM. Then, we studied RE-SPaM syntaxis and semantics,

and provided a comprehensive set of examples. This powerful language differs form

other proposals because it support attributes, variables, categorization and functions.

In particular the introduction of functions allow to relate attributes (temporal or not

temporal) of the stop in a trajectory with the environment in which the trajectory

evolves. We also provided an in-depth discussion of different implementation issues.



Chapter 7

Adding Geography to RE-SPaM

In this Chapter we extend RE-SPaM in order to bind trajectories to the geometric en-

vironment where they evolve. This is implemented by allowing a geometric condition

to be included in RE-SPaM constraints. We call the resulting language RE-SPaM++.

This feature allows to fulfill our original goal, namely integrating OLAP, GIS, and

moving object data.

7.1 Introduction

In Chapter 6 we presented RE-SPaM, a language that can express sequential patterns

by means of regular expressions over constraints defined in terms of the attributes of

the items to be analyzed, where an item is a tuple composed of an object identifier,

a time interval, and a PoI. These expressions can be used during the sequential

pattern mining process to prune sequences that, although satisfying minimum support

requirements are not of interest to the user. RE-SPaM supports functions that are

the key to bind stops with information not stored in the PoIs (like, for instance,

OLAP data). We have already shown in Chapter 3 of this thesis that GIS and OLAP

integration can be achieved by means of the Piet data model and the Piet-QL query

language. We now integrate Piet-QL into RE-SPaM and show how this allows to

achieve GIS, OLAP and Trajectory integration. We call the resulting language RE-

SPaM++.
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7.1.1 RE-SPaM++Motivation

RE-SPaM expressions can use three constructs: variables, attributes (spatial and

non-spatial) and functions. Attributes let us talk about the characteristics of the

stops. Functions allow to compare the value of some attribute of the stop with

external information. When binding trajectories to GIS, it appears intuitive to take

advantage of functions. For example, we may want to express within a constraint

if the geometry of the stop is contained by some region. Other OpenGIS operators

could be used. The next example illustrates this.

Example 30. Using the running example introduced in the previous chapter we can

express “Trajectories that start at a place characterized by price (i.e., a place such

that price is an attribute of the item representing this kind of place), then stop ei-

ther at the zoo or the Belfort Castle, and end up at a place that serves French food,

has the same price range than the initial stop, and is close the Dijle river”. We

assume that here ‘near’ implies that it is at 0.05 of distance units in the coordinate

reference system. The geometry of Dijle river is expressed in Postgis by the literal

‘MULTILINESTRING ((4.714209 50.931933, 4.69394 50.974907))’. We could write

this query in RE-SPaM as follows:

[price = @x].([ID = ‘Z ′]|[ID = ‘B′]).[typeOfFood = ‘French′ ∧ price = @x ∧

near(geom, ‘MULTILINESTRING((4.714209 50.931933, 4.69394 50.974907))′,

0.05) = ‘true′]

The function near follows the RE-SPaM syntax, i.e., its first argument is an

attribute (the geometry of the PoI) and the other ones are literals. We show an

implementation (in Java-like pseudo-code) in Listing 7.1, where the function getValue

returns the number contained in the literal and st distance is the OpenGIS operator.
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Listing 7.1: Function Implementation

1 S t r i n g near ( Geometry geometry , S t r i n g pl , S t r i n g d i s t an c e )

2 {

3 i f ( s t d i s t a n c e ( geometry , p l ) < d i s t an c e . ge tVa lue ( ) )

4 r e t u rn ’ true ’ ;

5

6 r e t u rn ’ f a l s e ’ ;

7 }

This method implies knowing the string expression of a geometry in advance

(in this case the geometry of Dijle river). It would be more powerful if, instead of

implementing all GIS operators, we take advantage of Piet-QL language introduced

in Chapter 4. This integration appears to be straightforward. The approach we

follow consists in adding a new kind of functions, with the ability capable to iterate

over Piet-QL result sets, and make this result set available at the moment the RE

expression is evaluated. We explain this in next section.

7.2 RE-SPaM++ Design

RE-SPaM++ is based on Piet-QL and RE-SPaM. Recall that the former lets us express

complex queries by supporting four kinds of queries: GIS-OLAP, OLAP-GIS, pure

GIS, and pure OLAP queries. In RE-SPaM++ we use only a subset of Piet-QL,

namely the queries that return spatial objects (GIS-OLAP and Pure GIS queries).

This allows to make the spatial component of a Piet-QL query (the one we can obtain

in the SELECT clause) available to be used by a RE-SPaM function. In general, any

query that exposes a spatial component (non-geographic, geographic, mixed) is useful

for our purpose of integrating geographic features for trajectory pattern using mining

RE-SPaM. We explain this integration next.
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7.2.1 Functions in RE-SPaM++

Piet-QL queries return a collection of over tuples (technically, a set of literals). Our

idea is based on defining a cursor over this set, and make this cursor available when

the RE expression is evaluated. To implement this, we just add a WITH statement to

the Piet-QL SELECT clause. This statement defines an alias over the cursor. Since,

functions in RE-SPaM cannot deal with cursors, we must incorporate new kinds of

functions whose syntax consists in a first parameter which corresponds to an attribute

of a category occurrence (for example, geom) or a temporal attribute (ts, tf, or their

subparts). The second parameter is of the form a.b, where the semantics is that b is

the name of an attribute, and a is the name of a cursor associated to the WITH clause.

The function returns a literal. We give the flavor of the language by means of a first

example query, using the running example that we followed in previous chapters.

Q1: “Trajectories that stop at a place which belongs to a region that contain a

river, and whose next stop is a zoo or a castle, finishing there.”

WITH TABLE regRiver(the geom) AS

SELECT GIS DISTINCT(bel regn.the geom)

FROM bel regn, bel river

WHERE contains(bel regn.the geom, bel river.the geom);

[containedBy(geom, regRiver.the geom)=‘true’].

([categoryName=Zoo’]|[categoryName=‘Castle’])

The Piet-QL part returns a set of geometric objects (polylines) representing regions

containing rivers, in the cursor regRiver(the geom). In the RE-SPaM part of the

query, the first constraint checks if the PoI is contained in one of the regions in the

set. In other words, when an item in the ToI is being evaluated, the corresponding

PoI geometry (represented by the attribute geom) is compared against each one of

the geometric elements in the cursor.
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The syntax of RE-SPaM++ is shown in Table 7.1. In this table, GisOlapPietQL-

Query and RE-SPaMQuery denote the syntax of Piet-QL queries of type GIS-GIS

and GIS-OLAP and RE-SPaM queries defined in Chapters 4 and 6, respectively.

R1 RE-SPaM++Query ← listOfWiths RE-SPaMQuery

R2 listOfWiths ← λ

R2 listOfWiths ← aWith listOfWiths

R3 RE-SPaM++aWith ← WITH TABLE tableName(listOfAttrs)
AS GisOlapPietQLQuery ;

R4 listOfAttrs ← attr

R4 listOfAttrs ← attr, listOfAttrs

Table 7.1: Grammar for RE-SPaM++

7.3 RE-SPaM++By Example

We now give some examples to illustrate the use of RE-SPaM++ queries.

Q2: “Trajectories that stop at a place with cheap prices, which is very close to a

district located in a region crossed by a river, and finish at the Belfort Castle”.

WITH TABLE district(the geom) AS

SELECT GIS DISTINCT(bel dist.the geom)

FROM bel dist, bel regn, bel river

WHERE intersects(bel regn.the geom, bel river.the geom) and

contains(bel regn.the geom, bel dist.the geom);

[price=‘cheap’ ∧ short distance(geom, district.the geom)=‘true’].

[name=‘Belfort Castle’]

This example shows how the Piet-QL part of the query is used to link the tra-

jectories of the MOs to the geographic space where they evolve. Here, the Piet-QL

query returns districts (i.e., polygons) in a map. At evaluation time, each geometry

of the PoI where a trajectory stops is compared with the geometry of each district in

the cursor, to check if the PoI being visited is close to it.
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Q3: “Trajectories that visit a place with cheap prices, and then stop at the zoo

(finishing there), such that both stops are either located in regions crossed by a river

(although not necessarily the same region), or in regions not crossed by rivers”.

WITH TABLE regCrByRiver(the geom) AS

SELECT GIS DISTINCT(bel regn.the geom)

FROM bel regn, bel river

WHERE intersects(bel regn.the geom, bel river.the geom);

[price=‘cheap’ ∧ containedBy(geom,regCrByRiver.the geom)= @x].

[containedBy(geom, regCrByRiver.the geom)= @x ∧

categoryName=‘Zoo’ ].

The variable @x is of boolean type. At evaluation time, the variable is bound to

‘true’ or ‘false’, and the two constraints are evaluated with this value. In this exam-

ple, the two constraints in the RE-SPaM++ expression include the spatial function

containedBy.

Q4: We now discuss a query that does not refer to the categories defined in Ta-

ble 6.2, but helps to illustrate other features of the language. We ask for “trajectories

that visit a city in the district of Nijvel in 2007 with stores selling more than 10000

units, and finish in a city in a province crossed by Albertkanal river, with sales greater

than 5000 units. In between, other cities can be visited”.

WITH TABLE city1(name) AS

SELECT GIS bel city.name

FROM bel city

WHERE bel city IN(

SELECT CUBE filter([Store].[Store District].

[Nijvel].Children,[Measures].[Unit Sales]>10000)

FROM [Sales]

SLICE [Time].[2007]);
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WITH TABLE city2(name) AS

SELECT GIS lc1.name

FROM bel city AS lc1, bel prov AS lp2, bel river AS lr2

WHERE Contains(lp2, lc1) AND Intersects(lp2, lr2)

AND lr2.name=’Albertkanal’

AND lc1 IN (

SELECT CUBE filter([Store].[Store City].Members,

[Measures].[Unit Sales]>5000)

FROM [Sales] );

[belong(name,city1.name)=‘true’ ].[]*.[belong(name,city2.name)=‘true’]

Cities here are represented by points in a map. The query requires two WITH

clauses and a function belong, used for matching the city names (the names of the PoI

and the spatial object returned). This example also shows that the functions defined

ad-hoc are not necessarily geometric ones. The first parameter of the function is the

name of the PoI, and the second one is a collection of names of the spatial objects in

a layer containing the cities. As a consequence, the same layer is used for the PoIs

and the geometric environment where trajectories occur, opposite to the previous

examples where PoIs and the geometric environment where in different layers.

7.4 Implementation

We now analyze implementation details of the mining algorithm, and show the impli-

cations of adding spatial objects support to RE-SPaM. Strictly speaking, no changes

are needed to be introduced to the mining algorithm presented in Chapter 6. How-

ever, since the RE-SPaM mining algorithm proceeds in incremental phases, and in

each phase a portion of the candidate sequence is evaluated to decide if it satisfies

some constraint labeling the edges of the automaton, we must guarantee that the new

expressions introduced in RE-SPaM++ can be efficiently evaluated. To accomplish

this objective we borrow ideas from dynamic programming techniques, where once

a function is evaluated with some parameters its result is stored in a cache avoiding

recalculation. In our setting, there are two types of caching that can be exploited,
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which we denote macro and micro-cache, respectively. The former stores the result

of a function of type fn(‘value’, tableName.attribute) (that is, functions returning

sets). The latter stores the result of a function of the form fn(’value’, ’literal’, ...).

We illustrate these ideas by means of an example.

Consider query Q1 from Section 7.2, and the category occurrences in Table 6.2. Let

us recall that the query asks for trajectories that pass through a place which belongs

to regions that contain a river and finish at a zoo or a castle. The Piet-QL part

of the query returns regions in the cursor denoted regRiver.the geom. To clarify

the example, we must first give some geographic information about Belgium. There

are three regions: Vlaams Gewest in the north, Brussel-Hoofdstad (the small region

within the former one) and the Wallonne (in the southern part of the country). The

three regions are shown in Figure 7.1. Brussel-Hoofdstad is crossed by the Kanaal

van Charleroi river, but this river is not contained by the region. Vlaams Gewest

contains the Ieperlee river and the Wallonne region contains the Ourthe Occle river.

Thus, both regions are in the cursor after the Piet-QL query is evaluated. For clarity,

in Figure 7.1 the names of the rivers were omitted, but we can see that the large

northern and southern regions contain rivers, while the small region is crossed by a

river.

Figure 7.1: Regions, rivers and PoIs in Belgium map.
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The algorithm starts by building C1 with all the category occurrences. Then, it

uses the automaton for pruning: if a candidate sequence does not satisfy any path in

the automaton, it is pruned. We have three paths of length 1 in the automaton (see

Figure 7.2).

a b c
[containedBy (geom, regRiver.the geom)=‘true’]

[categoryName=‘Zoo’]

[categoryName=‘Castle’]

Figure 7.2: Automaton for Q1

The constraint [categoryName = ‘Zoo’] is satisfied by the the zoo occurrence of

Table 6.2. The constraint [categoryName=’Castle’] is satisfied by the Belford Cas-

tle (denoted B). The constraint, [containedBy(geom, regRiver.the geom)=‘true’]

must be evaluated for the category occurrences of hotels and restaurants, to check

which PoIs are in regions crossed by rivers (returned by the Piet-QL part of RE-

SPaM++). Given that the constraint contains a function, the cache is used for this

evaluation. The engine first looks up in the macro-cache (implemented as a hash

table) for the value associated with the key containedBy(‘pol1’,regRiver.the geom).

No value is retrieved in this case, and the function starts browsing the cursor. The

first tuple in the cursor is 〈‘V laams Gewest’〉. Instead of evaluating the function, the

micro-cache is now queried for the value associated with the key containedBy(‘pol1’,

‘V laams Gewest’). We can see in Figure 7.1 that ‘pol1’ (the geometry of Ho-

tel H1) is contained in the Vlaams Gewest region. Then, the association between

containedBy(‘pol1’, ‘V laams Gewest’) and ‘true’ is stored in the micro-cache. Since

the value returned by the function is ‘true’ there is no need to continue browsing the

cursor. Moreover, the macro-cache is also updated, associating the key containedBy(

‘pol1’, regRiver.the geom) with the value ‘true’ (see below how this is used in the next

step). Next we evaluate containedBy(‘pol2’, regRiver.the geom). Again, nothing is

retrieved from the macro-cache, therefore we must browse the cursor. The engine

looks up in the micro-cache for a value associated with containedBy(‘pol2’, ‘V laams

Gewest’). Since nothing is retrieved, the function must be evaluated, returning the

value ‘false’, and this association is stored in the micro-cache. Similarly, the micro
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and macro-cache are updated with the associations containedBy(‘pol2’, ‘Wallonne’)

and ‘false’, and containedBy(‘pol2’, regRiver.the geom) and ‘false’, respectively. Fi-

nally, the candidate sequence H2 is discarded since it can not satisfy any path of

length one in the automaton. Analogously, the system finds out whether or not

‘pol3’, ‘pol4’ and ‘pol5’ are contained in some tuple of the cursor regRiver.the geom

by taking advantage of the macro and micro cache. Figure 7.3 shows the initial and

final states of C1. In the final phase of the first step (the step with k = 1), C1 is

analyzed against the ToI to check for minimum support. For the second step, let us

suppose that all candidate sequences of C1 are maintained (i.e., all candidates will

be checked for minimum support). Thus, the system populates the set C2 in the

second step by joining C1 with itself. Similarly to the first step, using the automaton

the engine determines which candidate sequences of length two are satisfied by some

path of length two. Many candidate sequences are discarded here, for instance, those

combinations which do not end at zoos or castles. Again, it becomes important to

optimize the evaluation of functions. For this, we use now the macro-cache. When

deciding if the candidate sequence of length 2 {H1 Z} is accepted by some path

of length two in the automaton, the function containedBy(‘pol1’, regRiver.the geom)

must be evaluated. But now, this key and its associated value can be obtained from

the macro-cache, since its value was calculated in the previous step and the cache was

updated accordingly. The process continues until a step k such that no sequences

of length k exist in the ToI. In Figure 7.4 we show the state of C2 before and after

pruning.

IDs
B
Z
H1
H2
R1
R2
R3

IDs
B
Z
H1
R1
R2
R3

Figure 7.3: Computing C1: before (left) and after (right) pruning with automaton

We now analyze the impact in the performance of RE-SPaM++ as a consequence

of adding the new kinds of functions. Taking advantage of the cache strategy, Piet-QL

queries are evaluated only once, i.e. during the first step of the mining process; the
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IDs
B B
B Z
B H1
B R1
B R2
B R3
... ...
Z B
... ...
H1 B
H1 Z
... ...
R3 R3

IDs
B B
B Z
H1 B
H1 Z
R1 B
R1 Z
R2 B
R2 Z
R3 B
R3 Z

Figure 7.4: Computing C2 : before (left: 36 tuples), and after (right: 10 tuples)
pruning with automaton

subsequent evaluations of the same function (with the same parameters) is reduced

to a lookup in the macro o micro-cache. Thus, the overhead is introduced only at

the beginning of the process.

7.5 Summary

In this chapter we studied the problem of finding trajectory sequential patterns taking

into account the geographic environment in which the trajectories occur, and provided

a solution. This solution builds over the work discussed in previous chapters of this

thesis.



Chapter 8

Implementation and Case Study

In this chapter we present a complete case study based on a collection of maps of

Belgium, a data warehouse, and a set of trajectories obtained through simulation.

We discuss the data preparation for the spatial, OLAP, moving object data, and run

different experiments, reporting and analyzing the results. Then, we show how RE-

SPaM++ is used in a visualization tool to help to understand the patterns obtained.

8.1 Data Preparation

Our case study comprises the behavior pattern detection of MOs over the map of

Belgium, in light of SOLAP. It is composed of OLAP data, GIS data and MO database

as we describe in the following subsections.

8.1.1 OLAP Data

We analyze the fact sales of different stores distributed around Belgium country. Sales

are stored in a data warehouse (no geometries are stored in such DW). The measures

of the cube are Unit Sales, Store Cost, Store Sales and Number of Products Sold. The

dimensions that have been identified are Store, Customer, Product, Promotion Media,

and Time. We have mentioned in Section 3.1 that this DW does not correspond to a

real-world situation.

• The Store Dimension is a non-geometric spatial one, according to Bédard clas-

sification. Its levels conform the following hierarchy: Store Name → City →

109
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District → State → Country. Each level could have additional descriptive at-

tributes. For instance, the level Store Name has attributes like Street Address

and Store Manager.

• The Customer Dimension is also a non-geometric spatial dimension and its lev-

els conform the following hierarchy: Name → City → State → Country. Its

bottom level also has the following attributes: Gender, Marital Status, Educa-

tion and Yearly Income.

• The Product Dimension is a non-spatial one, with hierarchy: Product Name →

Brand Name → Product Subcategory → Product Category → Product Depart-

ment → Product Family.

• The Promotion Media Dimension is non-spatial and it has only one level: Media

Type.

• The Time Dimension contains the following level hierarchy: Month → Quarter

→ Year → Time.

We implemented the data cube using a ROLAP approach. The fact table contains

2,010,337 tuples. The store, customer, product, promotion media and time dimen-

sions contain 60, 10,281, 1,560, 1,864 and 2,192 tuples, respectively. The total size of

the data warehouse is 190MB.

8.1.2 GIS Data

We describe the layers in the Belgium map. The geographical information of Belgium

is available and published over the Web by the GIS Center. There are layers for

rivers, cities, districts, provinces and regions. Cities are represented by points, rivers

as polylines and the others layers as polygons. According to Bédard taxonomy, we

have a mixed spatial dimension, conformed by cities, districts, provinces and regions.

Recall that a mixed dimension contains geometries and non-spatial information. For

example, provinces have information in the GIS about population and number of

agricultural employees, regions have the number of olives cultivated per hectare. The

number of tuples in the tables corresponding to rivers, cities, districts, provinces and
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regions are 39, 583, 43, 9 and 3, respectively. In Section 4.2 (Figure 4.1), we explained

how we match the geometric and non-geometric hierarchies.

8.1.3 Trajectory Data

As we have explained in Chapter 7, RE-SPaM++ works over semantic trajectories.

Therefore, preparing the SM-MOFT table from the raw data requires some data

pre-processing that we explain next.

Real vs. Synthetic Trajectories We first describe the data acquisition phases.

We consider two possibilities: working with real-world trajectories or synthetic ones.

Real-world trajectories are difficult to acquire due privacy issues. It is well-known

that it is not enough to encode the identity of MOs to protect privacy. Depend-

ing on the number of trajectories in a pattern, the identity could be revealed by a

pattern. Thus, most MO trajectories are not publicly available. There are some

exceptions: some research projects have published real-world raw trajectories. The

INFATI Project1 is one of them. Its purpose was to investigate driver responses to

alerts issued by a device installed in the car. In the case of Belgium there are not

public data available. Thus, we decided to work with simulated data. We worked

with the Network-based Generator of Moving Objects2, which by using the informa-

tion of a network in a proprietary graph format generates samples of raw trajectories.

The simulator uses parameters such as maximum speed of MO, maximum capacity

of connections, external objects that affect the movement of an object, influence of

external objects and the interval time between samples. We simulated movement of

different kinds of MO, like pedestrians, cars, bikes.

1http://timecenter.cs.aau.dk/software.htm
2http://www.fhoow.de/institute/iapg/personen/brinkhoff/generator
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8.1.4 Preparing and Running the Simulator

We downloaded a graph with the Belgium road network from the MapCruzin.com

website3 and transformed this format to the one expected by the Network-based

Generator. The process generated a network with 756,498 nodes and 1,542,051 edges.

We remark that the network is a digraph, i.e., some of these roads are double-way.

Figure 8.1 depicts the network we used in our experiments, at two levels of detail.

The simulator can be controlled by several parameters. We used the road network,

the maximum time duration, the number of initial MOs, the maximum number of

MOs generated at each instant, the maximal range of speed of the MOs (e.g., low,

medium, high), and name of the file that will store the synthetic data. Each row in

the target file stores the following fields: (a) a string that indicates ‘newpoint’, ‘point’

and ‘disappearpoint’ for indicating that this row corresponds to a new, existing or

disappearing point (MO); (b) a point ID (i.e., a MO identifier); (c) a sequence number

for a specific point ID; (d) the type of the MO (for instance, pedestrian, cyclist, motor

cyclist, car), (e) (x, y) coordinates, (f) an integer that represent an instant and (g)

speed. The information is order by instant in ascendent order, i.e. the information

of MOs is interleaved. For our experiments we needed to generate real timestamp

information.

We ran the generator several times and processed all the simulated trajectories

that belong to the same file as if they had been generated on the same day. In all

these experiments we used a maximum simulation time duration between 400 and

600 iterations (we then transform these iterations in actual time intervals), which

corresponds approximately to one day-long trajectories (we assume that MO reported

positions each 30 seconds). The maximum speed for the MOs ranged from slow to

fast objects.

We generated a total of 2204 raw trajectories. The minimum, average and maxi-

mum lengths of those trajectories (i.e., number of positions) were 1, 157, 1593, respec-

tively. Figure 8.2 depicts a raw trajectory generated by the simulator. The trajectory

starts at the bottom-center of the figure and follows the north-west direction. When

3MapCruzin is an independent firm specializing in innovative GIS projects, environmental and so-
cial and demographic research, website development and hosting. http://www.mapcruzin.com/free-
belgium-arcgis-maps-shapefiles.htm
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Figure 8.1: The Belgium road network at different levels of detail

it arrives at the top, it takes the same path (double-way) and follows the south-east

direction (bottom-right). The same portion of the path is used twice, so double points

can be visualized. All points belong to the road network.
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Figure 8.2: A Raw Trajectory

8.1.5 Preparing the Places of Interest

Information about PoIs in Belgium was obtained from the PoI Plaza Website4. We

grouped these data in six different categories: stores (supermarkets and department

stores), sport clubs (basketball, football, golf and tennis clubs), gastronomy (pubs

and restaurants), banks, hotels, tourist attractions (abbeys and castles). In total,

1230 PoIs were downloaded. We summarize them in Table 8.1. The files were in

Google Earth KML format5 and we converted them to ESRI Shapefile format6 files

before importing them in PostgreSQL database.

The attributes related to each category instance were obtained, in general, from

these files. We added other information not available: price (for gastronomy, sport

clubs and tourist attractions), and star, indicating the hotel category. The values for

these attributes were either inferred or generated randomly. For example, in the case

of ‘price’ for sports clubs, we proceeded as follows: golf and tennis were considered

expensive, and basketball and football, cheap. See the category schema in Table 8.2.

4http://poiplaza.com
5KML (standing for Keyhole Markup Language) is an XML-based language for expressing geo-

graphic annotation and visualization on three-dimensional Earth browsers
6This file format is a geospatial vector data format for GIS
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Category Category Instance (number of occurrences)

Bank Fortis(109)

Gastronomy Breweries(91), Pizza Hut(40), Pasta Vapiano(1)

Hotel Different Names(373)

Sport Club Basketball(102), Football(49), Golf(61), Tennis(40)

Store Carrefour(85), Delhaize(111), Ikea(6)

TouristAttraction Abbeys(40), Castles(122)

Table 8.1: POIs category instance of case study

Category Schema

Bank [ID, categoryName, geom, name]

Gastronomy [ID, categoryName, geom, speciality, name, town, street, phone, price]

Hotel [ID, categoryName, geom, name, phone, star]

Sport Club [ID, categoryName, geom, game, name, town, price]

Store [ID, categoryName, geom, name, town]

TouristAttraction [ID, categoryName, geom, subtype, name, town, phone, price]

Table 8.2: Category Schema for the case study

Finally, we generated the SM-MOFT from the MOFT. The computation requires

that the raw trajectories contain the reported spatiotemporal positions. However, the

simulator generates continuous movement, but cannot simulate a stop in the trajec-

tory. Thus, again, some additional data pre-processing was needed to simulate these

stops. Table 8.3 shows the maximum and minimum stop durations for each category.

Using these times, trajectory stops were randomly generated, and two datasets were

produced, denoted the large and medium-sized ones. The former contains 1230 PoIs,

from a MOFT of 252590 tuples that yielded an SM-MOFT of 4484 tuples. The latter

contains 800 PoIs, with a compression yielding an SM-MOFT of 2851 tuples.
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Category Minimum Duration (min) Maximum Duration (min)

Bank 10 60

Gastronomy 30 120

Hotel 30 480

Sport Club 30 180

Store 30 120

TouristAttraction 30 120

Table 8.3: Max and Min Duration for PoIs

8.2 Experiments

We ran our tests on an Intel Core 2 Duo CPU, at a clock speed of 2.6 GHz, equipped

with 4GB RAM and running over Windows Vista Operating System. All the data

(PoI and ToI) was stored in PostgreSQL 8.2.3 database. The application framework

was developed as a java plug-in for OpenJump. Algorithms have been implemented

in Java 1.6.

Many factors could affect execution time of the mining process using RE-SPaM++:

among others, we can mention the number of trajectories to be mined, the minimum

support, the length of the query, the kind of a Piet-QL query, the number of interme-

diate steps, the number of PoIs, the attributes that these PoIs share. It is not trivial

to isolate one of them and maintain the others fixed. We have designed different ex-

periments to get an insight of the algorithm, and compare the theoretical complexity

computation presented in Chapter 6 against real-world implementation results. We

remark than in our RE-SPaM++ implementation the minimum support works as a

threshold. We defined the support of a RE rather than a SE, i.e., if the RE has

enough support all the sequences which satisfy this support will be retrieved, even

if the sequences, individually, do not satisfy the support, implementing the concept

of semantic equivalence. Thus, given a minimum support, we obtain a collection of

sequences, or no sequence at all, making it irrelevant to vary the minimum support

value to vary the number of sequences to be retrieved. That is the reason why during

all of our experiments we chose the same (low) value for the minimum support, 0.01.
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8.2.1 Goal 1

RE-SPaM++ uses an automaton for pruning candidate sequence before scanning the

ToI. Our first goal is to confirm the impact of this pruning phase.

Experiment 1.1 We formulated several queries and computed, in each step, the

number of candidate sequences generated in phases 0 and 1, i.e. before and after the

use of the automaton. We used the following queries, which return different numbers

of frequent sequences of different lengths that influence the results.

Q1: [categoryName = ‘gastronomy’].[price = ‘cheap’ ∧ game = ‘basket’]

Q2: [speciality = ‘beer’].[game = ‘basket’]

Q3: [categoryName = ‘gastronomy’].[game = ‘basket’]+

Q4: [categoryName = ‘gastronomy’].[game = ‘basket’]+.[star = ‘3’]

Q1, Q2, Q3, Q4 produce 9, 9, 11, and 0 sequences, respectively. However, the

performance of Q4 is approximately three times slower than Q1 and dos not produce

sequences. This makes clear that the number of sequences obtained is not a good

performance indicator. The results are shown in Table 8.4.

Query Execution Time (sec) Number of frequent sequences obtained

Q1 10.55 9

Q2 16.39 9

Q3 27.38 11

Q4 31.19 0

Table 8.4: Executing time for experiment 1.1

In fact, the performance is associated with the number of intermediate steps that

the mining process uses to generate the frequent sequences, and with the number

of candidate sequences that the algorithm manages throughout all the steps. We

remark that the third phase of step k scans the ToI (i.e., requiring accessing the disk)

for building contiguous lists and compares them with the candidate sequences in Ck.

Thus, if the number of candidate sequences in Ck could be reduced, the total execution

time would be lower. Table 8.5 shows for each query its intermediate steps (excluding
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the final phase), and the number of candidate sequences generated during Phase 0

(before using the automaton) and during Phase 1 (after the use of the automaton),

i.e., the size of Ck in each phase. As a measure of the automaton effectiveness, we

show in the last column the percentage of reduction of the size of each set Ck. The

use of the automaton substantially reduces the number of candidate sequences in

intermediate steps, which is relevant since this steps precede the scanning of the ToI.

Query Automaton Effectiveness

Phase 0: |Ck| Phase 1: |Ck| Reduction (%)

Q1 (three intermediate steps)
1230

13225
0

234
3306

0

81 %
75 %
0 %

Q2 (three intermediate steps)
1230

11881
193

2958
84 %
75 %

Q3 (five intermediate steps)

1230
13225

44
6
1

234
6670

44
6
1

81 %
50 %
0 %
0 %
0 %

Q4 (five intermediate steps)

1230
20164

58
6
1

363
8236

58
6
1

70 %
59 %
0 %
0 %
0 %

Table 8.5: Phases of Experiment 1.1

8.2.2 Goal 2

One of the novelties of our algorithm consists in the support of variables. Thus, our

second goal is to estimate its impact.

Experiment 2.1 We analyzed the performance of the four algorithm variations

mentioned in Chapter 6, namely legal-early, legal-late, valid-early and valid-late. We

selected four queries, containing two variables that must be matched, and in each

query the distance between these two variables ranges from 1 to 27 (the largest tra-

jectory in the MO database contains 27 stops). Our ultimate goal is to measure the

performance of late and early binding of variables. The query used are:

Q5:[price=@x].[price=@x]

Q6:[price=@x].[subtype=‘castle’].[price=@x]

Q7:[price=@x].[subtype=‘castle’].[].[price=@x]
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Q8:[price=@x].[subtype=‘castle’].[]+.[price=@x]

The difference between early and late evaluation is the instant when the set of

bounded variables BV is calculated (see Definition 23). Legal and Valid algorithms

differ in the relaxed constraint they use for pruning using the automaton. In the

Legal algorithm: (a) A sequence of length N is legal if some path of length N in the

automaton satisfies it. (b) The candidate sequence generation, as we explained in

Chapter 6, is obtained by a self join, i.e., to generate candidate sequences of length

k, the join between previous candidate sequences Ck−1 and Ck−1 is performed. As for

the Valid algorithm: (a) A sequence of length k is valid if some path of length k that

finishes in a final state in the automation satisfies it. (b) The candidate sequence

generation differs from the Legal algorithm. In step k it tries to extend the candidate

sequence moving one step backwards, i.e., it does not use a join.

At first sight, the Valid algorithm could appear to be the best one. But this

depends on several factors. Assume that we have N PoIs, and at the end of step

k-1 the number of candidate sequences generated is P. Using the Legal algorithm we

obtain, at Phase 0 of Step k, a set containing NxN candidate sequences. Instead, using

the Valid algorithm, at Phase 0 of Step k we would obtain a set of PxN candidate

sequences. Which is better depends on the sizes of P and N. If the number of PoIs

largely exceeds the number of candidate sequences, i.e., P >> N, then the Legal

algorithm would be the best, otherwise the Valid algorithm would do a better job.

We used 800 PoIs (i.e., the medium-sized dataset) and the number of sequences pruned

by the ToI in a previous step is an average of 8 times smaller (100 elements). Thus,

in our experiments, all executions with the Valid were extremely bad with respect to

the Legal variation. Further, we run the first three queries with the four algorithms,

but the Valid algorithm for Q4 took 3 hours and 31 minutes. Thus, we discarded the

use of Valid algorithm for the rest of the experiments. For details see Figure 8.3. We

ran four algorithm combinations: Early and Late variable evaluation, using the Legal

and Valid approaches.

We conclude that for the Legal approach, there was not a substantial difference

between using early or late evaluation for queries that have a distance of variables

less than 4. Binding variables in early stages prunes intermediate tuples, but more
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overhead is introduced. However, when the distance is larger, late evaluation performs

better. In the case of Valid algorithm late evaluation outperforms early evaluation.

Figure 8.3: Experiment 2.1

Experiment 2.2 The number of different values that can take a variable could

affect its performance (recall that an equality condition over attributes other than

IDs is equivalent to a disjunction over the IDs). The queries we propose contain two

variables that must be matched. The queries were:

Q9: [categoryName=@x].[categoryName=@x]

Q10:[star=@x].[star=@x]

Q11:[price=@x].[price=@x]

Q12:[game=@x].[game=@x]

Q13:[subtype=@x].[subtype=@x]

We used the algorithm with the legal-late evaluation alternative. The attributes

we used were: categoryName, star, price, game and subtype. We wanted to analyze

to what extent the number of different occurrences (i.e., possible values) for the

attributes that appear in the ToI affect the performance. Thus, we grouped the

queries according to these values as follows. First, using the medium-sized dataset

(with 800 PoIs), the number of different occurrences for the attribute categoryName

are six (‘bank’, ‘gastronomy’, ‘hotel’, ‘sportclub’, ‘star’, ‘touristattraction’); for price
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and star there are three possible values the attribute can take (‘free’, ‘cheap’, and

‘expensive’ for the former, and ‘3’, ‘4’, ‘5’ for the latter); for game and subtype, there

are two (‘basket’, ‘football’ and ‘abbey’, ‘castle’, respectively). The queries that use

categoryName form a group (Q9) as the bounded value set BV for the constraint has

6 elements. Analogously, the queries that use price and star form a second group

(Q10 and Q11) since BV has 3 elements. Finally those queries that use game and

subtype form a third group (Q12, Q13) since BV has 2 elements.

The results are shown in Table 8.6.

Size of BV 6 (Q9) 3 (Q10,Q11) 2 (Q12,Q13)
Time (sec) 539.18 40.58 12.45

Table 8.6: Performance of Experiment 2.2 (DB medium)

Running the same experiment with the original dataset (1230 PoIs), the number of

occurrences that appear in the items of the ToI are different. The number of possible

values for attribute game was 4 (basket, football, golf, tennis). The other ones were

the same. The queries that use categoryName form a group (Q9) since BV has 6

elements. The queries that use game form a second group (Q12). The other groups

are built for the queries that use price and star (Q10 and Q11), and the queries that

use subtype (Q13). The results are shown in Table 8.7.

Size of BV 6 (Q9) 4 (Q12) 3 (Q10) 2 (Q13)
Time (sec) 1800 22.67 145.48 13.46

Table 8.7: Performance of Experiment 2.2 (DB large)

Note that when using the large dataset, query Q12 (with four different possible

instantiations for the variable) performs much better than Q10 (with three different

possible instantiations for the variable). Then, we have not conclusive evidence on

the influence of the size of the set BV over the performance, in particular when this

value is relatively small. The next experiment is aimed at looking for other variable

that can influence performance: the number of PoIs in the dataset.
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8.2.3 Goal 3

We wanted to measure the relevance of the number of PoIs that satisfy some condition,

considering it appears reasonable that the higher this number,the higher the amount

of memory that must be used, decreasing the algorithm performance.

Experiment 3.1 We formulate the following experiment. We ran queries that con-

tain constraints that were satisfied by different number of PoIs. In this case we ran the

queries with large dataset containing 1230 PoIs. Here, the number of PoIs that match

the condition game=’basket’, speciality=‘Beer’, game=‘Golf’, speciality=‘pizza’ and

speciality=’pasta’ are 102, 91, 61, 40 and 1, respectively. These are the queries we

ran. In each query we always used the same condition:

Q14: [game=‘basket’].[game=‘basket’]

Q15: [speciality=‘beer’].[speciality=‘beer’]

Q16: [game=‘golf’].[game=’golf’]

Q17: [speciality=‘Pizza’].[speciality=‘Pizza’]

Q18: [speciality=‘Pasta’].[speciality=‘Pasta’]

The results are shown in Figure 8.4

Figure 8.4: Experiment 3.1

We can see that as the number of PoIs that match a condition increases, the

performance decreases, confirming our hypothesis.
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8.2.4 Goal 4

Now we move to RE-SPaM++ queries that include Piet-QL queries. These new ca-

pabilities would not affect performance substantially due to the use of macro and

micro-cache strategies. We verify this through the following experiment.

Experiment 4.1 We first ran queries that use a constraint of the form [c1 ∧ c2],

where c1 is the invocation to an extended function in RE-SPaM++ (the ones that

browse a cursor over a collection of geometric identifiers returned by a Piet-QL query),

and c2 is an equality expression. In our running example we use the extended function

containedBy. After this, we run the query removing c1, that is, the query is of the form

[c2]. The experiment is aimed at verifying the negative impact over the performance

that invoking the extended function in the condition c1 may produce, against the

positive impact of this condition because it may reduce the number of candidate

sequences in the intermediate steps of the algorithm. The queries are:

Q19:

WITH TABLE distRiver(the geom) AS

SELECT GIS DISTINCT(bel dist.the geom)

FROM bel dist, bel river

WHERE crosses(bel dist.the geom, bel river.the geom);

[containedBy(geom, distRiver.the geom)=‘true’ ∧ price=‘cheap’].

[containedBy(geom, distRiver.the geom)=‘true’ ∧ game=‘basket’]

Q19-short:

[price=‘cheap’].[categoryName= ‘basket’]

Q20:

WITH TABLE distRiver(geom) AS

SELECT GIS DISTINCT(bel dist.the geom)

FROM bel dist, bel river

WHERE crosses(bel dist.the geom, bel river.the geom);

[containedBy(geom, distRiver.geom)=‘true’ ∧ price=‘cheap’].

[containedBy(geom, distRiver.geom)=‘true’ ∧ price=‘cheap’]
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Q20-short:

[price=‘cheap’].[speciality=‘cheap’]

The results are shown in Table 8.8.

Query Q19 Q19-short Q20 Q20-short
Time (sec) 151.11 30.87 17.33 61.86

Number of sequences 40 41 20 99

Table 8.8: Performance of Experiment 4.1

We can see that Q19-short is five times faster than Q19: in this case the overhead of

evaluating a geometric function over the 1230 PoIs -again, the large dataset- (Phase

0 in Step 1) has more impact than the reduction in the intermediate steps, given

that only one extra sequence was pruned due to the geometric condition. Instead,

Q20 is approximately four times faster than Q20-short, since the former returns less

sequences. It is worth noting that the use of geometric functions introduces and

overhead at the beginning of the process because the geometric condition must be

evaluated (i.e., the Piet-QL query).

8.3 Visualizing RE-SPaM++ results

In the MO setting, the result of applying a RE-SPaM++ query are trajectories. RE-

SPaM++ discovers semantically similar trajectories, which, in a sense, is a way to

perform trajectory aggregation. Visualizing these aggregated trajectories can help

the data analyst to draw conclusions about the dataset at hand. We implemented a

tools that allows to visualize semantically equivalent trajectories returned by an RE-

SPaM++ query in the OpenJump framework. In our implementation, the trajectories

that pass trough the same PoIs in the same order are visualized only once, in the

same layer and the line that links these PoIs is drawn with a thickness proportional

to a maximum thickness value, proposed by the user. This thickness is proportional

to the number of trajectories in the path. Those trajectories that are semantically

equivalent but do not pass though the same PoIs are drawn in different layers. Figure

8.5 shows the execution in our tool of the the following query:
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WITH TABLE distRiver(geom) AS

SELECT GIS DISTINCT(bel dist.the geom)

FROM bel dist, bel river

WHERE crosses(bel dist.the geom, bel river.the geom);

[containedBy(geom, distRiver.geom)=@x ∧ price=‘cheap’].

[containedBy(geom, distRiver.geom)=@x ∧ game=‘basket’].

[name=’Fortis’]+

Figures 8.6 and Figure 8.7 depict the result of the query, visualizing it at different

levels of detail.

Figure 8.5: Input Parameters for RE-SPaM++

8.4 Summary

We have presented a case study were we show how our proposal can be applied,

integrating, in a single framework, GIS data (in this case, real-world maps of Belgium),

OLAP data (adapted from an external data warehouse), and moving object data

(synthetic data). In addition, we performed experiments that provide insight into

the parameters and conditions that affect the performance of the query language RE-

SPaM++ that integrates these three worlds. Finally, we presented a visualization tool
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Figure 8.6: Semantically Equivalent Trajectories

Figure 8.7: Semantically Equivalent Trajectories in the Road Network

allowing to run RE-SPaM++ queries and display the results.



Chapter 9

Conclusion

In this thesis we have shown that MO data can be effectively integrated with GIS

and OLAP data. This integration is achieved through a framework based on a formal

data model that we have denoted Piet. A formal query language for spatial aggre-

gation and an SQL-like language, Piet-QL, based on the OGC and MDX standards

supports OLAP and GIS integration. To integrate MO data into this framework, we

first showed that trajectories can be semantically enriched with information about

the geography where they develop. We discuss how mining techniques can identify

semantically equivalent trajectories, contributing to the detection of patterns that

cannot be discovered with traditional approaches. We then introduced a sequential

pattern mining algorithm and a regular expression query language (called RE-SPaM)

to restrict the number of sequences to be discovered. This proposal differs from pre-

vious ones in many ways: first, it formalizes all the concepts related to the mining

process by means of a data model; second, it supports categorical attributes, and the

use of functions and variables; third, expresses patterns as regular expressions instead

of sequences (i.e., patterns are expressed by intension rather than by extension); fi-

nally, it introduces the idea of computing the support of a regular expression. Finally,

we showed how Piet-QL queries can be included in RE-SPaM expressions, leading to

a more powerful language called RE-SPaM++, that implements the integration of MO

into de GIS-OLAP framework.

We show how our proposal can be used for data analysis by means of a case

study based on a collection of maps of Belgium. For this, we produced a collection of

synthetic trajectories and created a data warehouse. Over this setting, we performed

127
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a set of experiments aimed at showing that our tools can be used in a real world

situation with good results.

We have implemented the Piet-QL language, the RE-SPaM mining algorithm and

the RE-SPaM++ language. The results obtained in Piet-QL language are visualized in

a plug-in that was developed for the OpenJump platform. Queries returning spatial

data are shown in map layers. The results of the queries returning OLAP data are

displayed in a chart for browsing. For RE-SPaM++, the semantic trajectories that

satisfy a certain RE are visualized in layers of OpenJump.

9.0.1 Open Research Directions

In traditional sequential pattern discovery the support of a sequence is computed as

the number of data-sequences satisfying a pattern with respect to the total number

of data-sequences in the database. In our approach it is the fraction of number of

trajectories satisfying a RE over the total number of trajectories. If the attributes of

the items are frequently updated, this could lead to incorrect or at least incomplete

conclusions. For instance, in the examples that we have discussed in Chapter 8,

we assumed that the schema of categories and also the values associated to category

occurrences are invariant over time. The pattern discovery algorithm assumes that no

changes have occurred in these categories. In light of this, for some situations it can

be important to revise the classic notion of support in sequential pattern mining and

consider the notion of Temporal Support of a RE, that accounts for the commented

category updates.

Another open research direction comes from the area of so-called continuous fields,

which describe the distribution of physical phenomena that change continuously in

time and/or space. Examples of such phenomena are temperature, pressure, or land

elevation. Besides physical geography, continuous fields, like land use and popu-

lation density, are used in human geography as an aid in spatial decision making

process. Although some work has been done to support querying fields in GIS, the

area of spatial multidimensional analysis of continuous data is still almost unexplored.

Integrating spatiotemporal continuity within multidimensional structures poses nu-

merous challenges. Further, existing multidimensional structures and models dealing
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with discrete data, are not adequate for the analysis of continuous phenomena. Mul-

tidimensional models and associated query languages are thus needed, to support

continuous data. The work presented in this thesis could be used as a starting point

for integrating OLAP and continuous field data.
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[46] E. Malinowski and E. Zimányi, Representing spatiality in a conceptual multidi-
mensional model, GIS, 2004, pp. 11–12.
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