
Chapter 1

(Heterogeneous) Structured
Specifications in Logics Without
Interpolation

Carlos G. Lopez Pombo1

clpombo@dc.uba.ar

Universidad de Buenos Aires. Facultad de Ciencias Exactas y
Naturales. Departamento de Computación and
CONICET–Universidad de Buenos Aires. Instituto de
Investigación en Ciencias de la Computación (ICC).
and
Marcelo F. Frias
mfrias@itba.edu.ar

Department of Software Engineering, Buenos Aires Institute of
Technology (ITBA) and Consejo Nacional de Investigaciones
Cient́ıficas y Tecnológicas (CONICET)

Abstract The world of software development has become intrinsically het-
erogeneous. Many formal languages have been made available to help analysts
and designers model different aspects of software. Some examples in the logic
realm are equational logic and classical first-order logic, propositional tem-
poral logics such as LTL and CTL (and their first-order versions), multimodal
logics such as the dynamic logic PDL and its first-order version, etc.
One important feature of a specification language is the existence of struc-
turing mechanisms enabling the modular construction of system descriptions.
Structured specifications were introduced by Wirsing for first-order logic, and
later presented in the language-independent setting of institutions by San-
nella and Tarlecki. Afterwards, Borzyszkowski presented sufficient conditions
for a calculus for (homogeneous) structured specifications to be complete.
These conditions include some form of Craig’s interpolation, which results
in a scenario that excludes many formalisms employed in the description of
software.
The contributions of this article are then summarised as follows: a) We
present a calculus for structured specifications whose completeness proof does
not require any form of interpolation. b) We extend this calculus to a complete
calculus for heterogeneous structured specifications.

Key words: Structured specifications, Heterogeneous specifications, Insti-
tutions

1 Introduction and Motivation

Many languages and notations have been designed with the aim of helping
software analysts and designers capture and model different aspects of soft-
ware development. Among the formal approaches, logics have always been a
distinguished tool in software specification, analysis and verification. In
(Goguen & Burstall, 1984), Goguen and Burstall present institutions as a
categorical formalization of the abstract model theory of a logical system.
Institutions provide an abstract view of a logic that enables the study of
properties of a formalism independently of notational issues. For instance,
(Tarlecki, 1986) surveys several interesting results about well-known proper-
ties, such as interpolation, within the framework of institutions.

Of utmost importance in software development is the composition of par-
tial models of software into complete, consistent ones. Since the foundational
work of Parnas (Parnas, 1972, 1979), practitioners build software artifacts
(and particularly software specifications), modularly. In (Sannella & Tarlecki,
1988) Sannella and Tarlecki provide a set of structure-building operations that
enable the modular construction of specifications from theories taken from a
given institution. They also propose a set of rules that enable reason-ing in
terms of the modules involved in the design. In a different direction (but with
the same purpose), Bergstra et al. propose in (Bergstra, Heering, & Klint,
1990) an algebraic formalization of modules recalling, for the first time, that in
order to have a complete calculus for modular specifications, Craig’s
interpolation property is required (in this particular case expressed in an
implicit, but equivalent way, by the presence of two axioms). Wirsing presents
in (Wirsing, 1991) a calculus similar to the one given in (Sannella & Tarlecki,
1988), but restricted to structured specifications whose constituent parts are
written in first-order predicate logic. This calculus is proved to be complete in
the absence of hidden symbols. Interpolation is explicitly used in the
completeness proof. Borzyszkowski (Borzyszkowski, 1997) presents a logical
system for the structure building operations (SBOs) introduced by Sannella
and Tarlecki, as well as an extensive discussion on the conditions under which
the proposed calculus is complete. One of these conditions is that the
underlying institution must either satisfy Craig’s interpolation, or a
combination of a weaker form of interpolation with other properties such as
compactness. In (Dimitrakos & Maibaum, 2000) Dimitrakos and Maibaum
show some links between restrictions on the collection of morphisms acting
over signatures (i.e., stability of faithful morphisms under pushouts), and
Craig’s interpolation; and in (Diaconescu, Goguen, & Stefaneas, 1993), Di-
aconescu and Goguen show that whenever the logical system is compact,
Craig’s interpolation is equivalent to certain distributive laws.

Also in (Goguen & Burstall, 1984), Goguen and Burstall call the attention
on the diversity of languages used in computer science:

“There is a population explosion among the logical systems used in computer science.
Examples include first-order logic, equational logic, Horn-clause logic, higher-order

logic, infinitary logic, dynamic logic, intuitionistic logic, order sorted logic, and tem-

poral logic; moreover, there is a tendency for each theorem prover to have its own
idiosyncratic logical system.”

Institutions provide the formal machinery needed to present the notion of
logic (from a model-theoretical point of view), in an abstract and compact
way. If we consider the work on structured specifications under the light of
this phrase, Borzyszkowski’s work provides general conditions for the exis-
tence of a complete calculus for structured specifications over a given institu-
tion. Unfortunately, most of the logics used in computer science to describe
system behaviors (linear time temporal logics like LTL(Pnueli, 1981) and its
first-order version FOLTL(Manna & Pnueli, 1995), branching-time temporal
logics like CTL(Clarke, Emerson, & Sistla, 1986; Emerson & Halpern, 1985)
and CTL∗(Pnueli, 1977; Emerson & Halpern, 1986), and dynamic logics such
as PDL(Harel, 2001; Harel, Kozen, & Tiuryn, 2000) and its first-order coun-
terpart FODL(Harel et al., 2000)), do not comply with these conditions.

First Contribution: We present a calculus for structured specifications
whose completeness is subject to weaker properties (more specifically, no
form of Craig’s interpolation is required), enabling its use in the verification
of properties of structured specifications in the previously mentioned logics.

Modeling languages such as the Unified Modeling Language (UML) (Booch,
Rumbaugh, & Jacobson, 1998) allow us to model a system using a combi-
nation of diagrammatic notations. Each diagram provides a (partial) view of
the system under development. This view-centric approach to software mod-
eling has two clear advantages: a) decentralization of the modeling process
(several engineers may be modeling different views of the same system si-
multaneously), and b) separation of concerns is enforced. This approach to
software modeling requires the existence of mechanisms for integrating these
partial views in a complete description of the system. Institutions support
mechanisms for dealing with the heterogeneity arising from choosing different
languages or different aspects of a software system. In (Tarlecki, 1996), one of
the most influential papers on moving specifications between logical systems,
Tarlecki wrote:

“... this suggests that we should strive at a development of a convenient to use proof

theory (with support tools!) for a sufficiently rich “universal” institution, and then

reuse it for other institutions linked to it by institution representations.”

In (Mossakowski & Tarlecki, 2009) Mossakowski and Tarlecki define the con-
cept of heterogeneous logical environment, which results in a handy tool in
the formalization of the “universal” approach we pursue. We will also dis-
cuss other approaches, those presented in (Diaconescu & Futatsugi, 2002;
Mossakowski, Maeder, & Luttich, 2007; Tarlecki, 2000; Cengarle, Knapp,
Tarlecki, & Wirsing, 2008), in Sec. 4.1, where we propose an extension of our
calculus for structured specifications capable of dealing with heterogeneous
structured specifications.

In most of these approaches the integration of partial descriptions writ-
ten in different languages is carried out by resorting to semantics-preserving
mappings between institutions. Among these, co-morphisms of institutions
expose a very natural relation between logical systems because they show
how a possibly less expressive logic can be interpreted into a richer one. In
(Borzyszkowski, 1998, 2002), Borzyszkowski extended his work on structured
specifications and proved that, under appropriate conditions, structured spec-
ifications over a given logic can be translated into structured specifications
in another logic, provided a co-morphism between the institutions exists.

Second Contribution: We present an extension of the calculus for struc-
tured specifications to settings in which heterogeneous specifications are
mapped to a “universal” institution.

The remaining parts of the article are organized as follows. In Sec. 2
we provide basic definitions (including central notions such as that of in-
stitution, entailment system, and structure building operations), as well as
Borzyszkowski’s calculus. In Sec. 3 we develop one of the main contribu-
tions of this article by analyzing the calculus proposed by Borzyszkowski
and discussing its possibilities and limitations. We show a modified version
of Borzyszkowski’s calculus that is complete and requires weaker conditions,
thus providing a complete calculus for many logics ubiquitous in software
modeling. In Sec. 4.1 we present Borzyszkowski’s calculus for heterogeneous
structured specifications, and discuss its limitations. In Sec. 4.2 we extend our
calculus in order to deal with structured heterogeneous specifications related
via institution representations. Finally, in Sec. 5, we draw some conclusions.

2 Institutions and Structured Specifications

The theory of institutions was introduced by Goguen and Burstall in (Goguen
& Burstall, 1984). Institutions provide a formal and generic definition of
logical system, and allow one to describe ways in which specifications in a
logical system can be structured (Sannella & Tarlecki, 1988). Institutions
have evolved in a number of directions, from an abstract theory of software
specification and development (Tarlecki, 2003) to a general version of abstract
model theory (Diaconescu, 2008), and offered a suitable formal framework for
addressing heterogeneity (Mossakowski et al., 2007; Tarlecki, 2000), including
applications to the UML (Cengarle et al., 2008).

In this section we present the basic definitions and results we will use
throughout the rest of the paper.

Definition 1 (Entailment system (Meseguer, 1989)).
A structure

〈
Sign,Sen, {`Σ}Σ∈|Sign|

〉
is said to be an entailment system if

it satisfies the following conditions:

• Sign is a category of signatures,
• Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) is the set of
Σ-sentences),
• {`Σ}Σ∈|Sign|, where `Σ⊆ 2Sen(Σ)×Sen(Σ), is a family of binary relations

such that for any Σ,Σ′ ∈ |Sign|, φ ∈ Sen(Σ), {φi}i∈I ⊆ Sen(Σ) and
Γ, Γ ′ ⊆ Sen(Σ) the following conditions are satisfied:

1. reflexivity: {φ} `Σ φ,
2. monotonicity: if Γ `Σ φ and Γ ⊆ Γ ′, then Γ ′ `Σ φ,
3. transitivity: if Γ `Σ φi for all i ∈ I and {φi}i∈I `Σ φ, then Γ `Σ φ,

and
4. `-translation: if Γ `Σ φ, then for any morphism σ : Σ → Σ′ in Sign,

Sen(σ)(Γ) `Σ′ Sen(σ)(φ).

Definition 2. Let
〈
Sign,Sen, {`Σ}Σ∈|Sign|

〉
be an entailment system. Its cat-

egory of theories (denoted by Th), is a structure 〈O,A〉 such that:

• O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

• A =

®
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣∣ 〈Σ,Γ 〉 , 〈 Σ′, Γ ′ 〉 ∈ O,σ : Σ → Σ′ is a morphism in Sign and

for all γ ∈ Γ, Γ ′ `Σ
′

Sen(σ)(γ)

´
.

Definition 3 (Institution (Goguen & Burstall, 1992)).
A structure

〈
Sign,Sen,Mod, {|=Σ}Σ∈|Sign|

〉
is said to be an institution if it

satisfies the following conditions:

• Sign is a category of signatures,
• Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns the

set of Σ-sentences),
•Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ) returns

the category of Σ-models), and
• {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary

relations,

such that for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ)
and Σ′-modelM′ ∈ |Mod(Σ)|, the following |=-invariance condition holds:2

M′ |=Σ′ Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Let Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and let T = 〈Σ,Γ 〉 ∈ |Th|, then we define the
category Mod(T) as the full subcategory of Mod(Σ) determined by those
models M ∈ |Mod(Σ)| such that for all γ ∈ Γ , M |=Σ γ. In addition, it
is possible to extend the relation |=Σ to sets of sentences and a sentence as
follows: Γ |=Σ α if and only if M |=Σ α, for all M∈ |Mod(Σ,Γ)|.

From now on, whenever we make a reference to an institution (resp. en-
tailment system) I, we will assume the structure we are referring to is of the

2 Given σ : Σ → Σ′ a morphism in Sign, the corresponding morphism in the opposite
category Signop will be denoted as σop.

form
¨
SignI,SenI,ModI, {|=IΣ}Σ∈|SignI|

∂
(resp.

¨
SignI,SenI, {`IΣ}Σ∈|SignI|

∂
)

univocally determining the components of the structure.
Next, we formalise some well-known properties of models.

Definition 4 (Conjunction (Borzyszkowski, 2002)). An institution I is
said to have conjunction if for all Σ ∈ |SignI|, finite set of formulas {ϕi}i∈I ⊆
SenI(Σ) and M ∈ |ModI(Σ)|, there exists a formula ψ ∈ SenI(Σ) (usually

denoted as
∧
i∈I ϕi) such that: M|=IΣψ iff for all i ∈ I, M|=IΣϕi. I is said

to have infinite conjunction if {ϕi}i∈I ⊆ SenI(Σ) may be infinite.

Definition 5 (Negation (Borzyszkowski, 2002)). An institution I is said
to have negation if for all Σ ∈ |SignI|, finite set of formulas {ϕi}i∈I ⊆
SenI(Σ) and M ∈ |ModI(Σ)|, there exists a formula ψ ∈ SenI(Σ) (usu-

ally denoted as ¬ϕ) such that: M|=IΣψ iff it is not true that M|=IΣϕ.

Definition 6 (Implication (Borzyszkowski, 2002)). An institution I is
said to have implication if for all Σ ∈ |SignI|, finite set of formulas {ϕi}i∈I ⊆
SenI(Σ) and M ∈ |ModI(Σ)|, there exists a formula ψ ∈ SenI(Σ) (usually

denoted as ϕ =⇒ ϕ′) such that: M|=IΣψ iff M|=IΣϕ implies M|=IΣϕ′.

Fact 1 If an institution has negation and conjunction, it has implication.

Definition 7 (Compactness (Borzyszkowski, 2002)). An institution I
is said to be compact if for all Σ ∈ |SignI|, α ∈ SenI(Σ) and Γ ⊆ SenI(Σ)

such that Γ |=IΣα, there exists Γ ′ ⊆ SenI(Σ) such that Γ ′ ⊆ Γ , Γ ′ is finite

and Γ ′|=IΣα.

Definition 8 (Logic (Meseguer, 1989)).
A structure

〈
Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|

〉
is said to be a logic

if it satisfies the following conditions:

•
〈
Sign,Sen, {`Σ}Σ∈|Sign|

〉
is an entailment system,

•
〈
Sign,Sen,Mod, {|=Σ}Σ∈|Sign|

〉
is an institution, and

• the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈
Sen(Σ), and Γ ⊆ Sen(Σ),

Γ `Σ φ implies Γ |=Σ φ .

A logic is said to be complete if in addition the following condition is also
satisfied: for any Σ ∈ |Sign|, φ ∈ Sen(Σ), and Γ ⊆ Sen(Σ),

Γ |=Σ φ implies Γ `Σ φ .

We provide next some definitions that will be necessary in further sections.

Definition 9 (Interpolation and weak interpolation (Borzyszkowski,
2002)). An institution I is said to have the interpolation property if for any

pushout 〈t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′〉 for 〈t1 : Σ → Σ1, t2 : Σ → Σ2〉
in SignI, and ϕi ∈ SenI(Σi) for i = 1, 2, if SenI(t′1)(ϕ1)|=IΣ

′

SenI(t′2)(ϕ2),
there exists ϕ ∈ SenI(Σ) (called the interpolant of ϕ1 and ϕ2) such that

ϕ1|=IΣ1SenI(t1)(ϕ) and SenI(t2)(ϕ)|=IΣ2ϕ2. In a similar way, I is said to have

the weak interpolation property if whenever SenI(t′1)(ϕ1)|=IΣ
′

SenI(t′2)(ϕ2),
then there exists Γ ⊆ SenI(Σ) (called the interpolant of ϕ1 and ϕ2) such

that ϕ1|=IΣ1SenI(t1)(Γ) and SenI(t2)(Γ)|=IΣ2ϕ2.

The original statement of interpolation for first-order logic (Craig, 1957,
Lemma 1), due to Craig, states that whenever a property ϕ written in a
language L1 follows from a set of formulas Γ written in a (possibly different)
language L2, there exists a formula ψ (called the interpolant), that belongs
to L1 ∩ L2 and serves as a bridge between Γ and ϕ, i.e., Γ |= ψ and ψ |= ϕ.
Definition 9 states the same property but formalized as a category-theoretical
construction in which the intersection of the languages is represented as a
span (McLane, 1971) in the category of signatures.

Definition 10 (Weak amalgamation (Borzyszkowski, 2002)). An in-
stitution I is said to have the weak amalgamation property if for any pushout
〈t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′〉 for 〈t1 : Σ → Σ1, t2 : Σ → Σ2〉 in SignI

and for any models M1 ∈ |ModI(Σ1)| and M2 ∈ |ModI(Σ2)| such that
ModI(t1

op)(M1) = ModI(t2
op)(M2), there exists M′ ∈ |ModI(Σ′)| such

that ModI(t′1
op

)(M′) =M1 and ModI(t′2
op

)(M′) =M2.

In order to understand the weak amalgamation property, let us consider
two models from (possibly different) languages L1 and L2 related by a span
in the category of signatures. Let us also assume that the models have a
common reduct in L1 ∩ L2. Then, the models are reducts of a model of the
language of the pushout for the span. Although in (Borzyszkowski, 2002)
there is no concrete explanation of why the property is referred to as weak
amalgamation property, and the author only says the definition is inspired in
the classic definition of amalgamation property, one can speculate that it is
due to the dropping of the requirement of t1 and t2 to be injective.

In many works (cf. (Borzyszkowski, 2002) and specially (Sannella & Tar-
lecki, 2014)) interpolation and amalgamation are treated as relative proper-
ties by only requiring the existence of pushouts for a subclass of spans in the
category of signatures receiving the name of parameterised Craig’s interpo-
lation. There, institutions are generalised by introducing (D, T)-institutions,
whose class of signature morphisms is partitioned into those used to trans-
late specifications, leading to specifications over a richer set of symbols (i.e.
T -morphisms) and those used to derive them, leading to specifications in
which some of the symbols were hidden (i.e. D-morphisms). Other works,
like (Diaconescu, 2008), explore a more general form of interpolation (Craig-
Robinson’s interpolation). In this work we will stick to a simpler, and more

absolute, version of interpolation (i.e. the usual Craig’s interpolation formula-
tion) and amalgamation properties, leading to a more classical understanding
of the results but keeping in mind that the aforementioned relativisation can
be done without invalidating any of the results presented in the forthcoming
sections, specially considering that certain relativisation in this direction will
be useful in proving Prop. 4.

The definitions and results appearing in the remaining of this section were
orginally introduced in (Borzyszkowski, 2002).

Definition 11 (Structure building operations (Borzyszkowski, 2002)).
The class of specifications over a logic I for a given signature Σ ∈ |SignI|, de-
noted as SpecIΣ , and the operators Sig and Mod, are defined as follows:

• Any pair 〈Σ,Γ 〉, where Σ ∈ |SignI| and Γ ⊆ SenI(Σ) is a specification
(called flat specification or presentation), such that:

Sig[〈Σ,Γ 〉] = Σ, and Mod[〈Σ,Γ 〉] = |ModI(Σ,Γ)|.

• Let Σ ∈ |SignI| and SP1,SP2 ∈ SpecIΣ . Then, SP1∪SP2 ∈ SpecIΣ is such
that:

Sig[SP1 ∪ SP2] = Σ, and Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2].

• Let Σ,Σ′ ∈ |SignI|, SP ∈ SpecIΣ and σ : Σ → Σ′ ∈ ||SignI||. Then,
translate SP by σ ∈ SpecIΣ′ is such that:

Sig[translate SP by σ] = Σ′, and

Mod[translate SP by σ] =
{
M′

∣∣∣ModI(σop)(M′) ∈Mod[SP]
}
.

• Let Σ,Σ′ ∈ |SignI|, SP ∈ SpecIΣ′ and σ : Σ → Σ′ ∈ ||SignI||. Then,
derive from SP by σ ∈ SpecIΣ such that:

Sig[derive from SP by σ] = Σ, and

Mod[derive from SP by σ] =
{

ModI(σop)(M′)
∣∣∣M′ ∈Mod[SP]

}
.

The operations introduced in Def. 11 are referred to as structure building
operations, or SBOs, and provide a mechanism to put specifications together
in a structured way. The operators Sig and Mod help us retrieve both the
signature and the corresponding class of models for a given structured spec-
ification. Intuitively, SP1 ∪ SP2 is a specification that contains the axioms
of SP1 and SP2. Similarly, translate SP by σ is a specification in which
axioms are (syntactically) translated according to morphism σ. Finally, spec-
ification derive from SP by σ can be understood as characterizing reducts
(according to σ) of models of SP .

Since Mod[SP] is a class of models, we define Mod[SP]|=IΣα if for all

M ∈Mod[SP], M|=IΣα. Also, we will use the notation |=I
Σ to denote the

satisfaction relation between structured specifications and formulas. Recall

that |=IΣ (notice the notational difference with |=I
Σ), denotes the satisfaction

relation of the underlying institution I.

Definition 12. Let I be a logic, Σ ∈ |SignI|, SP ∈ SpecIΣ and α ∈ SenI(Σ).

α is a semantic consequence of SP (denoted SP |=I
Σα) if Mod[SP]|=IΣα.

Definition 13. Let I be an logic, Σ ∈ |SignI| and SP1,SP2 ∈ SpecIΣ , we say
that SP1 is equivalent to SP2 (denoted SP1 ≡I SP2) if Sig[SP1] = Sig[SP2]
and Mod[SP1] = Mod[SP2].

Definition 14 (Normal form (Borzyszkowski, 2002)). Let I be a logic
and Σ ∈ |SignI|, then SP ∈ SpecIΣ is in normal form if it has the form
derive from 〈Σ′, Γ ′〉 by σ, where Σ′ ∈ |SignI|, σ : Σ → Σ′ ∈ ||SignI|| and
Γ ′ ⊆ SenI(Σ′).

Given a structured specification, its normal form is obtained by the ap-
plication of the operator nf (Borzyszkowski, 2002, Def. 3.7). The intuition
behind operator nf is that it flattens the specification by translating the
axioms to the “richest” signature using pushouts in SignI, followed by the
derivation of the resulting flat specification to a signature having only those
symbols that must remain visible.

Thus, from now on we will only consider institutions whose category of
signatures has pushouts.

Definition 15 (nf operation (Borzyszkowski, 2002)). Let I be a logic.
We define nf as follows:

• If SP is a flat specification 〈Σ,Γ 〉, with Σ ∈ |SignI| and Γ ⊆ SenI(Σ),
then

nf(SP) = derive from 〈Σ,Γ 〉 by idΣ ,

• Let Σ ∈ |SignI| and SP1,SP2 ∈ SpecIΣ then, whenever SP ∈ SpecIΣ of the
form SP1∪SP2 with normal forms nf(SP i) = derive from 〈Σi, Γi〉 by σi,
for i = 1, 2, we define:

nf(SP) = derive from
¨
Σ′,SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)

∂
by σ,

such that σ = σ1 ◦ σ′1 = σ2 ◦ σ′2, and 〈σ′1 : Σ1 → Σ′, σ′2 : Σ2 → Σ′〉 is the
pushout for 〈σ1 : Σ → Σ1, σ2 : Σ → Σ2〉 in SignI,
• LetΣ ∈ |SignI| and SP1 ∈ SpecIΣ then, whenever SP is translate SP1 by σ

and nf(SP1) = derive from 〈Σ1, Γ1〉 by σ1, we define:

nf(SP) = derive from 〈Σ′,Sen(σ′1)(Γ1)〉 by σ′,

such that the pair of morphisms 〈σ′ : Sig[SP]→ Σ′, σ′1 : Σ1 → Σ′〉 is a
pushout for 〈σ : Σ → Sig[SP], σ1 : Σ → Σ1〉 in SignI, and

• Let Σ,Σ′ ∈ |SignI|, SP ′ ∈ SpecIΣ and σ : Σ → Σ′ ∈ ||SignI||
then, whenever SP ∈ SpecIΣ , derive from SP ′ by σ and nf(SP ′) =
derive from 〈Σ1, Γ1〉 by σ1, we define:

nf(SP) = derive from 〈Σ1, Γ1〉 by σ ◦ σ1.

Theorem 1 ((Borzyszkowski, 2002)). Let SP be a Σ-specification over an
institution I. If I has the weak amalgamation property, then nf(SP) ≡I SP.

In (Borzyszkowski, 2002), Borzyszkowski presented a calculus for struc-
tured specifications and gave sufficient conditions for his calculus to be com-
plete. We reproduce Borzyszkowski’s calculus in Def. 16. In Sec. 3 we will
present a variant of Borzyszkowski’s calculus that is proved sound and com-
plete under weaker conditions than those required in (Borzyszkowski, 2002),
making the proposed calculus suitable for reasoning about structured speci-
fications in logics ubiquitous in computer science.

Definition 16 ((Borzyszkowski, 2002)). Let I be a logic. Then, the fol-

lowing rules define a SignI-indexed family of entailment relations {`IΣ}Σ∈|SignI|:3

Γ`IΣϕ
[basic]

〈Σ,Γ 〉 `IΣϕ

{SP`IΣψ}ψ∈∆ ∆`IΣϕ
[CR]

SP`IΣϕ

SP1`IΣϕ
[sum1]

SP1 ∪ SP2`IΣϕ

SP2`IΣϕ
[sum2]

SP1 ∪ SP2`IΣϕ

SP`IΣ′SenI(σ)(ϕ)
[derive]

derive from SP by σ`IΣϕ

SP`IΣϕ
[translate]

translate SP by σ`IΣ′SenI(σ)(ϕ)

Lemma 1. Let I be a logic and Σ ∈ |SignI|. Then, given SP1,SP2 ∈ SpecIΣ
such that SP1 ≡I SP2, and α ∈ SenI(Σ), SP1`IΣα if and only if SP2`IΣα.

Theorem 2 (Soundness (Borzyszkowski, 2002)). Let I be a logic having
infinite conjunction and implication, Σ ∈ |SignI|, SP ∈ SpecIΣ and let α ∈
SenI(Σ). Then,

SP`IΣα implies SP |=I
Σα .

Theorem 3 (Completeness (Borzyszkowski, 2002)). Let I be a logic
having infinite conjunction and implication, Σ ∈ |SignI|, SP ∈ SpecIΣ and let
α ∈ SenI(Σ). Then, if

1. I satisfies interpolation and weak-amalgamation, and

2. for all Σ ∈ |SignI|, `IΣ is complete for |=IΣ,

SP |=I
Σα implies SP`IΣα .

3 Once again, the reader should note the difference between `IΣ , the entailment relation
associated to I, and `IΣ , the entailment relation for structured specifications over I.

Several corollaries are derived from Thm. 3. The goal of these corollaries
is to present other conditions under which the completeness theorem also
holds. The reader may notice that these conditions are, in one way or an-
other, equivalent to the hypotheses of the previous theorem. The equivalences
follow from the proof of the previous theorem. The proof follows by induction
on the structure of the specification. The case in which the specification is
a union requires the use of the interpolation theorem together with infinite
conjunction and implication. In this context the problem of not having inter-
polation can be overcome by combining compactness with conjunction and
implication, or by restricting specifications to be finite.

Corollary 1 ((Borzyszkowski, 2002)). Let I be a compact logic, Σ ∈
|SignI|, SP ∈ SpecIΣ and α ∈ SenI(Σ). Then, if

1. I satisfies weak-interpolation and weak-amalgamation, and

2. for all Σ ∈ |SignI|, `IΣ is complete for |=IΣ,

SP |=I
Σα implies SP`IΣα .

Corollary 2 ((Borzyszkowski, 2002)). Let I be a logic that has infinite
conjunction and implication, Σ ∈ |SignI|, SP ∈ SpecIΣ and α ∈ SenI(Σ).
Then, if

1. I satisfies weak-interpolation and weak-amalgamation, and

2. for all Σ ∈ |SignI|, `IΣ is complete for |=IΣ,

SP |=I
Σα implies SP`IΣα .

Definition 17. Let I be a logic, Σ ∈ |SignI|, SP ∈ SpecIΣ is finite if and
only if any flat specification 〈Σ,Γ 〉 occurring as part of SP satisfies that Γ
is finite.

Fact 2 Let I be a logic, Σ ∈ |SignI|, if SP ∈ SpecIΣ is finite, then nf(SP) is
also finite.

Corollary 3 ((Borzyszkowski, 2002)). Let I be a logic that has conjunc-
tion and implication, Σ ∈ |SignI|, SP ∈ SpecIΣ finite and α ∈ SenI(Σ). Then,
if

1. I satisfies weak-interpolation and weak-amalgamation, and

2. for all Σ ∈ |SignI|, `IΣ is complete for |=IΣ,

SP |=I
Σα implies SP`IΣα .

3 Beyond Interpolation

We already mentioned in the introduction that many logics used to describe
software behavior do not satisfy Borzyszkowski’s conditions for having a com-
plete calculus for structured specifications. In Table 1 we review some inter-
esting results on the satisfaction of these conditions.

Infinite
conjunction

Complete calculus Compact Interpolation

PDL No
Yes, infinitary(7)
(de Lavalette et al., 2008)

No
(Harel et al., 2000, pp. 181)

?(1)

FODL No
Yes, infinitary(7)
(Harel et al., 2000)

No
(Harel et al., 2000, pp. 303)

?(2)

LTL No

Yes
(Manna & Pnueli, 1995, pp. 214–231)
(Pnueli, 1977)
(Abadi & Manna, 1990)

No(3)
No
(Maksimova, 1990)

FOLTL No

No
(Manna & Pnueli, 1995, pp. 270)
(Abadi & Manna, 1990)
(Abadi, 1988)

No(4)
No
(Maksimova, 1990)

CTL No
Yes
(Reynolds, 2001)

No(5)
No
(Maksimova, 1990)

CTL∗ No
Yes
(Emerson & Halpern, 1985)

No(6)
No
(Maksimova, 1990)

Table 1 Satisfaction of Borzyszkowski’s general conditions

(1) In (Kowalski, 2002) Kowalski published a positive result but later in (Kowalski, 2004) pub-

lished an errata. To our knowledge, the problem remains open.

(2) To our knowledge this problem also remains open.

With respect to (1) and (2), it was proved in (Fine, 1979) that quantified S5 modal logic fails

to have Craig’s interpolation property, contributing some negative insights on the result for PDL

and FODL.

(3) Following the construction presented in (Harel et al., 2000, pp. 181, pp. 303) consider the

set of formulas {�¬φ} ∪ {φ,Xφ,XXφ, . . .} which is finitely satisfiable but not satisfiable.

(4) The construction is analogous to the one presented in (3).

(5) Consider the set of formulas {E(>U¬φ} ∪ {φ,AXφ,AXAXφ, . . .} which is finitely satisfiable

but not satisfiable.

(6) The construction is analogous to the one presented in (5).

(7) In the cases of logics PDL and FODL, the ones that are capable of handling properties of

programs involving loops, the calculi are strongly complete under the presence of a potentially

infinite set of axioms.

The results reviewed in Table 1 constitute enough evidence that, if one
commits to provide modularisation mechanisms for software specifications, as
well as to provide a complete calculi for proving properties about them, then
an extra effort must be done. Those results show how many logics, ubiquitous
in software specification, fail in meeting Borzyszkowski’s conditions for the
calculus of Def. 16 to be complete, therefore limiting the usefulness of the
calculus.

In Def. 18 we introduce a new calculus exploiting the way proofs are devel-
oped providing a methodological insight on theorem proving for structured
specifications over an institution. With the newly added and/or modified
rules we will prove that the resulting calculus is sound and complete. Our
calculus differs from the one presented in Def. 16 in two ways: a) we added
Rule [equiv], allowing the replacement of a specification by another, provided
that they are equivalent in the sense of Def. 13, and b) Rules [CR], [sum1]
and [sum2] are replaced by a single, slightly more complex, rule for ∪ ([sum]).

Definition 18. Let I be a logic. Then, the following rules define a SignI-
indexed family of entailment relations {`IΣ}Σ∈|SignI|:

Γ`IΣϕ
[basic]

〈Σ,Γ 〉 `IΣϕ

SP2`IΣϕ SP1 ≡I SP2
[equiv]

SP1`IΣϕ

SP ′`IΣ′Sen(σ)(ϕ)
[derive]

derive from SP ′ by σ`IΣϕ

SP`IΣϕ
[translate]

translate SP by σ`IΣ′Sen(σ)(ϕ)

{SP1`IΣψ}ψ∈∆ 〈Σ,∆〉 ∪ SP2`IΣϕ
[sum]

SP1 ∪ SP2`IΣϕ

Theorem 4 (Soundness). Let I be a logic and SP ∈ SpecIΣ. Then, if
SP`IΣϕ, SP |=I

Σϕ.

Proof. The proof follows analogous to that about the soundness of similar
inference rules appearing (Sannella & Tarlecki, 1988, Sec. 6), by observing
that each one of the rules in Def. 18 is sound with respect to the semantics
presented in Def. 11.

Theorem 5 (Completeness). Let I be a logic satisfying completeness of
`IΣ, for all Σ ∈ |SignI|, weak-amalgamation, and SP ∈ SpecIΣ. If SP |=I

Σϕ,
then SP`IΣϕ.

Proof. By definition of |=I
Σ , if SP |=I

Σϕ, then Mod[SP]|=IΣϕ. Let nf(SP) =
derive from 〈Σ′, Γ ′〉 by σ. Then, by Thm. 1, nf(SP) ≡I SP and, conse-

quently, Mod[derive from 〈Σ′, Γ ′〉 by σ]|=IΣϕ.

Mod[derive from 〈Σ′, Γ ′〉 by σ]|=IΣϕ

iff {Mod(σop)(M′) |M′ ∈Mod[〈Σ′, Γ ′〉] } |=IΣϕ

iff {Mod(σop)(M′) |M′ ∈ |Mod(Σ′, Γ ′)| } |=IΣϕ

iff
{

Mod(σop)(M′)
∣∣∣M′ ∈ |Mod(Σ′)| and M′|=IΣ

′

Γ ′
}
|=IΣϕ

iff for all M′ ∈ |Mod(Σ′)|, if M′|=IΣ
′

Γ ′ then Mod(σop)(M′)|=IΣϕ

iff for all M′ ∈ |Mod(Σ′)|, if M′|=IΣ
′

Γ ′ then M′|=IΣ
′

Sen(σ)(ϕ)

iff Γ ′|=IΣ
′

Sen(σ)(ϕ)

iff Γ ′`IΣ
′

Sen(σ)(ϕ) .

The proof is completed with the following derivation:

Γ ′`IΣ
′
Sen(σ)(ϕ)

[basic]〈
Σ′, Γ ′

〉
`IΣ′Sen(σ)(ϕ)

(σ : Σ → Σ′) [derive]
derive from

〈
Σ′, Γ ′

〉
by σ`IΣϕ SP ≡I nf(SP)

[equiv]
SP`IΣϕ

Observing the proof, specially regarding the use of Rule [equiv], two ques-
tions immediately arise. In the first place Rule [equiv] can be regarded as
a semantic rule because checking whether SP ≡I SP ′, by Def. 13, requires
checking that both, SP and SP ′, share the same signature and class of models
while, on the other hand, it can be completely axiomatized by:

1. the equations introduced in (Wirsing, 1991, Thm. 4.1, and Coro. 4.2) (as
a sufficient set of equations for deriving the normal form of structured
specifications),

2. rules characterising ≡I as a congruence:

[refl.]
SP ≡I SP

SP ≡I SP ′
[symm.]

SP ′ ≡I SP

SP ≡I SP ′ SP ′ ≡I SP ′′
[trans.]

SP ≡I SP ′′

A ≡I B
[repl.]

SP [A] ≡I SP [B]

assuming SP is a structured specification with a placeholder for a structured specification,

and SP [A] (resp. SP [B]) denotes the replacement of such a placeholder for specification A

(resp. B).

3. a rule for checking ≡I for specifications in normal form:{
SenI(σ′1)(Γ1)`IΣ′ψ

}
ψ∈SenI(σ′

2
)(Γ2)

{
SenI(σ′2)(Γ2)`IΣ′ψ

}
ψ∈SenI(σ′

1
)(Γ1)

[basic equiv]
derive from 〈Σ1, Γ1〉 by σ1 ≡I derive from 〈Σ2, Γ2〉 by σ2

such that
〈
σ′1 : Σ1 → Σ′, σ′2 : Σ2 → Σ′

〉
is the pushout for 〈σ1 : Σ → Σ1, σ2 : Σ → Σ2〉 in

SignI.

The second question, and probably the one requiring a longer justification,
is: does a calculus like this enjoy any usefulness? The answer to this question
can be given from two perspectives. From a theoretical point of view, the
completeness of this calculus reduces, almost trivially, to the completeness
of the calculus of the underlying logic suggesting that, at the end, proofs
are carried out in a non-compositional calculus for flat specifications in the
underlying institutions. An equivalent result is shown in (Sannella & Tarlecki,
2012) where the authors consider a calculus with the following single rule:

Γ ′`IΣ
′
Sen(σ)(ϕ)

nf(SP) = derive from
〈
Σ′, Γ ′

〉
by σ

SP`IΣ′ϕ

which, by (Sannella & Tarlecki, 2012, Thm. 9.2.16) is sound and complete,
whenever I is exact (Sannella & Tarlecki, 2012, Def. 4.4.6).

Also from this point of view, the absence of use of Rules [sum] and [trans-
late] of the calculus introduced in Def. 18 in the proof of Thm. 5, suggest
that they can be derived from a calculus consisting only of Rules [basic], [de-
rive] and [equiv] of that same calculus. For the sake of the following results,
we assume that the underlying calculus have two specific rules. On the one
hand, we assume some form of weakening rule equivalent to: Γ`IΣα implies
Γ ∪ ∆`IΣα and, on the other hand, a structural rule for combining sets of
proofs relaying on the same set of hypothesis equivalent to: {Γ`IΣα}α∈∆1

and {Γ`IΣα}α∈∆2 implies {Γ`IΣα}α∈∆1∪∆2 . Even when we did not make
these two conditions explicit before, the first assumption is justified on the
fact that we strongly relayed on a definition of entailment system satisfying
monotonicity thus, any complete calculus for it must have some sort of weak-
ening rule; the second assumption is justified because the underlying calculus
may involve infinitary rules and/or do not satisfy neither interpolation, nor
weak interpolation and compactness, as it is witnessed by Table 1, so the

application of Rules [equiv] and [sum] may require to prove infinitely many
formulae.

Lemma 2. Let I be a logic σ : Σ → Σ′ ∈ ||SignI||, SP ∈ SpecIΣ such that
nf(SP) = derive from 〈Σ′, Γ ′〉 by σ and ϕ ∈ |Sen(Σ)|. Then, SP`IΣϕ
implies Γ ′`IΣ′SenI(σ)(ϕ).

Proof. By Thm. 1 nf(SP) ≡ SP and consequently by Rule [equiv], SP`IΣϕ
in and only if derive from 〈Σ′, Γ ′〉 by σ`IΣϕ.

Now, lets assume that Γ ′ 6`IΣ
′

SenI(σ)(ϕ) then, there existsM′ ∈ |ModI(Σ′)|
such that M′|=IΣ

′

Γ ′ and M′ 6|=IΣ
′

SenI(σ)(ϕ). If M′ ∈ |ModI(Σ′)| and

M′|=IΣ
′

Γ ′ then, by Def. 11,M′ ∈Mod[〈Σ′, Γ ′〉], and consequently ModI(σ)(M′) ∈
Mod[derive from 〈Σ′, Γ ′〉 by σ]. By |=-invariance condition of Def. 3,

M′|=IΣ
′

SenI(σ)(ϕ) if and only if ModI(σ)(M′)|=IΣϕ. Finally, if ModI(σ)(M′) ∈
Mod[derive from 〈Σ′, Γ ′〉 by σ] and ModI(σ)(M′)6|=IΣϕ then, by Thm. 4,
derive from 〈Σ′, Γ ′〉 by σ 6`IΣϕ.

Theorem 6. In the calculus presented in Def. 18, Rules [sum] and [translate]
can be derived by resorting only to Rules [basic], [derive] and [equiv].

Proof. Let us first consider Rule [sum]. Rule [sum] allows us to conclude
SP1 ∪ SP2 `IΣ ϕ provided that {SP1 `IΣ ψ}ψ∈∆ for some ∆ ⊆ SenI(Σ), and

〈Σ,∆〉 ∪ SP2 `IΣ ϕ, for SP1,SP2 ∈ SpecIΣ . Let us assume that nf(SP i) =

derive from 〈Σi, Γi〉 by σi with σi : Σ → Σi ∈ ||SignI|| for i ∈ {1, 2}.
The proof is completed with the following derivations:

.

.

. π
î
by Lemma 2, and using

{
SP1`I

Σ
ψ
}
ψ∈∆

ó¶
SenI(σ′1)(Γ1)`IΣ

′
ψ

©
ψ∈SenI(σ)(∆)

[W]

[1]

¶
SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)`IΣ

′
ψ

©
ψ∈SenI(σ)(∆)¶

SenI(σ′2)(Γ2)`IΣ
′
ψ

©
ψ∈SenI(σ′

2
)(Γ2)

[W]

[2]

¶
SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)`IΣ

′
ψ

©
ψ∈SenI(σ′

2
)(Γ2)

The reader should note that at points in the proof marked with [W] we
use te assumption that the underlying calculus have some form of weakening
rule.

[1] [2]
[P]

[3]

¶
SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)`IΣ

′
ψ

©
ψ∈SenI(σ)(∆)∪SenI(σ′

2
)(Γ2)

The point in the proof marked with [P] is where we resort to the assump-
tion of existence of a structural rule for combining sets of proofs relaying on
the same set of hypothesis.

.

.

. π′
[by Lemma 2, and using 〈Σ,∆〉 ∪ SP2`IΣϕ]

[4] SenI(σ)(∆) ∪ SenI(σ′2)(Γ2)`IΣ
′
SenI(σ)(ϕ)

[3] [4]
[CR]

SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)`IΣ
′
SenI(σ)(ϕ)

SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)`IΣ
′
SenI(σ)(ϕ)

[basic]〈
Σ′,SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)

〉
`IΣ′SenI(σ)(ϕ)

(σ : Σ → Σ′) [derive]
[5] derive from

〈
Σ′,SenI(σ′1)(Γ1) ∪ SenI(σ′2)(Γ2)

〉
by σ`IΣϕ

such that σ = σ1 ◦ σ′1 = σ2 ◦ σ′2, and
〈
σ′1 : Σ1 → Σ′, σ′2 : Σ2 → Σ′

〉
is the pushout for

〈σ1 : Σ → Σ1, σ2 : Σ → Σ2〉 in SignI.

[5] SP1 ∪ SP2 ≡I nf(SP1 ∪ SP2)
[equiv]

SP1 ∪ SP2`IΣϕ

Next we prove that Rule [translate] can be derived resorting to Rules [basic],

[derive] and [equiv]. Rule [translate] allows us to conclude that, if SP1`I
Σ
ϕ

where SP1 ∈ SpecIΣ , σ : Σ → “Σ and ϕ ∈ SenI(Σ), then SP`IΣSen(σ)(ϕ)
where SP = translate SP1 by σ. Let us assume that nf(SP1) is the speci-
fication derive from 〈Σ1, Γ1〉 by σ1 with σ1 : Σ → Σ1 ∈ ||SignI||.

.

.

. π
[by Lemma 2, and using SP1`IΣ1

ϕ]
Γ1`I

Σ1SenI(σ1)(ϕ)

.

.

. π′
[by `-translation and Γ1`I

Σ1SenI(σ1)(ϕ)]
[4] SenI(σ′1)(Γ1)`IΣ

′
SenI(σ′1)(SenI(σ1)(ϕ))

[4]
[by pushouts prop.]

SenI(σ′1)(Γ1)`IΣ
′
SenI(σ′)(SenI(σ)(ϕ))

[basic]〈
Σ′,SenI(σ′1)(Γ1)

〉
`IΣ′SenI(σ′)(SenI(σ)(ϕ))

(σ : Σ → Sig[SP]) [derive]
[5] derive from

〈
Σ′,SenI(σ′1)(Γ1)

〉
by σ′`IΣ′SenI(σ)(ϕ)

[5] translate SP by σ ≡I nf(translate SP by σ)
[equiv]

translate SP1 by σ`IΣSen(σ)(ϕ)

such that
〈
σ′ : Sig[SP]→ Σ′, σ′1 : Σ1 → Σ′

〉
is the pushout for 〈σ : Σ → Sig[SP], σ1 : Σ → Σ1〉

in SignI.

From a practical perspective, we do not advocate for reducing structured
specifications to flat ones as would be understood from the proof of Thm. 5;
the structure inside specifications should be a valuable aid during the process
of building proofs for a long as possible. Thus moving to a flat specification
should be a resource reserved to be used when no better alternatives are at
hand. In Ex. 1 we show an application of the calculus introduced in Def. 18

in a context where Borzyszkowski’s calculus is not complete. Afterwards we
will discuss the differences with Borzyszkowski’s calculus, emphasising the
reasons why the proofs in the example are possible in our calculus.

Proposition 1 shows some useful properties that can be used together with
rule [equiv] in order to avoid flattening the specification preserving most of
its structural properties. Propositions 1.4 to 1.6 were taken from (Sannella
& Tarlecki, 2012).

Proposition 1. [Properties of SBOs] Let I be a logic satisfying weak-
interpolation and weak-amalgamation. Let Σ,Σ′ ∈ |SignI|, σ : Σ → Σ′ ∈
||SignI||, Γ ⊆ SenI(Σ), SP ,SP1,SP2,SP3 ∈ SpecIΣ, SP ′ ∈ SpecIΣ′ . Then,
the following properties hold:

1. 〈Σ′,Sen(σ)(Γ)〉 ∪ translate SP by σ ≡ translate 〈Σ,Γ 〉 ∪ SP by σ,
2. derive from 〈Σ′,Sen(σ)(Γ)〉∪SP ′by σ ≡ 〈Σ,Γ 〉∪derive from SP ′by σ,
3. 〈Σ,Γ 〉 ∪ (SP1 ∪ SP2) ≡ (〈Σ,Γ 〉 ∪ SP1) ∪ SP2,
4. SP1 ∪ SP2 ≡ SP2 ∪ SP1,
5. (SP1 ∪ SP2) ∪ SP3 ≡ SP1 ∪ (SP2 ∪ SP3),
6. 〈Σ,Γ1〉 ∪ 〈Σ,Γ2〉 ≡ 〈Σ,Γ1 ∪ Γ2〉.

Proof. Properties 1 and 2 follow by Def. 11 and set-theoretical reasoning on
the classes of models. Property 3 is an instance of 5. The proofs of 4, 5 and
6 can be found in (Sannella & Tarlecki, 2012, Prop. 5.6.2).

Borzyszkowski’s completeness proof (Borzyszkowski, 2002) suggests that
proofs of properties of a union of specifications should be organized by re-
sorting to Rules [CR], [sum1] and [sum2]. This is possible because of the
(implicit) use of the Craig’s interpolation property in the elimination of the
union of two specifications. In this sense, interpolation, compactness, infinite
conjunction or finiteness are (strong) requirements in the completeness of
Borzyszkowski’s calculus. In the case of logics that do not meet any of these
conditions (as the ones shown in Table 1), that construction is not possible
because either the interpolant does not exists or it is not a formula, but rather
a (possibly infinite) set of formulae, when the underlying logic only satisfies
the weak interpolation property.

Rule [sum] exhibits an interesting use of the weak interpolation prop-
erty as a means for decomposing structured specifications resulting from the
application of the union operator. The rule makes explicit the construction
used by Borzyszkowski in the proof of completeness of his calculus; in effect,
Rule [sum] eliminates a union between two structured specifications, but at
the expense of introducing another one between a structured specification
and a flat one. This responds to the need of keeping the (possibly infinite)
interpolant to complete the proof. This is done, of course, at the cost of mov-
ing to a calculus that must support an infinitary structural rule allowing to
draw conclusions from possibly infinite sets of proofs.

Next, we show the use of the calculus of Def. 18 to prove a property from
a structured specification over the language of Propositional Dynamic Logic
(Harel et al., 2000).

Example 1 (Reasoning in Propositional Dynamic Logic – PDL (Harel et al.,
2000)). Let Σ = {R} ∈ |Sign|. Let SP1 = 〈Σ,Γ1〉, SP ′2 = 〈Σ,Γ ′2〉 and
SP ′′2 = 〈Σ,Γ ′′2 〉 be PDL flat specifications such that:

• {Γ1 `Σ γ}γ∈Γ ′1 ,

• Γ ′1 = {β → [Skip]α} ∪
{

(β → [Ri−1]α)→ (β → [Ri]α)
}

0<i<ω
,

• Γ ′2 `Σ β, and
• Γ ′′2 `Σ [R∗](α→ γ).

Then, SP1 ∪ (SP ′2 ∪ SP ′′2) `Σ [R∗]γ.

The following tree depicts the dependencies among proofs, being π the
main proof.

π1.1.1.1(i)

π1.1.1(i)

π1.1
π1

π2.1.1.1
π2.1.1

π2.1.1.1
π2.1.2

π2.1

π2.2.2.1 π2.2.2.2
π2.2.2
π2.2

π2
π

We will present the proof in a top-down fashion, starting from proof π.
π:

π1{
SP1 `Σ β → [Ri]α

}
i<ω

π2¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ (SP ′2 ∪ SP ′′2) `Σ [R∗]γ

[sum]
SP1 ∪ (SP ′2 ∪ SP ′′2) `Σ [R∗]γ

π1:

 π1.1

SP1 ∪ 〈Σ, ∅〉 `Σ β → [Ri]α

〈Σ,Γ1〉 ≡ 〈Σ,Γ1〉
[by set theory]

〈Σ,Γ1 ∪ ∅〉 ≡ 〈Σ,Γ1〉
[by Prop. 1.(6)]

〈Σ,Γ1〉 ∪ 〈Σ, ∅〉 ≡ 〈Σ,Γ1〉
[by Def. SP1]

SP1 ∪ 〈Σ, ∅〉 ≡ SP1
[equiv]

SP1 `Σ β → [Ri]α


i<ω

π1.1:


{Γ1 `Σ γ}γ∈Γ ′

1
[basic]

{SP1 `Σ γ}γ∈Γ ′
1

π1.1.1(i)

[sum]
SP1 ∪ 〈Σ, ∅〉 `Σ β → [Ri]α


i<ω

π1.1.1(i):

π1.1.1.1(i)
[if 0 < i]

Γ ′1 `
Σ β → [Ri]α

[basic]〈
Σ,Γ ′1

〉
`Σ β → [Ri]α

〈
Σ,Γ ′1

〉
≡
〈
Σ,Γ ′1

〉
[set theory]〈

Σ,Γ ′1 ∪ ∅
〉
≡
〈
Σ,Γ ′1

〉
[by Prop. 1.(6)]〈

Σ,Γ ′1

〉
∪ 〈Σ, ∅〉 ≡

〈
Σ,Γ ′1

〉
[equiv]〈

Σ,Γ ′1

〉
∪ 〈Σ, ∅〉 `Σ β → [Ri]α

π1.1.1.1(i):

From hypothesis β → [Skip]α and
{
β → [Ri−1]α)→ (β → [Ri]α)

}
0<i<ω

in Γ ′1 it is possible to prove Γ ′1 `Σ β → [Ri]α, for every 0 < i < ω.

π2:

π2.1¶¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ [Rj]α

©
j<ω

π2.2¨
Σ,
{

[Ri]α
}
i<ω

∂
∪ SP ′′2 `Σ [R∗]γ

[sum]

(

¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2) ∪ SP ′′2 `Σ [R∗]γ

[by Prop. 1.(5)]¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ (SP ′2 ∪ SP ′′2) `Σ [R∗]γ

π2.1:


π2.1.1¨

Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ β

π2.1.2¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ β → [Rj]α

[MP]¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ [Rj]α


j<ω

π2.1.1:

Γ ′2 `
Σ β

[mon. of `Σ]{
β → [Ri]α

}
i<ω
∪ Γ ′2 `

Σ β

[basic]¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
`Σ β π2.1.1.1

[equiv]¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ β

π2.1.1.1: ¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
≡
¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
[by Prop. 1.(6)]¨

Σ,
{
β → [Ri]α

}
i<ω

∂
∪
〈
Σ,Γ ′2

〉
≡
¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
[by Def. SP ′2]¨

Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 ≡

¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
π2.1.2: {

β → [Ri]α
}
i<ω
`Σ β → [Rj]α

[mon. of `Σ]{
β → [Ri]α

}
i<ω
∪ Γ ′2 `

Σ β → [Rj]α

[basic]¨
Σ,
{
β → [Ri]α

}
i<ω
∪ Γ ′2

∂
`Σ β → [Rj]α π2.1.1.1

[equiv]¨
Σ,
{
β → [Ri]α

}
i<ω

∂
∪ SP ′2 `Σ β → [Rj]α

π2.2:

[Inf*]{
[Ri]α

}
i<ω
`Σ [R∗]α

[mon. of `Σ]{
[Ri]α

}
i<ω
`Σ [R∗]α

[basic]¨
Σ,
{

[Ri]α
}
i<ω

∂
`Σ [R∗]α π2.2.2

[sum]¨
Σ,
{

[Ri]α
}
i<ω

∂
∪ SP ′′2 `Σ [R∗]γ

π2.2.2:
π2.2.2.1

[R∗]α ∪ Γ ′′2 `
Σ [R∗]γ

[basic]〈
Σ, [R∗]α ∪ Γ ′′2

〉
`Σ [R∗]γ

π2.2.2.2

〈Σ, [R∗]α〉 ∪ SP ′′2 ≡
〈
Σ, [R∗]α ∪ Γ ′′2

〉
[equiv]

〈Σ, [R∗]α〉 ∪ SP ′′2 `Σ [R∗]γ

π2.2.2.1:

[R∗]α `Σ [R∗]α
[mon. of `Σ]

[R∗]α ∪ Γ ′′2 `
Σ [R∗]α

Γ ′′2 `
Σ [R∗](α→ γ)

[Distr]
Γ ′′2 `

Σ [R∗]α→ [R∗]γ
[mon. of `Σ]

[R∗]α ∪ Γ ′′2 `
Σ [R∗]α→ [R∗]γ

[modus ponens]
[R∗]α ∪ Γ ′′2 `

Σ [R∗]γ

π2.2.2.2: 〈
Σ, [R∗]α ∪ Γ ′′2

〉
≡
〈
Σ, [R∗]α ∪ Γ ′′2

〉
[by Prop. 1.(6)]

〈Σ, [R∗]α〉 ∪
〈
Σ,Γ ′′2

〉
≡
〈
Σ, [R∗]α ∪ Γ ′′2

〉
[by Def. SP ′′2]

〈Σ, [R∗]α〉 ∪ SP ′′2 ≡
〈
Σ, [R∗]α ∪ Γ ′′2

〉
Looking at the uses of Rules [sum] and [equiv] in Example 1, we can

conclude:

1. Rule [sum] allows us to share required hypotheses between subproofs of
a sum. This is particularly clear in proofs π and π5.

2. In some occasions, Rule [sum] forces us to introduce a flat specification
that may not be necessary (i.e., proofs π1 and π3). Rule [equiv] allows us
to get rid of the spurious specifications.

3. Rule [equiv] has to be used carefully. If abused, it allows one to completely
ignore the specification structure. We advocate for a responsible use of
this rule. Notice that the remaining uses of Rule [equiv] in proofs π5,
π7 and π8 are meant to unite two flat specifications into a single flat
specification in order to prove a property in the complete calculus of the
underlying logic. In essence, our rationale for using this rule is not to
remove structure, but rather change the structure in a way that might
help during the proving process.

4 Heterogeneity and Structured Specifications

As we mentioned before, heterogeneous specifications are ubiquitous in mod-
ern software development. Different software artifacts are developed with

the aid of different modeling languages. Logics fall within the “formal” sub-
class of these modeling languages. A variety of logics for software modeling
exist. Classical first-order logic is generally used in the specification of struc-
tural properties of software. Dynamic logics are used for method specification
through requires/ensures clauses. A number of temporal logics are used in
software analysis in the context of model checking, etc. Therefore, calculi
such as the ones presented in Defs. 16 and 18, while relevant in an homoge-
neous setting, do not constitute a solution for incorporating the diversity of
formalisms used nowadays.

4.1 Foundations and Limitations

The need to reason about heterogeneous structured specifications is not novel.
Among the many proposals we can cite (Mossakowski & Tarlecki, 2014),
where Mossakowski and Tarlecki extend Borzyszkowski’s results and defini-
tions to the heterogeneous case, or (Cerioli & Meseguer, 1997), where Cerioli
and Meseguer connect different proof calculi (Meseguer, 1989) via their en-
tailment systems.

In (Mossakowski & Tarlecki, 2009), the authors distinguish three classes of
heterogeneous environments for software specification, namely: a) heteroge-
neous specification in some logical environments representable in a “univer-
sal” institution, b) focused heterogeneous specifications, and c) distributed
heterogeneous specifications. The first two approaches do not differ in prac-
tice from each other. The main difference is philosophical, and relates to how
the languages intervening in the framework are conceived. The “universal”
institution approach considers the existence of a multiplicity of languages,
all of them related to a particular logic that serves as common language in
which the interaction of the bits and pieces of a specification can be ex-
pressed. Instead, the focused approach conceives the language as being itself
heterogeneous.

In this section we will focus on structured specifications over an hetero-
geneous logical environments where heterogeneity is resolved by the transla-
tion to a “universal” institution. Thus, this corresponds to the first approach
presented in (Mossakowski & Tarlecki, 2009). Semantics-preserving transla-
tions have been used for many reasons, even before the concept of institu-
tion was introduced in (Goguen & Burstall, 1984) and developed in (Goguen
& Burstall, 1992), and, different kinds of arrows between institutions were
studied in (Astesiano & Cerioli, 1991; Cerioli, 1993; Goguen & Roşu, 2002;
Martini & Wolter, 1997, 1998). A relevant application is to provide a for-
mal semantics for diagrammatic notations, in particular for the UML (see
(Broy & Cengarle, 2011) and the citations therein). When such translations
are used between two logics in a more classical logic setting, they are usually
called interpretability results. One important application consists in mapping

a logic to another in order to borrow the deduction system the latter pro-
vides. Quoting (Orlowska & Golińska-Pilarek, 2011), one way to pursue this
goal, in the context of tableaux calculi, is the following:

• “First, given a theory, a truth preserving translation is defined of the language
of the theory into an appropriate language of relations (most often binary);

• Second, a dual tableau is constructed for this relational language so that it
provides a deduction system for the original theory.”

Generalizing (Orlowska & Golińska-Pilarek, 2011), an interpretation of a
logic L into another logic L′ consists of a mapping TL : SenL → SenL′
(translating sentences from logic L to sentences of logic L′), satisfying the
following interpretability condition: For all α ∈ SenL and Γ ⊆ SenL, Γ |=L

α if and only if Γ ′ ∪ { TL(γ) | γ ∈ Γ } |=L′ TL(α), where Γ ′ is a set of
axioms, only depending on the signature of the source theory presentation,
used to establish basic restrictions on the class of models.

Proving this interpretability condition usually requires more that just
a translation between sentences. This translation must be proved to be
semantics-preserving. Thus, also a relation between classes of models must
be established. In general, if L is a logic and ΣL is any L-signature, an inter-
pretability result of L in L′ is presented by providing:

1. a mapping S from ΣL to a particular signature Σ in L′,
2. a translation TL→L′ of ΣL-formulas to Σ-formulas,
3. a mapping ML′→L of Σ-models (i.e., ModL′(Σ)) to ΣL-models (i.e.,

ModL(ΣL)), satisfying that for all B ∈ ModL′(Σ)(ML′→L(B)) |=L α
if and only if B |=L′ TL→L′(α), and

4. a mapping ML→L′ of ΣL-models to Σ-models, satisfying that for all
A ∈ ModL(ΣL)(A) |=L α if and only if ML→L′(A) |=L′ TL→L′(α).

Interpretability results and institution co-morphisms are closely related. In-
stitutions provide a more general setting, though. This is made evident in
Cond. 1, where a mapping between signatures is required for interpretation,
while Def. 19 requires a functor between the categories of signatures. The
same occurs in Cond. 2 with respect to the natural family of functions re-
quired by Def. 19 to map sentences, and Cond. 3 with respect to the nat-
ural transformation required to map categories of models. Condition 4 is
equivalent to the ρ-expansion of models along the institution co-morphism
ρ : IL → IL′ (see Def. 20), modulo the need to take into account the mor-
phisms. Finally, under these four conditions, proving interpretability becomes
an instance of the more general proof required in Thm. 7.

The following definition was taken from (Tarlecki, 1996), where it was
called institution representation, but we will adopt the more modern, and
widely used, name of co-morphism.

Definition 19 (Institution co-morphism (Goguen & Roşu, 2002)).
Let I and I′ be institutions. Then,

〈
γSign, γSen, γMod

〉
: I → I ′ is an institu-

tion co-morphism if

• γSign : Sign→ Sign′ is a functor,
• γSen : Sen → γSign ◦ Sen′ is a natural transformation (i.e., a natural

family of functions γSenΣ : Sen(Σ)→ Sen′(γSign(Σ))),
• γMod : (γSign)op ◦Mod′ → Mod is a natural transformation (i.e., the

family of functors γMod
Σ : Mod′((γSign)op(Σ))→Mod(Σ) is natural),

Such that, for any Σ ∈ |Sign|, the following satisfaction condition holds: for
any α ∈ Sen(Σ) and M′ ∈ |Mod′((γSign)op(Σ)),

M′ |=γSign(Σ) γSenΣ (α) if and only if γMod
Σ (M′) |=Σ α .

The reader should note that the direction of the arrows show how the whole
of I is represented by some parts of I′. The following two results, presented
in (Tarlecki, 1996), provide the relationship between I and I′.

Conditions 1 to 4 presented before, once they are extended to form an insti-
tution co-morphism, guarantee the satisfaction of the hypotheses of Thm. 8,
thus providing the necessary hypotheses to extend the calculus of Def. 18
with Rule (1) below. In (Lopez Pombo, 2007) we developed this extension in
detail for the interpretability of first-order linear temporal logic into ω-closure
fork algebras (Frias, Baum, & Maibaum, 2002).

Next we reproduce some interesting results about institution co-morphisms
from (Tarlecki, 1996).

Proposition 2 ((Tarlecki, 1996)). Let I and I′ be institutions. Let ρ :
I → I′ be an institution co-morphism. For all Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and

ϕ ∈ Sen(Σ), if Γ |=Σ ϕ, then ρSen(Γ) |=ρSign(Σ) ρSen(ϕ).

Definition 20 ((Tarlecki, 1996)). Let I and I′ be institutions. Let ρ : I→
I′ be an institution co-morphism.M∈ |Mod(Σ)| has a ρ-expansion if there
exists M′ ∈ |Mod′(ρSign(Σ))| such that M = ρMod(M′).

Theorem 7 ((Tarlecki, 1996)). Let I and I′ be institutions. Let ρ : I→ I′
be an institution co-morphism. For all Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and ϕ ∈
Sen(Σ), if every M∈Mod[〈Σ,Γ 〉] has a ρ-expansion, then Γ |=Σ ϕ if and

only if ρSen(Γ) |=ρSign(Σ) ρSen(ϕ).

In (Borzyszkowski, 1998) and (Borzyszkowski, 2002, Sec. 5) Borzyszkowski
provides a good insight on how these relations between institutions affect the
use of structured specifications and, in particular, the conditions under which
one can move structured specifications between logical systems. Let us review
Borzyszkowski’s definitions and results.

Definition 21 (Weak amalgamation of institution co-morphisms
(Borzyszkowski, 2002)). Let I and I′ be institutions. Let ρ : I → I′ be
an institution co-morphism. We say that ρ has the weak amalgamation prop-
erty if for all Σ1, Σ2 ∈ |Sign|, σ : Σ1 → Σ2, M1 ∈ |Mod′((ρSign)op(Σ1))|
and M2 ∈ |Mod(Σ2)|, if Mod(σop)(M2) = ρMod

Σ1
(M1), there exists M ∈

|Mod′((ρSign)op(Σ2))| such that ρMod
Σ2

(M) =M2 and Mod′((ρSign)op(σop))(M) =
M1.

The weak amalgamation property essentially establishes that, given an
institution co-morphism ρ, the class of models of the translation through ρ of
a signature of the less expressive logic to the more expressive one, completely
characterises the class of models of the institution being represented. This
means that ρ preserves the relation between the models obtained by the
application of ρMod.

The next definition extends the notion of institution co-morphism to struc-
tured specifications.

Definition 22 (Specification co-morphism (Borzyszkowski, 2002)).
Let I and I′ be institutions and let ρ : I→ I′ be an institution co-morphism.

We define {ρ̂Σ : SpecIΣ → SpecI
′

ρSign(Σ)}Σ∈|Sign| as follows:

• if SP = 〈Σ,Γ 〉, then ρ̂Σ(SP) =
〈
ρSign(Σ), ρSen(Γ)

〉
.

• if SP = SP1 ∪ SP2, then ρ̂Σ(SP) = ρ̂Σ(SP1) ∪ ρ̂Σ(SP2).
• let σ1 : Σ1 → Σ ∈ ||SignI||, if SP = translate SP1 by σ1, then
ρ̂Σ(SP) = translate ρ̂Σ1

(SP1) by ρSign(σ1).
• let σ1 : Σ → Σ1 ∈ ||SignI||, if SP = derive from SP1 by σ1, then
ρ̂Σ(SP) = derive from ρ̂Σ1

(SP1) by ρSign(σ1).

It is easy to see that if SP ∈ SpecIΣ and ρ : I → I′ is an institution

co-morphism, then ρ̂Σ(SP) ∈ SpecI
′

ρSign(Σ) (see (Borzyszkowski, 2002, Re-
mark 5.13)). The following results, taken from (Borzyszkowski, 2002), show
the relationships that exist between a specification and its translation to a
different institution.

Theorem 8 ((Borzyszkowski, 2002)). Let I and I′ be institutions. Let
ρ : I → I′ be an institution co-morphism and SP ∈ SpecIΣ. Then, if ρSign :
Sign→ Sign′ preserves pushouts, nf(ρ̂Σ(SP)) ≡ ρ̂Σ(nf(SP)).

Corollary 4 ((Borzyszkowski, 2002)). Let I and I′ be institutions such
that I′ satisfies the weak-amalgamation property. Let ρ : I→ I′ be an institu-
tion co-morphism and SP ∈ SpecIΣ. Then, if ρSign : Sign → Sign′ preserves
pushouts, ρ̂Σ(SP) ≡ ρ̂Σ(nf(SP)).

So far we have reviewed definitions and results relating structured spec-
ifications in one logic. The following results compare the classes of models
obtained by translations across logics. The key concept in this comparison is
the weak amalgamation of institution co-morphisms (Borzyszkowski, 2002).

Lemma 3 ((Borzyszkowski, 2002)).
Let I and I′ be institutions. Let ρ : I→ I′ be an institution co-morphism and
SP ∈ SpecIΣ. Then, ρMod

Σ (Mod[ρ̂Σ(SP)]) ⊆Mod[SP].

Lemma 4 ((Borzyszkowski, 2002)). Let I and I′ be institutions. Let
ρ : I → I′ be an institution co-morphism satisfying the weak amalgamation
property, and SP ∈ SpecIΣ. Then, if for allM∈Mod[SP] there existsM′ ∈
Mod[ρ̂Σ(SP)] such that ρMod

Σ (M′) =M, Mod[SP] ⊆ ρMod
Σ (Mod[ρ̂Σ(SP)]).

Finally, (Borzyszkowski, 2002, Thm. 7.1) proves that, given institutions
I and I′ and an institution co-morphism ρ : I → I′ satisfying the weak
amalgamation property such that the models of I have ρ-expansions, for all

SP ∈ SpecIΣ and α ∈ Sen(Σ), SP |=Σ α iff ρ̂Σ(SP) |=ρSign(Σ) ρSen(α).
From this result, Borzyszkowski extends the calculus presented in Def. 16
with a new rule, obtaining a sound and complete proof system that enables
the possibility of using institution co-morphisms in order to complete proofs:

ρ̂Σ(SP) `ρSign(Σ) ρ
Sen(ϕ)

[ρ-entailment]
SP `Σ ϕ

(1)

Extending the calculi presented in Defs. 16 and 18 with rule [ρ-entailment]
solves the problem of borrowing a proof system of one logic to prove properties
of another. In our case we want to find a way of dealing with a multiplicity of
logics linked by institution co-morphisms to a powerful proof system acting
as “universal” institution. In this sense, the addition of this rule does not
incorporate the possibility of structuring a specification around pieces written
in different languages. In Section 4.2 we will address this limitation.

4.2 A Purely Heterogeneous Calculus

In this section we present the second contribution of this article; a calculus
for reasoning about heterogeneous structured specifications. In (Diaconescu,
1998), the concept of extra theory morphisms was presented. This was the
cornerstone of what later, in (Diaconescu, 2002), turned into a more sophis-
ticated and solid construction presented under the name of Grothendieck
institutions. Resorting to this construction the author established the rela-
tionship between specifications (theories) coming from different institutions.
In (Mossakowski & Tarlecki, 2009), Mossakowski and Tarlecki address the
problem of having structured specifications in an heterogeneous environment;
solved by introducing heterogeneous logical environments.

Our approach relies on a definition close to the one presented in (Mossakowski
& Tarlecki, 2009), with the sole exception of not considering institution mor-
phisms among the arrows in the diagram but only focusing on institution
co-morphisms. From now on we denote by Repr the category whose objects
are institutions and whose morphisms are institution co-morphisms.

Definition 23 (Heterogeneous logical environment (Mossakowski &
Tarlecki, 2009)). An heterogeneous logical environment is a diagram D :
G→ Repr . The class formed by this diagrams will be denoted as HLE .

Linking theories through co-morphisms into a “universal” institution has
two main consequences: 1. it provides a common language in which all the
elements of a system specification can be interpreted, resulting in a joint
semantics, and 2. the use of an appropriate “universal” institution enables the
reuse of its proof system to prove properties, despite the language in which
they were originally written. Definition 24 below extends the definition of
SBOs (see Def. 11), to heterogeneous SBOs (in which the building operators
act over an HLE). Recalling notation, given a graph G, G0 denotes its set
of nodes and G1 denotes the edges. For a given diagram D : G→ Repr and
nodes v, v′ ∈ G0, D(v) denotes an institution, and D(〈v, v′〉) denotes the
co-morphism between institutions D(v) and D(v′).

Definition 24 (Heterogeneous structure building operations). Let
D : G → Repr be an HLE . The class of specifications over D is defined by

extending Def. 11 as follows: Let v, v′ ∈ G0, SP ∈ Spec
D(v)
Σ , SP ′ ∈ Spec

D(v′)
Σ′ ,

D(〈v, v′〉)Sign(Σ) = Σ′, then

• if SP ′ = translate SP by D(〈v, v′〉) ∈ Spec
D(v′)
Σ′ , then Sig[SP ′] = Σ′,

and Mod[SP ′] = {M′|D(〈v, v′〉)Mod
Σ (M′) ∈Mod[SP]},

• if SP = derive from SP ′ by D(〈v, v′〉) ∈ Spec
D(v)
Σ , then Sig[SP] = Σ,

and Mod[SP] = {D(〈v, v′〉)Mod
Σ (M′)|M′ ∈Mod[SP ′]}.

Intuitively, the heterogeneous translate operator allows us to use an in-
stitution co-morphism in order to move from a given theory into a richer one.
Similarly, the heterogeneous derive operator allows us to move from a rich
theory to one that is represented in it.

Definition 25 (Heterogeneous specification co-morphism). Let D :
G → Repr be an HLE such that G is a join-semilattice with top. Then,
for all 〈v, v′〉 ∈ G1, we extend the map between specifications of Def. 22 of

{Ÿ�D(〈v, v′〉)Σ : SpecΣ → SpecD(〈v,v′〉)Sign(Σ)}Σ∈|SignD(v)| by adding the follow-

ing rules: Let 〈v, v′〉 , 〈v′, v′′〉 ∈ G1, SP ∈ SpecD(v)
Σ and let SP ′ ∈ SpecD(v′)

Σ′ ,
where Σ′ = D(〈v, v′〉)Sign(Σ)

• if SP ′ = translate SP by D(〈v, v′〉) then ⁄�D(〈v′, v′′〉)Σ(SP ′) =
translate SP by D(〈v, v′〉) ◦D(〈v′, v′′〉), and

• if SP = derive from SP ′ by D(〈v, v′〉) then ⁄�D(〈v, v′′〉)Σ(SP) =

derive from ¤�D(〈v′, v′ ∨ v′′〉)Σ′(SP ′) by D(〈v′′, v′ ∨ v′′〉).

Definition 26. Let D : G → Repr be an HLE such that G is a join-
semilattice with top, v, v1, v2 ∈ G0 and 〈v1, v〉 , 〈v2, v〉 ∈ G1. Then, given

specifications SP1 ∈ Spec
D(v1)
Σ1

and SP2 ∈ Spec
D(v2)
Σ2

, we say that SP1

is equivalent in D(v) to SP2 (denoted SP1 ≡D(v) SP2) if and only ifŸ�D(〈v1, v〉)Σ1
(SP1) ≡ Ÿ�D(〈v2, v〉)Σ2

(SP2).

Proposition 3. Let D : G → Repr be an HLE such that G is a join-
semilattice with top.

1. For each v ∈ G0, ≡D(v) is an equivalence relation.
2. For each v ∈ G0, if SP1 ≡D(v) SP ′1 and SP2 ≡D(v) SP ′2, then SP1 ∪

SP2 ≡D(v) SP ′1 ∪ SP ′2.
3. Let v ∈ G0, D(〈v, v〉) the identity institution representation and SP ∈

Spec
D(v)
Σ , then translate SP by D(〈v, v〉) ≡D(v) SP .

4. Let 〈v, v′〉 ∈ G1 and SP ∈ Spec
D(v)
Σ , then translate SP by D(〈v, v′〉) ≡D(v′)Ÿ�D(〈v, v′〉)Σ(SP).

Proof. 1. The proof follows by definition of ≡D(v) for any given v ∈ G0.

2. Let SP1 ≡D(v) SP ′1 and SP2 ≡D(v) SP ′2. Then,ÿ�D(〈v0, v〉)Σ0
(SP1) ≡ÿ�D(〈v1, v〉)Σ1

(SP ′1)ÿ�D(〈v0, v〉)Σ0
(SP2) ≡ÿ�D(〈v1, v〉)Σ1

(SP ′2)
(2)

Relation ≡ stands for equivalence in institution D(v) (c.f. Def. 13).

SP1 ∪ SP2 ≡D(v) SP
′
1 ∪ SP

′
2

⇐⇒ ÿ�D(〈v0, v〉)Σ0
(SP1 ∪ SP2) ≡ÿ�D(〈v1, v〉)Σ1

(SP
′
1 ∪ SP

′
2)

⇐⇒ ÿ�D(〈v0, v〉)Σ0
(SP1) ∪ÿ�D(〈v0, v〉)Σ0

(SP2) ≡ÿ�D(〈v1, v〉)Σ1
(SP

′
1) ∪ÿ�D(〈v1, v〉)Σ1

(SP
′
2) .

In order to prove the equivalence we must prove that both sides coincide
in signature and models, which immediately follows from (2).

3. Follows trivially by Defs. 24 and 26
4.

translate SP by D(〈v, v′〉)
[using that D(〈v, v〉) is the identity institution representation]

= translate SP by D(〈v, v〉) ◦D(〈v, v′〉)
[by Def. 25]

= Ÿ�D(〈v, v′〉)Σ(translate SP by D(〈v, v〉))
[by Prop. 3.3]

≡D(v′)
Ÿ�D(〈v, v′〉)Σ(SP)

The following definition extends the calculus presented in Def. 18 to HLE .

Definition 27. Let D : G → Repr be an HLE such that G is a join-
semilattice with top. Then, the following rules define a D-indexed family
of entailment relations:

Γ`D(v)Σϕ
v ∈ G0 ∧ 〈Σ,Γ 〉 ∈ |Th

D(v)

0 | [basic]
〈Σ,Γ 〉 `D(v)

Σ
ϕ

SP2 `D(v)

Σ
ϕ SP1 ≡ SP2

[equiv]
SP1 `D(v)

Σ
ϕ

{SP1 `D(v)

Σ
ψ}ψ∈∆ 〈Σ,∆〉 ∪ SP2 `D(v)

Σ
ϕ

[sum]
SP1 ∪ SP2 `D(v)

Σ
ϕ

SP `D(v)

Σ
ϕ

[translate]
translate SP by σ `D(v)

Σ′
SenD(v)(σ)(ϕ)

SP `D(v)

Σ′
SenD(v)(σ)(ϕ)

[derive]
derive from SP by σ `D(v)

Σ
ϕÿ�D(〈v2, v〉)Σ2

(SP2) `D(v)

D(〈v1,v〉)Sign(Σ1)
D(〈v1, v〉)SenΣ1

(ϕ) SP1 ≡D(v) SP2

[ρ-equiv],
SP1 `

D(v1)

Σ1
ϕ

provided that v ∈ G0, 〈v1, v〉 , 〈v2, v〉 ∈ G1, and D(〈v1, v〉)Sign(Σ1) = D(〈v2, v〉)Sign(Σ2) .

SP `D(v′)

D(〈v,v′〉)Sign(Σ)
D(
〈
v, v′
〉

)
Sen

Σ
(ϕ)

[ρ-derive]
derive from SP by D(

〈
v, v′
〉

) `D(v)

Σ
ϕ

SP `D(v)

Σ
ϕ

[ρ-translate]

translate SP by D(
〈
v, v′
〉

) `D(v′)
D(〈v,v′〉)Sign(Σ)

D(
〈
v, v′
〉

)
Sen

Σ
(ϕ)

The last three rules are meant to deal with heterogeneity. Rule [ρ-equiv]
is a version of [equiv] that enables the possibility of using a different proof
system to complete the proof. Notice that Rule 1 is an instance of Rule [ρ-
equiv] provided the proper instantiation of specifications. Rules [ρ-derive]
and [ρ-translate] are added as mechanisms for dealing with the heterogeneous
structure induced by the heterogeneous derive and translate operations.

Theorem 9 (Soundness). Let D : G → Repr be an HLE such that G
is a join-semilattice with top. Assume also that for all 〈v, v′〉 ∈ G1, M ∈
|ModD(v)(〈Σ,Γ 〉)| has the D(〈v, v′〉)-expansion property. If SP `D(v) ϕ then
SP |=D(v) ϕ, with `D(v) defined via the rules presented in Def. 27.

Proof. The soundness proof relies on the soundness of each one of the rules.
The proof is completed by an induction on the height of the proof-tree. We
know by Thm. 4 that rules [basic], [equiv], [derive], [sum] and [translate] are
sound with respect to the semantics. It then remains to prove that rules ρ-
equiv, ρ-derive and ρ-translate are sound as well:

[ρ-equiv] Assume Ÿ�D(〈v2, v〉)Σ2
(SP2) |=D(v)

D(〈v1,v〉)Sign(Σ1)
D(〈v1, v〉)SenΣ1

(ϕ) and

SP1 ≡v SP2. By Def. 26, Ÿ�D(〈v1, v〉)Σ1
(SP1) ≡ Ÿ�D(〈v2, v〉)Σ2

(SP2). Therefore,Ÿ�D(〈v1, v〉)Σ1
(SP1) |=D(v)

D(〈v1,v〉)Sign(Σ1)
D(〈v1, v〉)SenΣ1

(ϕ). By Thm. 7, since each

M∈Mod[SP1] has the D(〈v1, v〉)-expansion property, SP1 |=D(v1)
Σ1

ϕ,

[ρ-derive] Assume SP ′ |=D(v′)

D(〈v,v′〉)Sign(Σ)
D(〈v, v′〉)SenΣ (ϕ). Then, for all

M ∈ Mod[SP ′], M |=D(v′)

D(〈v,v′〉)Sign(Σ)
D(〈v, v′〉)SenΣ (ϕ) which, by the sat-

isfaction condition for institution co-morphisms (see Def. 19), is equiva-

lent to D(〈v, v′〉)Mod
Σ (M) |=D(v)

Σ ϕ. Then, for all M = D(〈v, v′〉)Mod
Σ (M′)

with M′ ∈ Mod[SP ′], M |=D(v)
Σ ϕ. Finally, by Def. 24, for all M ∈

Mod[derive from SP ′ by D(〈v, v′〉)], M |=D(v)
Σ ϕ, and, consequently,

derive from SP ′ by D(〈v, v′〉)] |=D(v)
Σ ϕ, and

[ρ-translate] Assume SP |=D(v) ϕ. For all M ∈ Mod[SP], M |=D(v)
Σ ϕ.

By D(〈v, v′〉)-expansion, for each M ∈Mod[SP] there exists M′ such that

D(〈v, v′〉)Mod
Σ (M′) =M. Therefore, for eachM∈Mod[SP], there existsM′

such that D(〈v, v′〉)Mod
Σ (M′) |=D(v)

Σ ϕ. By the satisfaction condition for in-

stitution co-morphisms (see Def. 19), M′ |=D(v′)

D(〈v,v′〉)Sign(Σ)
D(〈v, v′〉)SenΣ (ϕ).

Thus, for allM′ such thatD(〈v, v′〉)Mod
Σ (M′) ∈Mod[SP],M′ |=D(v′)

D(〈v,v′〉)Sign(Σ)

D(〈v, v′〉)SenΣ (ϕ). By Def. 24, for allM′ ∈Mod[translate SP by D(〈v, v′〉)],
M′ |=D(v′)

D(〈v,v′〉)Sign(Σ)
D(〈v, v′〉)SenΣ (ϕ). Then, we obtain that:

translate SP by D(〈v, v′〉) |=D(v′)

D(〈v,v′〉)Sign(Σ)
D(〈v, v′〉)SenΣ (ϕ).

Theorem 10 (Completeness). Let D : G → Repr be an HLE such
that G is a join-semilattice with top >. Assume that for all 〈v,>〉 ∈ G1,

M∈ModD(v)[〈Σ,Γ 〉] has the D(〈v,>〉)-expansion property. Then, if `D(>)

(the calculus for non-structured specifications of institution D(>)) is com-
plete and D(>) has the weak-interpolation and weak-amalgamation proper-
ties, SP |=D(v) ϕ implies that SP `D(v) ϕ, with `D(v) defined by the rules
presented in Def. 27.

Proof. The calculus in Def. 27 extends the calculus presented in Def. 18.
Then, by Thm. 5, `D(>) (the proof system for structured specifications in

institution D(>)), is complete. As for all 〈v,>〉 ∈ G1,M∈ModD(v)[〈Σ,Γ 〉]
has the D(〈v,>〉)-expansion property, by Thm. 7, we obtain SP |=D(v)

Σ ϕ iffŸ�D(〈v,>〉)Σ(SP) |=D(>)

D(〈v,>〉)Sign(Σ)
D(〈v,>〉)SenΣ (ϕ). Then, as `D(>) is com-

plete, Ÿ�D(〈v,>〉)Σ(SP) `D(>)

D(〈v,>〉)Sign(Σ)
D(〈v,>〉)SenΣ (ϕ).

The following derivation using [ρ-equiv], and Def. 26, completes the proof
of the theorem:◊�D(〈v,>〉)Σ(SP) `D(>)

D(〈v,>〉)Sign(Σ)
D(〈v,>〉)SenΣ (ϕ) SP ≡> ◊�D(〈v,>〉)Σ(SP)

[ρ-equiv]
SP `D(v)

Σ
ϕ

provided that 〈v,>〉 ∈ G1.

The reader should note that this calculus and completeness proof admit the
exact same considerations we made about the calculus presented in Def. 18
and Thm. 5 as the calculus in Def. 27 is just an heterogeneous extension of
that of Def. 18.

4.3 Fork algebras as a “universal” institution

Fork algebras, presented by Haeberer and Veloso in (Haeberer & Veloso,
1991), are an extension of relation algebras obtained by adding a new operator
called fork (typically represented as “∇”). They arose in the search for a
formalism suitable for software specification and verification and have been
used for program repre- sentation and derivation (Frias, Baum, & Haeberer,
1998). In (Frias, 2002, Chapter 3, pp. 20) Frias gave a detailed discussion
on the evolution of fork algebras and called our attention to the concepts
which were responsible of such evolution. Other attractive features of this
class of algebras are that they are isomorphic to algebras whose domain is
a set of binary relations (Frias et al. (Frias, Baum, & Haeberer, 1997) and
Gyuris (Gyuris, 1997)), that they posses a complete equational calculus with
finitely many proof rules (Frias et al. in (Frias, Haeberer, & Veloso, 1997)
and (Frias, 2002, Chapter 4)), were proved to provide a general method for
constructing Rasiowa-Sikorski-style deduction systems for nonclassical logics
(Frias & Orlowska, 1997), and have enough expressive power to serve as
the target of interpretations of several logical languages. Figure 1 depicts
several interpretability results proved for a number of logics. Among those
which interpret logics in extensions of Fork Algebras we can find, first-order
logic with equality (Frias, 2002, Chapter 5), modal logics and propositional
dynamic logic (Frias & Orlowska, 1998), first-order dynamic logic (Frias et
al., 2002), propositional linear temporal logic (Frias & Lopez Pombo, 2003)
and first-order linear temporal logic (Frias & Lopez Pombo, 2006).

In all cases the class of fork algebras (Frias, 2002) was used as the target
of the interpretation. In (Lopez Pombo & Frias, 2006) we showed that these
algebras provide an institution that is a good candidate as a “universal”
institution.

Several of these results were obtained in colaboration with Ewa Orlowska.
It was Ewa, with the humility and sharpness that always characterized her,
who approached Frias while he was a graduate student and suggested that
fork algebras might be useful to reason in non-classical logics as well. This
led to several years of fruitful cooperation.

Recalling Thm. 10, the candidate to “universal” institution must have a
complete calculus and satisfy the weak-interpolation and weak-amalgamation
properties. Proposition 4 shows that this is indeed the case for the logic of
fork algebras, defined in detail in (Lopez Pombo & Frias, 2006).

Proposition 4. Let FA =
¨
Sign,Sen,Mod,

{
`ΣFA
}
Σ∈|Sign| ,

{
|=Σ

FA

}
Σ∈|Sign|

∂
be the logic of fork algebras. Then,

1. FA has the weak-interpolation property,
2. FA has the weak-amalgamation property, and
3. FA has a complete calculus for flat specifications.

Proof.

w-CFAu

FOLTL= FODL= FOL=

CTL LTL

CTL*

PDL

Basic Modal Logic Multimodal Logic

Fig. 1 Interpretability results of logics int Fork Algebras.

1. As it was done in (Roşu & Goguen, 2000), and formalised in the con-
text of institutions by introducing (D, T)-institutions (Borzyszkowski,
2002), we restrict ourselves to pushouts 〈t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′〉 for
〈t1 : Σ → Σ1, t2 : Σ → Σ2〉 in Sign such that t′2 : Σ → Σ2 is injective.
Then, the proof follows from (Roşu & Goguen, 2000, Coro. 6).

2. Let 〈t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′〉 be a pushout in Sign for the span

〈t1 : Σ → Σ1, t2 : Σ → Σ2〉, andM1 =
〈
M1,

¶
fM1
i

©
i∈I1

〉
∈ |Mod (Σ1) |

andM2 =
〈
M2,

¶
fM2
i

©
i∈I2

〉
∈ |Mod (Σ2) |, such that Mod (t1) (M1) =

Mod (t2) (M2). Let M =
¨
M,
{
fMi

}
i∈I

∂
∈ |Mod (Σ) | such that M =

Mod (t1) (M1) = Mod (t2) (M2). Define M′ =
〈
M,
¶
f ′
M′
i

©
i∈I′

〉
∈

|Mod (Σ′) | such that:

• I ′ = J ∪J1 ∪J2, (for the sake of simplifying notation let us assume
that I, I1, I2 are mutually disjoint), such that

– J = I,
– J1 = I1 \ { j ∈ I1 | ∃i ∈ I s.t. t1(fi) = fj },
– J2 = I2 \ { j ∈ I2 | ∃i ∈ I s.t. t2(fi) = fj }.

• f ′M
′

j =


fMj , for all j ∈ J ,
fM1
j , for all j ∈ J1,

fM2
j , for all j ∈ J2 .

By construction Mod (t′1) (M′) =M1 and Mod (t′2) (M′) =M2.
3. Follows as a consequence of representability in (Frias et al., 2002, Thm. 3).

Next example shows the use of the calculus presented in Def. 27 to prove
a property from an heterogeneous structured specification involving the lan-
guages of Propositional Dynamic Logic (Harel et al., 2000), Linear Temporal
Logic (Pnueli, 1981), and using the Fork algebras (Frias, 2002) as a “univer-
sal” institution.

Example 2 (Reasoning in an heterogeneous logical environment). Let us con-
sider the following simplified specification for the behavior of an electric golf
car. The car can be started (in which case the engine is on), can be accel-
erated (which takes the car from being stopped to being in cruise speed), it
can be stopped by pressing the brake pedal, and can be turned off. In order
to write the model we will use state variables:

• engine is off (modeling whether the engine is off), and
• speed is zero (modeling whether the car is actually stopped).

This is a simplified model that, in particular, does not take into consid-
eration electricity consumption or the need to recharge the car’s battery.
We will resort to a model describing the atomic actions in the specifica-
tion, written in the propositional dynamic logic PDL. We only focus on state
changes, being the remaining transitions invariant, i.e., ¬engine is off ⇒
[Start]¬engine is off . We use an LTL formula to impose a runtime con-
straint: cars must eventually turn their engines off (this may be due to a
driver’s decision or to lack of battery charge, but we will not model these as-
pects of the problem in the specification). The specification is the following:

PDL-Ax init ⇒ engine is off
init ⇒ speed is zero
engine is off ⇒ [Start]¬engine is off
(speed is zero ∧ ¬engine is off)⇒ [Accelerate]¬speed is zero
¬speed is zero ⇒ [Break]speed is zero
¬engine is off ⇒ [TurnOff]engine is off
¬speed is zero ⇒ [TurnOff]speed is zero

LTL-Ax init ⇒ � (¬engine is off ⇒ 3engine is off)

Let us consider the PDL signature

ΣPDL = 〈{Start,Accelerate,Break,TurnOff}, {init, engine is off , speed is zero}〉

and the LTL signature

ΣLTL = 〈{init , engine is off , speed is zero}〉 .

Let us have a fork algebra signature

ΣFA = 〈{S0,S, tr,T,Start,Accelerate,Break,TurnOff , init, engine is off , speed is zero}〉 .

Let ⁄�PDL→ FA
Sign

(ΣPDL) = ΣFA and ⁄�LTL→ FA
Sign

(ΣLTL) = ΣFA. We will

not provide definitions for translations ⁄�PDL→ FA
Sen

and ⁄�LTL→ FA
Sen

in
this article. Fully detailed definitions have been provided in (Frias, 2002) and
(Frias & Lopez Pombo, 2003), respectively.

While there is a clear relationship between atomic actions in the PDL
model and the transition relation in the LTL model, this relationship has to
be made formal. Let us consider the specification

SPFA = 〈ΣFA, {T = Start+Accelerate+Break+TurnOff}〉 .

Let us consider the diagram:

FA

PDL LTL

�

J
J
JJ]ÿ�PDL→ FAΣPDL
◊�LTL→ FAΣLTL

Scenario 1: We want to prove an LTL assertion establishing that cars must
eventually reach a motionless state.

Assert : init ⇒ � (¬speed is zero ⇒ 3speed is zero) .

Verifying that the assertion holds reduces then to proving that:(
translate 〈ΣPDL,PDL-Ax〉 by ÿ�PDL→ FAΣPDL

∪
translate 〈ΣLTL, LTL-Ax〉 by ◊�LTL→ FAΣLTL

∪
SPFA

)
`FAΣFA

◊�LTL→ FA
Sen

ΣLTL
(Assert)

In this scenario we move from the constituent specifications to their rep-
resentations in the universal institution. Let us define:

tr1 := translate 〈ΣPDL,PDL-Ax〉 by ⁄�PDL→ FAΣPDL
,

tr2 := translate 〈ΣLTL, LTL-Ax〉 by ⁄�LTL→ FAΣLTL
,

ass := ⁄�LTL→ FA
Sen

ΣLTL
(Assert) ,

P2F := ⁄�PDL→ FAΣPDL
(〈ΣPDL,PDL-Ax〉),

L2F := ⁄�LTL→ FAΣLTL
(〈ΣLTL, LTL-Ax〉).

The derivation then proceeds as follows (we make extensive use of Prop. 3):

P2F ∪ L2F ∪ SPFA `FAΣFA
ass P2F ∪ tr2 ∪ SPFA ≡FA P2F ∪ L2F ∪ SPFA

[ρ-eq]
(1) P2F ∪ tr2 ∪ SPFA `FAΣFA

ass

(1) tr1 ∪ tr2 ∪ SPFA ≡FA P2F ∪ tr2 ∪ SPFA
[ρ-eq]

tr1 ∪ tr2 ∪ SPFA `FAΣFA
ass

The derivation is completed by proving P2F ∪L2F ∪SPFA `FAΣFA
ass. In doing

so, we loose track of the original specifications. Notice also that, since no
mechanism exist to build specifications from pieces coming from different
institutions, rule [ρ-entailment] is of no practical use in this example.

Scenario 2: Let us suppose that along the verification of the assertion in
Scenario 1, it becomes necessary to prove the fork algebra equation

1
′
St ;init + 1

′
St ;(Accelerate+Break+TurnOff)∗ ;engine is off = 1

′
St ;1 . (3)

According to the representation map presented in (Frias, 2002, Def. 6.25),
formula (3) corresponds toÿ�PDL→ FA

Sen

ΣPDL

(
init ⇒ [(Accelerate+Break+TurnOff)

∗
]engine is off

)
.

Since

〈ΣPDL,PDL-Ax〉 `PDL
ΣPDL

init ⇒ [(Accelerate+Break+TurnOff)
∗
]engine is off ,

we can proceed as follows:

〈ΣPDL,PDL-Ax〉 `PDL
ΣPDL

init ⇒ [(Accelerate+Break+TurnOff)∗]engine is off
[ρ-tran.]

translate 〈ΣPDL,PDL-Ax〉 by ÿ�PDL→ FAΣPDL

`FAΣFAÿ�PDL→ FA
Sen

ΣPDL
(init ⇒ [(Accelerate+Break+TurnOff)∗]engine is off)

Therefore, proving fork algebra properties that follow from some of the
constituent specifications, reduces to proving the properties in the corre-
sponding constituent institutions. Notice that such reasoning cannot be made
in Borzyszkowski’s calculus. The only rule that allows one to move between
(different) institutions is rule [ρ-entailment], and it only allows one to move
to a richer institution, which is not the case in this example.

Scenario 3: Let us go back to Scenario 1, but this time let us prove sequent

〈ΣPDL,PDL-Ax〉 ∪ 〈ΣLTL, LTL-Ax〉 ∪ SPFA `LTLΣLTL
Assert . (4)

Since union only applies to specifications from the same institution, sequent
(4) is ill-formed. Yet it serves the purpose of illustrating a common need
in software specification: proving a property in one institution using partial
knowledge coming from other institutions. This cannot be done using the
extension of Borzyszkowski’s calculus with rule [ρ-entailment].

Using the structuring constructs [ρ-translate] and [ρ-derive] we can rewrite
sequent (4) as follows (we use the same notation we used in Scenario 1):

derive from (tr1 ∪ tr2 ∪ SPFA) by ⁄�LTL→ FAΣLTL
`LTLΣLTL

Assert . (5)

References

Notice that this is a very appropriate way of reflecting the intention expressed
in sequent (4). From (5) we can proceed as follows:

tr1 ∪ tr2 ∪ SPFA `FAΣFA

⁄�LTL→ FAΣLTL
(Assert)

[ρ-derive]
derive from (tr1 ∪ tr2 ∪ SPFA) by ⁄�LTL→ FAΣLTL

`LTLΣLTL
Assert

Since ⁄�LTL→ FAΣLTL
(Assert) = ass, the upper sequent in the proof is the

same sequent we can find in Scenario 1. Therefore, the proof can proceed in
the same way.

5 Conclusions

We analyzed Borzyszkowski’s work on structured specifications and showed
that the conditions that a logical system must meet for having a complete cal-
culus are too restrictive and do not apply to some of the most popular logics
in software specification. A consequence of this restrictiveness is that mean-
ingful logical systems are not covered by Borzyszkowski’s calculus. In order
to overcome these limitations we presented a calculus for structured specifi-
cations whose completeness does not require interpolation or combinations of
properties that result in equally restrictive calculi. Borzyszkowski’s calculus
was proved complete for finite structured specifications. In logics possess-
ing (reflexive-)transitive closure, finite specifications may be useful but many
times are not sufficient. We have presented an example where infinite spec-
ifications are required. The appropriateness of our proposal is supported by
a methodological discussion on the relevance of having such calculus.

We introduced structure building operators suitable for structuring speci-
fications in an heterogeneous logical system based on the “universal” institu-
tion approach. We analyzed this proposal in the light of the existing work on
heterogeneous specifications, and concluded that it provides essential features
not shared by Borzyszkowski’s calculus. For instance, while Borzyszkowski’s
heterogeneous calculus allows one to borrow a calculus from a richer insti-
tution, we allow to move to the most suitable institution in which the proof
should be made (even if this “most suitable” institution is poorer than the
original one).

References

Abadi, M. (1988, August). The power of temporal proofs (Technical Report
No. 30). System Research Center, Palo Alto, CA 94301 USA: System
Research Center, Digital.

Abadi, M., & Manna, Z. (1990). Nonclausal deduction in first-order temporal
logic. Journal of the ACM , 37 (2), 279–317.

Astesiano, E., & Cerioli, M. (1991). Relationships between logical frame-
works. In M. Bidoit & C. Choppy (Eds.), Selected papers from the 8th
workshop on specification of abstract data types joint with the 3rd com-
pass workshop on recent trends in data type specification (Vol. 655, pp.
126–143). Springer-Verlag.

Bergstra, J. A., Heering, J., & Klint, P. (1990). Module algebra. Journal of
the ACM , 37 (2), 335–372.

Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The unified modeling
language user guide. Boston, MA, USA: Addison–Wesley Longman
Publishing Co., Inc.

Borzyszkowski, T. (1997, June). Completeness of a logical system for struc-
tured specifications. In F. Parisi-Presicce (Ed.), Proceedings of the
12th. international workshop on recent trends in algebraic development
techniques WADT 1997 (Vol. 1376, pp. 107–121). Tarquinia, Italy:
Springer-Verlag.

Borzyszkowski, T. (1998, April). Moving specification structures between
logical systems. In J. L. Fiadeiro (Ed.), Proceedings of the 13th. inter-
national workshop on recent trends in algebraic development techniques
WADT 1998 (Vol. 1589, pp. 16–30). Lisbon, Portugal: Springer-Verlag.

Borzyszkowski, T. (2002). Logical systems for structured specifications. The-
oretical Computer Science, 286 , 197–245.

Broy, M., & Cengarle, M. V. (2011). Uml formal semantics: lessons learned.
Software and System Modeling , 10 (4), 441–446.

Cengarle, M. V., Knapp, A., Tarlecki, A., & Wirsing, M. (2008). A hetero-
geneous approach to UML semantics. In P. Degano, R. DeNicola, &
J. Meseguer (Eds.), Proceedings of concurrency, graphs and models (es-
says dedicated to Ugo Montanari on the occasion of his 65th. birthday)
(pp. 383–402). Edinburgh, Scotland: Springer-Verlag.

Cerioli, M. (1993). Relationships between logical formalisms (Unpublished
doctoral dissertation). Dipartamento di informatica, Universitá degli
studi di Pisa. (Ph.D. Thesis: TD-4/93, Dottorato di ricerca in infor-
matica, Universitá di Pisa-Genova-Udine)

Cerioli, M., & Meseguer, J. (1997). May i borrow your logic? (transporting
logical structures along maps). Theoretical Computer Science, 173 (2),
311–347.

Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986). Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Systems,
8 (2), 244–263.

Craig, W. (1957). Three uses of the herbrand-gentzen theorem in relating
model theory and proof theory. Journal of Symbolic Logic, 22 (3), 269–
285.

de Lavalette, G. R., Kooi, B., & Verbrugge, R. (2008). Strong completeness

References

and limited canonicity for pdl. Journal of logic, language and informa-
tion, 17 (1), 69–87.

Diaconescu, R. (1998). Extra theory morphisms for institutions: logical se-
mantics for multi-paradigm languages. Applied Categorical Structures,
6 (4), 427–453.

Diaconescu, R. (2002). Grothendieck institutions. Applied Categorical Struc-
tures, 10 (4), 383–402.

Diaconescu, R. (Ed.). (2008). Institution-independent model theory (Vol. 2).
Birkhäuser.

Diaconescu, R., & Futatsugi, K. (2002). Logical foundations of CafeOBJ.
Theoretical Computer Science, 285 (2), 289–318.

Diaconescu, R., Goguen, J. A., & Stefaneas, P. (1993). Logical support
for modularisation. In G. Huet & G. Plotkin (Eds.), Proceedings of the
2nd. annual workshop on logical environments (pp. 83–130). Edinburgh,
Scotland: Cambridge University Press.

Dimitrakos, T., & Maibaum, T. S. E. (2000). On a generalized modularization
theorem. Information Processing Letters, 74 (1–2), 65–71.

Emerson, E. A., & Halpern, J. Y. (1985). Decision procedures and expres-
siveness in the temporal logic of branching time. Journal of Computer
and System Sciences, 30 (1), 1–24.

Emerson, E. A., & Halpern, J. Y. (1986). “sometimes” and “not never”
revisited: on branching versus linear time temporal logic. Journal of
the ACM , 33 (1), 151–178.

Fine, K. (1979). Failures of the interpolation lemma in quantified modal
logic. Journal of Symbolic Logic, 44 (2), 201–206.

Frias, M. F. (2002). Fork algebras in algebra, logic and computer science
(Vol. 2). Singapore: World Scientific Publishing Co.

Frias, M. F., Baum, G. A., & Haeberer, A. M. (1997). Fork algebras in
algebra, logic and computer science. Fundamenta Informaticae, 32 ,
1–25.

Frias, M. F., Baum, G. A., & Haeberer, A. M. (1998). Representability and
program construction within fork algebras. Logic Journal of the IGPL,
6 (2), 227–257.

Frias, M. F., Baum, G. A., & Maibaum, T. S. E. (2002, October). Inter-
pretability of first-order dynamic logic in a relational calculus. In H. de
Swart (Ed.), Proceedings of the 6th. conference on relational methods
in computer science (RelMiCS) - TARSKI (Vol. 2561, pp. 66–80). Ois-
terwijk, The Netherlands: Springer-Verlag.

Frias, M. F., Haeberer, A. M., & Veloso, P. A. (1997). A finite axiomatization
for fork algebras. Logic Journal of the IGPL, 5 (3), 311–319.

Frias, M. F., & Lopez Pombo, C. G. (2003, May). Time is on my side.
In R. Berghammer & B. Möller (Eds.), Proceedings of the 7th. con-
ference on relational methods in computer science (RelMiCS) - 2nd.
international workshop on applications of kleene algebra (pp. 105–111).
Malente, Germany.

38

Frias, M. F., & Lopez Pombo, C. G. (2006). Interpretability of first-order
linear temporal logics in fork algebras. Journal of Logic and Algebraic
Programming , 66 (2), 161–184.

Frias, M. F., & Orlowska, E. (1997). A proof system for fork algebras and its
applications to reasoning in logics based on intuitionism. In J. P. van
Bendegem (Ed.), Logique et analyse (Vol. 38, pp. 239–284). New Goff.

Frias, M. F., & Orlowska, E. (1998). Equational reasoning in non-classical
logics. Journal of Applied Non-classical Logics, 8 (1–2), 27–66.

Goguen, J. A., & Burstall, R. M. (1984). Introducing institutions. In
E. M. Clarke & D. Kozen (Eds.), Proceedings of the carnegie mellon
workshop on logic of programs (Vol. 184, pp. 221–256). Springer-Verlag.

Goguen, J. A., & Burstall, R. M. (1992). Institutions: abstract model theory
for specification and programming. Journal of the ACM , 39 (1), 95–
146.

Goguen, J. A., & Roşu, G. (2002). Institution morphisms. Formal Aspects
of Computing , 13 (3-5), 274–307.

Gyuris, V. (1997, November). A short proof of representability of fork alge-
bra. Theoretical Computer Science, 188 (1–2), 211–220.

Haeberer, A. M., & Veloso, P. A. (1991). Partial relations for program deriva-
tion: adequacy, inevitability and expressiveness. In Proceedings of IFIP
TC2 working conference on constructing programs from specifications
(pp. 310–352). North Holland.

Harel, D. (2001). Dynamic logic. In D. Gabbay & F. Guenthner (Eds.), Hand-
book of philosophical logic (second ed., Vol. 2, pp. 135–165). Kluwer
Academic Publishers.

Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge, MA,
USA: MIT Press.

Kowalski, T. (2002). Pdl has interpolation. Journal of Symbolic Logic, 67 (3),
933–946.

Kowalski, T. (2004). Retraction note for “pdl has interpolation”. Journal of
Symbolic Logic, 69 (3), 935.

Lopez Pombo, C. G. (2007). Fork algebras as a tool for reasoning across het-
erogeneous specifications (Unpublished doctoral dissertation). Depar-
tamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires. (Promotor: Marcelo F. Frias)

Lopez Pombo, C. G., & Frias, M. F. (2006, July, 5–8). Fork algebras as a
sufficiently rich universal institution. In M. Johnson & V. Vene (Eds.),
Proceedings of the 11th. international conference on algebraic method-
ology and software technology, AMAST 2006 (Vol. 4019, pp. 235–247).
Kuressaare, Estonia: Springer-Verlag.

Maksimova, L. (1990). Temporal logics with ”the next” operator do not have
interpolation. Sibirskii Matematicheskii Zhurnal , 32 (6), 109–113.

Manna, Z., & Pnueli, A. (1995). Temporal verification of reactive systems.
New York, NY, USA: Springer-Verlag.

Martini, A., & Wolter, U. (1997, June). A systematic study of mappings

References

between institutions. In F. Parisi-Presicce (Ed.), Proceedings of the
12th. international workshop on recent trends in algebraic development
techniques WADT 1997 (Vol. 1376, pp. 300–315). Tarquinia, Italy:
Springer-Verlag.

Martini, A., & Wolter, U. (1998, January). A single perspective on arrows
between institutions. In A. M. Haeberer (Ed.), Proceedings of the 7th.
international conference on algebraic methodology and software tech-
nology – AMAST 1998 (Vol. 1548, pp. 486–501). Amazonia, Brasil:
Springer-Verlag.

McLane, S. (1971). Categories for working mathematician. Berlin, Germany:
Springer-Verlag.

Meseguer, J. (1989). General logics. In H.-D. Ebbinghaus, J. Fernandez-
Prida, M. Garrido, D. Lascar, & M. R. Artalejo (Eds.), Proceedings of
the logic colloquium ’87 (Vol. 129, pp. 275–329). Granada, Spain: North
Holland.

Mossakowski, T., Maeder, C., & Luttich, K. (2007, April). The heterogeneous
tool set, Hets. In O. Grumberg & M. Huth (Eds.), Proceedings of the
13th. international conference on tools and algorithms for the construc-
tion and analysis of systems (TACAS 2007) (Vol. 4424, pp. 519–522).
Braga, Portugal: Springer-Verlag.

Mossakowski, T., & Tarlecki, A. (2009, June). Heterogeneous logical environ-
ments for distributed specifications. In A. Corradini & U. Montanari
(Eds.), Proceedings of 19th international workshop in algebraic develop-
ment techniques (Vol. 5486, p. 266-289). Pisa, Italy: Springer-Verlag.

Mossakowski, T., & Tarlecki, A. (2014). A relatively complete calculus for
structured heterogeneous specifications. In A. Muscholl (Ed.), Proceed-
ings of 17th international conference on foundations of software science
and computation structures (fossacs 2014), held as part of the european
joint conferences on theory and practice of software (Vol. 8412, pp.
441–456). Springer-Verlag.

Orlowska, E., & Golińska-Pilarek, J. (2011). Dual tableaux: Foundations,
methodology, case studies (Vol. 33; R. Wójcicki, Ed.). Springer-Verlag.

Parisi-Presicce, F. (Ed.). (1997, June). 12th. international workshop on recent
trends in algebraic development techniques (WADT’97) (Vol. 1376).
Tarquinia, Italy: Springer-Verlag.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM , 15 (12), 1053–1058. (See also
(Parnas, 2002))

Parnas, D. L. (1978, May). Designing software for ease of extension and
contraction. In M. V. Wilkes, L. Belady, J. Su, H. Hayman, & P. En-
slow (Eds.), Proceedings of the 3rd. international conference on software
engineering (pp. 264–277). Atlanta, Georgia, USA: IEEE Computer So-
ciety. (See also (Parnas, 1979))

Parnas, D. L. (1979). Designing software for ease of extension and contrac-
tion. IEEE Transactions on Software Engineering , 5 (2), 128–138. (See

also (Parnas, 1978))
Parnas, D. L. (2002). On the criteria to be used in decomposing systems

into modules. In M. Broy & E. Denert (Eds.), Software pioneers: con-
tributions to software engineering (pp. 411–427). New York: Springer-
Verlag. (See also (Parnas, 1972))

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of 18th.
annual ieee symposium on foundations of computer science (pp. 46–57).
Los Alamitos, CA, USA: IEEE Computer Society.

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theo-
retical Computer Science, 13 (1), 45–60.

Reynolds, M. (2001). An axiomatization of full computational tree logic.
Journal of Symbolic Logic, 66 (3), 1011–1057.

Roşu, G., & Goguen, J. A. (2000). On equational craig interpolation. Journal
of Universal Computer Science, 6 (1), 194–200.

Sannella, D., & Tarlecki, A. (1988). Specifications in an arbitrary institution.
Information and computation, 76 (2–3), 165–210.

Sannella, D., & Tarlecki, A. (2012). Foundations of algebraic specification
and formal software development. Springer-Verlag.

Sannella, D., & Tarlecki, A. (2014). Property-oriented semantics of structured
specifications. Mathematical Structures in Computer Science, 24 (2).

Tarlecki, A. (1986). Bits and pieces of the theory of institutions. In D. H. Pitt,
S. Abramsky, A. Poigné, & D. E. Rydeheard (Eds.), Proceedings of
the category theory and computer programming, tutorial and workshop
(Vol. 240, pp. 334–363). Springer-Verlag.

Tarlecki, A. (1996). Moving between logical systems. In M. Haveraaen,
O. Owe, & O.-J. Dahl (Eds.), Selected papers from the 11th workshop on
specification of abstract data types joint with the 8th compass workshop
on recent trends in data type specification (Vol. 1130, pp. 478–502).
Springer-Verlag.

Tarlecki, A. (2000). Towards heterogeneous specifications. In D. Gabbay &
M. de Rijke (Eds.), Frontiers of combining systems (Vol. 2, pp. 337–
360). Research Studies Press.

Tarlecki, A. (2003, August). Abstract specification theory: an overview. In
M. Broy & M. Pizka (Eds.), Proceedings of the nato advanced study
institute on models, algebras and logic of engineering software (pp. 43–
79). Marktoberdorf, Germany: IOS Press.

Wirsing, M. (1991, July–August). Structured specifications: Syntax, seman-
tics, and proof calculus. In F. L. Bauer, W. Brauer, & H. Schwichten-
berg (Eds.), Proceedings of the nato advanced study institute on logic
and algebra of specifications (pp. 411–442). Marktoberdorf, Germany:
IOS Press.

https://www.researchgate.net/publication/329498249

