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Abstract—In this paper we study the stability of nonlinear
and time-varying switched systems under restricted switch-
ing. We approach the problem by decomposing the sys-
tem dynamics into a nominal-like part and a perturbation-
like one. Most stability results for perturbed systems are
based on the use of strong Lyapunov functions, i.e. func-
tions of time and state whose total time derivative along
the nominal system trajectories is bounded by a negative
definite function of the state. However, switched systems
under restricted switching may not admit strong Lyapunov
functions, even when asymptotic stability is uniform over
the set of switching signals considered. The main contri-
bution of the current paper consists in providing stability
results that are based on the stability of the nominal-like
part of the system and require only a weak Lyapunov func-
tion. These results may have wider applicability than results
based on strong Lyapunov functions. The results provided
follow two lines. First, we give very general global uniform
asymptotic stability results under reasonable boundedness
conditions on the functions that define the dynamics of the
nominal-like and the perturbation-like parts of the system.
Second, we provide input-to-state stability (ISS) results for
the case when the nominal-like part is switched linear-time-
varying. We provide two types of ISS results: standard ISS
that involves the essential supremum norm of the input and
a modified ISS that involves a power-type norm.

Index Terms—Asymptotic stability, input-to-state sta-
bility, Lyapunov methods, nonlinear dynamical systems,
switched systems, time-varying systems.

I. INTRODUCTION

SWITCHED systems appear naturally in many engineering
instances or as abstractions of more complicated systems

[1]–[4]. The stability properties of switched systems have been
extensively investigated in the last two decades (see [1], [2],
[5]–[7] and references therein).

Lyapunov functions are central tools in the study of stabil-
ity of nonautonomous (non-switched) nonlinear systems (see,
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e.g. [8]–[10]). Loosely speaking, Lyapunov functions can be
classified as either strong or weak, depending on whether their
mere existence is enough to ensure uniform asymptotic stabil-
ity (strong) or just uniform Lyapunov stability (weak). In some
cases, a strong Lyapunov function can be constructed if a weak
one is available [11]–[14]. Although a weak Lyapunov func-
tion by itself gives no asymptotic stability guarantee, it can be
supplemented with extensions of LaSalle’s invariance principle
[15] (see [16] and references therein) or other approaches (such
as those based on persistence of excitation [17]–[19]), in order
to yield asymptotic stability.

For switched systems, the existence of a strong Lyapunov
function common to all of the subsystems implies that the
switched system is globally uniformly asymptotically stable
(GUAS) under arbitrary switching (the converse holds for time-
invariant switched systems [20]). As a consequence, no strong
Lyapunov function exists for a switched system that is GUAS
for switching signals within some proper class but not GUAS
under arbitrary switching. In many of these cases, however, it is
indeed possible to find a common weak Lyapunov function (see
the interesting discussion in Example 2 in Section VI of [21]).
This fact motivated the development of several stability results
for switched time-invariant systems: extensions of LaSalle’s in-
variance principle [22]–[29] and other approaches [30]–[33].
To the best of our knowledge, results based on weak Lyapunov
functions for switched time-varying nonlinear systems can only
be found in [34]–[36], where the concept of persistence of ex-
citation plays a fundamental role.

For systems with inputs/disturbances, one of the most use-
ful formulations is given by the Input-to-State Stability (ISS)
property [37], [38]. As for ISS of switched nonlinear systems
under arbitrary switching, uniform (with respect to the switch-
ing signals) ISS is equivalent to the existence of a common
ISS-Lyapunov function [39]. When no common ISS-Lyapunov
function exists but the ISS property holds for each component
subsystem, results for establishing ISS of the switched system
were given in [40] for dwell-time switching and in [41] for aver-
age dwell-time switching. Recently, results for establishing ISS
of switched systems where the ISS property does not necessar-
ily hold for all subsystems have been given in [42], where the
existence of an ISS-Lyapunov function for each ISS subsystem
is assumed.

In the first part of this paper we address the following problem:
assuming the existence of a weak common Lyapunov function
V for a switched time-varying nonlinear system with switch-
ing signals belonging to some class S, determine conditions



under which the system is globally uniformly asymptotically
stable with respect to S (GUAS w.r.t. S, see Definition 2.1 in
Section II). We will prove that under reasonable boundedness
conditions, the switched system is GUAS w.r.t. S when the dy-
namics of each component subsystem can be decomposed into a
switched time-varying part (denoted the nominal switched sys-
tem) that is GUAS, and a switched time-varying part (denoted
the perturbation) that satisfies a very mild vanishing property.
Although such an approach resembles the classical one for per-
turbed systems (e.g. Chapter 9 of [8]), the techniques used in
this paper differ greatly from standard ones, since we do not
assume V to be a Lyapunov function for the nominal switched
system.

In the second part of the paper we consider the following
problem: determine conditions under which a switched time-
varying nonlinear system with inputs/disturbances is ISS, uni-
formly with respect to switching signals in some class S (see
Definition 4.1 in Section IV). We will give results for the case in
which the zero-input switched system dynamics can be decom-
posed into a switched linear-time-varying (LTV) (the nominal
system) part, which is GUAS (and hence globally uniformly
exponentially stable) with respect to S, and a switched time-
varying nonlinear one (the perturbation) which satisfies specific
bounds. Once again, our approach departs from the standard one
since no common ISS-Lyapunov function is assumed to exist
for the nominal switched system. In addition to the standard ISS
concept, we also provide results employing a power-type norm
instead of the supremum norm. This ISS variant is stronger and
provides a better description of the behaviour of the system than
the standard one.

The remainder of the paper is organized as follows. In
Section II, we state the problems addressed and introduce some
of the concepts and assumptions employed. Our main results
are contained in Sections III (GUAS) and IV (ISS). The main
body of the proofs of our main results are given in Section V and
some concluding remarks in Section VI. The Appendix contains
supplementary proofs for our ISS results.

Notation: N, N0 , R, R≥0 and R>0 denote the natural num-
bers, nonnegative integers, reals, nonnegative reals, and posi-
tive reals, respectively. |x| denotes the Euclidean norm of any
x ∈ Rp . ‖A‖ and A′ denote, respectively, the induced operator
norm and the transpose of any matrix A ∈ Rm×p . If g : R≥0 →
Rp , τ ≥ 0 and I ⊂ R≥0 is an interval, then gτ = g(· + τ) and
gI : R≥0 → Rp is such that gI (s) = g(s) if s ∈ I and gI (s) = 0
otherwise. For any interval I ⊂ R, L1(I) is the set of Lebesgue
integrable functions f : I → R. For any n ∈ N, Un and L∞

n

denote the sets of all the locally essentially bounded functions
and respectively the set of all the essentially bounded func-
tions u : R≥0 → Rn . We note that L∞

n ⊂ Un . A Carathéodory
function is a function h : R≥0 × Rn → Rn such that h(t, ·)
is continuous for every t ≥ 0 and h(·, ξ) is Lebesgue measur-
able for every ξ ∈ Rn . We write α ∈ K if α : R≥0 → R≥0 is
continuous, strictly increasing and α(0) = 0, and α ∈ K∞ if,
in addition, α is unbounded. Finally, β : R≥0 × R≥0 → R≥0
is a function of class KL if β(·, t) ∈ K∞ for any t ≥ 0 and,
for any fixed r ≥ 0, β(r, t) monotonically decreases to zero
as t → ∞.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the switched time-varying nonlinear system

ẋ = f(t, x, σ) (1)

where x takes values in Rn , σ : R≥0 → Γ, with Γ an index
set, is a switching signal, i.e., σ is piecewise constant (it has
at most a finite number of jumps in each compact interval)
and continuous from the right (considering the discrete topol-
ogy in Γ), f : R≥0 × Rn × Γ → Rn , and fi(·, ·) = f(·, ·, i) is
a Carathéodory function for every i ∈ Γ. Given a family S of
switching signals, we say that (1) is forward complete w.r.t. S
if for every t0 ≥ 0, x0 ∈ Rn and σ ∈ S, any maximal solution
x of (1) corresponding to σ and such that x(t0) = x0 is defined
for all t ≥ t0 . Along the paper we will employ the following
definition of global uniform asymptotic stability w.r.t. S, where
uniformity is understood in the strongest possible sense, i.e.
w.r.t. initial times and w.r.t. the switching signals in S.

Definition 2.1: System (1) is GUAS w.r.t. a family S of
switching signals if it is forward complete w.r.t. S and there
exists β ∈ KL such that for every t0 ≥ 0, x0 ∈ Rn and σ ∈ S,
any maximal solution x of (1) corresponding to σ such that
x(t0) = x0 satisfies

|x(t)| ≤ β(|x0 |, t − t0) ∀t ≥ t0 . (2)

Remark 2.1: The GUAS w.r.t. S property can be defined
equivalently in the classical ε − δ form, as it is done, for exam-
ple, in [34, Defn. 1]. The equivalence between these definitions
can be proved with the same technique used to prove Proposi-
tion 2.5 in [43].

Throughout the paper, we require the following standing as-
sumptions.

Assumption 1: The function f in (1) can be written as

f(t, ξ, i) = f̂(t, ξ, i) + g(t, ξ, i), (3)

where f̂i(·, ·) = f̂(·, ·, i) is a Carathéodory function for every
i ∈ Γ, f̂(t, ·, i) is locally Lipschitz, uniformly in t and in i, i.e. for
all compact B ⊂ Rn , there exists L ≥ 0 such that |f̂(t, ξ, i) −
f̂(t, ξ′, i)| ≤ L|ξ − ξ′| for all ξ, ξ′ ∈ B, all t ≥ 0 and all i ∈ Γ,
and the switched system (4) is GUAS w.r.t. S.

ẋ = f̂(t, x, σ) (4)

For ease of reference, f̂ will be called the nominal system
function and g the perturbation term. The nominal system (4)
is often a ‘simplified’ version of the system (1) for which the
GUAS w.r.t. S property is easier to prove.

Assumption 2: There exists a common weak Lyapunov func-
tion V for (1), i.e. V : R≥0 × Rn → R is continuously differ-
entiable, and

i) there exist φ1 , φ2 ∈ K∞ such that

φ1(|ξ|) ≤ V (t, ξ) ≤ φ2(|ξ|), ∀ξ ∈ Rn , ∀t ≥ 0; (5)

ii) for all i ∈ Γ, all t ≥ 0 and all ξ ∈ Rn ,

V̇i(t, ξ) :=
∂V (t, ξ)

∂t
+

∂V (t, ξ)
∂ξ

fi(t, ξ) ≤ −ηi(t, ξ),(6)



where ηi : R≥0 × Rn → R≥0 is a Carathéodory function
for every i ∈ Γ.

Remark 2.2: Without loss of generality, we may assume
that the function η : R≥0 × Rn × Γ → R in (7) is bounded on
[0, T ] × B × Γ for every T ≥ 0 and every compact set B ⊂ Rn .
Otherwise, just replace ηi by min{ηi(t, ξ), |ξ|2}. ◦

η(t, ξ, i) := ηi(t, ξ) (7)

Remark 2.3: It must be pointed out that the function V in
Assumption 2 is not necessarily a Lyapunov function (be it
weak or strong) for the nominal system (4). ◦

In Section III, we give GUAS results for the switched sys-
tem (1), based on weak Lyapunov functions. In Section IV, we
consider system (1) under the effect of disturbances:

ẋ = f(t, x, σ) + G(t, x, σ)u, (8)

where G : R≥0 × Rn × Γ → Rn×m , every column of G(·, ·, i)
is a Carathéodory function for every i ∈ Γ, and u represents
the disturbance input. By ‘input’ we mean a function u ∈ Um .
We will give conditions to establish ISS of (8) uniformly over
switching signals in a given set S when only a weak Lyapunov
function is available for the zero-input system (1).

III. GLOBAL UNIFORM ASYMPTOTIC STABILITY

This section focuses on GUAS results for switched nonlinear
time-varying systems, based on weak Lyapunov functions. Re-
sults are given by imposing additional assumptions on the nom-
inal system function f̂ and on the perturbation term g appearing
in Assumption 1. We will require the following boundedness
condition.

Definition 3.1: A function h : R≥0 × Rn × Γ → Rp is uni-
formly bounded if h is bounded on R≥0 × B × Γ for every
compact set B ⊂ Rn .

Assumption 3: The nominal system function f̂ and the per-
turbation term g in (3) are uniformly bounded.

We are now ready to formulate our main GUAS result.
Theorem 3.1 Consider (1) and a family S of switching sig-

nals, for which Assumptions 1 to 3 hold. In addition, suppose
that the functions g in Assumption 1 and η in (7) satisfy the
following condition:

C) If {(tk , ξk , ik )} is a sequence in R≥0 × Rn × Γ such
that tk → ∞ and for some 0 < ε ≤ 1, ε ≤ |ξk | ≤
1/ε for all k then limk→∞ η(tk , ξk , ik ) = 0 =⇒
limk→∞ g(tk , ξk , ik ) = 0.

Then, (1) is GUAS w.r.t. S.
The proof of Theorem 3.1 requires the concept of output-

persistent excitation introduced in [34]. A particular case of this
definition directly adapted to our problem is given next.

Definition 3.2: Let f be as in (1) and let h : R≥0 × Rn ×
Γ → Rp be such that for every continuous function z : R≥0 →
Rn and for every switching signal σ ∈ S, h(·, z(·), σ(·)) is
Lebesgue measurable and locally essentially bounded. The pair
(h, f) is output-persistently exciting (output-PE) w.r.t. S if for
every 0 < ε ≤ 1 there exist T = T (ε) > 0 and r = r(ε) > 0
such that for every solution x of (1) corresponding to a switch-
ing signal σ ∈ S and every t ≥ 0 the following implication

holds

ε ≤ |x(τ)| ≤ 1
ε
, ∀τ ∈ [t, t + T ] =⇒

∫ t+T

t

|h(τ, x(τ), σ(τ))|2 dτ ≥ r. (9)

Lemma 3.1: Under the assumptions of Theorem 3.1, the pair
(h, f), with h : R≥0 × Rn × Γ → R defined via

h(t, ξ, i) =
√

η(t, ξ, i)

with η as in (7), is output-PE w.r.t. S.
Note that h in Lemma 3.1 is well defined and satisfies the

measurability and local essential boundedness conditions in the
first part of Definition 3.2 due to Assumption 2, Remark 2.2,
and the fact that a switching signal is piecewise constant. The
proof of Lemma 3.1 is given in Section V-A.

Theorem 3.1 is a straightforward consequence of Lemma 3.1
and the following result, which is a corollary of Theorem 2
in [34].

Theorem 3.2: Consider (1) and a family S of switching sig-
nals. Let Assumption 2 hold and the pair (h, f), with h as in
Lemma 3.1, be output-PE. Then (1) is GUAS w.r.t. S.

Proof: The theorem readily follows from Theorem 2 in [34],
since the hypotheses of that theorem are fulfilled with Φ the
set of all the pairs (x, σ) with x a maximal solution of (1)
corresponding to σ ∈ S and the covering χ = {χi}i∈Γ , with
χi = Rn for all i ∈ Γ. In fact, Φ is invariant for χ, V is a
piecewise Lyapunov function w.r.t. Φ which verifies (17) in
[34] and the pair (h, f) is output-PE. �

Theorem 3.1 is established by applying an existing result,
namely Theorem 2 of [34]. The main difficulty in the appli-
cation of the latter result lies in showing that the output-PE
assumption holds. Lemma 3.1 is thus the main technical tool.
The proof of Lemma 3.1 requires the concept of limiting solu-
tions of switched systems introduced in [34] and is inspired by
the methods used in [16]. See Section V-A for details.

Example 3.1: Consider the switched system (1) with two
modes ẋ = fi(t, x), i = 1, 2, where for all t ≥ 0 and ξ ∈ R2

fi(t, ξ) =

[
hi,1(t)ξ1 + ξ2

−ξ3
1 − hi,2(t)ξ2

]
i = 1, 2, (10)

and for i = 1, 2, hi,1 ∈ L1(R≥0), it is bounded and
limt→∞ hi,1(t) = 0, and hi,2 is measurable, bounded and
lim inf t→∞ hi,2(t) = ai > 0. We claim that (1) is GUAS for
arbitrary switching, i.e. it is GUAS w.r.t. the family of all the
switching signals. To show that, consider for i = 1, 2

f̂i(t, ξ) = f̄(ξ) =

[
ξ2

−ξ3
1 − aξ2

]

where a = min{a1/2, a2/2}, and

gi(t, ξ) =

[
hi,1(t)ξ1

(a − hi,2(t))ξ2

]
.

Note that for i = 1, 2 the functions f̂ and g defined
by f̂(t, ξ, i) = f̂i(t, ξ) and g(t, ξ, i) = gi(t, ξ) are uniformly



bounded. Also, note that (4) is GUAS for arbitrary switching
since ẋ = f̄(x) is a non-switched GUAS system. This statement
follows readily from LaSalle’s invariance principle by using the
weak Lyapunov function W (ξ) = ξ4

1 + 2ξ2
2 .

Let Ta > 0 be such that hi,2(t) ≥ a for all t ≥ Ta and let
ρ : R≥0 → R≥0 be any uniformly continuous function, such
that ρ ∈ L1(R≥0) and

a) for all 0 ≤ t ≤ Ta

ρ(t) ≥ max
{|h1,1(t)|, |h2,1(t)|,

|a − h1,2(t)|, |a − h2,2(t)|
}

+ e−t

b) ρ(t) ≥ max{|h1,1(t)|, |h2,1(t)|} + e−t for all t ≥ Ta .

Define γ(t) = e−
∫ t

0 4ρ(s) ds and V (t, ξ) = γ(t)W (ξ). We
have that γ is continuous, decreasing and limt→∞ γ(t) =
e−

∫ ∞
0 4ρ(s) ds = γ̄ > 0 and that γ̇(t) = −4ρ(t)γ(t). Since ρ is

uniformly continuous and belongs to L1(R≥0), due to Barbalat’s
Lemma ρ(t) → 0 as t → ∞. Then limt→∞ γ̇(t) = 0. It is easy
to see that V satisfies (5) and that

V̇i(t, ξ) ≤ −ηi(t, ξ) ≤ 0, ∀t ≥ 0, i = 1, 2,

with η1(t, ξ) = η2(t, ξ) = 4γ(t)[e−tξ4
1 + a ξ2

2 ]. Note that the
function η defined by η(t, ξ, i) = ηi(t, ξ) is uniformly bounded.

Finally, gi satisfies condition (C) in Theorem 3.1. In fact, if
η(tk , ξk , ik ) → 0, with tk → ∞ and ε ≤ |ξk | ≤ 1/ε, for some
ε ∈ (0, 1], then, if ξk = [ξ1

k ξ2
k ]′, we have ξ2

k → 0. In this case,

g(tk , ξk , ik ) = [hik ,1(tk )ξ1
k (a − hik ,2(tk ))ξ2

k ]T → 0,

since hik ,1(tk ) → 0, ξ2
k → 0 and {ξ1

k} and {hik ,2(tk )} are
bounded and {|a − hik ,2(tk )|} is eventually bounded from be-
low by a > 0.

Therefore the conditions of Theorem 3.1 are satisfied and
hence the switched system (1) is GUAS for arbitrary switching.
We note that in this example, we have that V̇i(t, ξ) < 0 for
all t ≥ 0 and ξ = 0. Nevertheless, V is not a strong Lyapunov
function for the switched system since there do not exist positive
definite functions μi such that V̇i(t, ξ) ≤ −μi(ξ) for all t ≥ 0,
for all ξ ∈ R2 and for i = 1, 2.

Example 3.2: Consider the ideal switched model of the semi-
quasi-Z-source inverter [44], connected to a cubic-law time-
varying resistive load and under zero input voltage:

ẋ = f(t, x, σ) = Ãσx − e4 g̃σ (t, e′4x),

e4 = [0 0 0 1]′, P = diag(L1 , L2 , C1 , C2)

Ã1 = P−1

⎡
⎢⎢⎣

0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

⎤
⎥⎥⎦ ,

Ã2 = P−1

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ ,

g̃i(t, v) =
Gi(t)
C2

v3 , Gi(t) = | cos(t2 + ai)| + εi ,

for some ai ∈ R and εi > 0, for i = 1, 2. The positive constants
L1 , L2 , C1 , C2 represent the inverter inductance and capaci-
tance values. Irrespective of the load function g̃i , stability of
this inverter model can only be ensured by constantly switch-
ing between modes 1 and 2, and imposing additional restric-
tions on the time spent in mode 2 [45]. Let S denote the set
of switching signals σ : R≥0 → {1, 2} where each mode has
minimum (dmin) and maximum (dmax) dwell-times satisfying
0 < dmin < dmax < π

√
L1C1 . The time-invariant positive def-

inite quadratic function V (t, x) = V̄ (x) = 1
2 x′Px satisfies (5)

with φ1(s) = λmins2 and φ2(s) = λmaxs
2 with λmin , λmax the

minimum and maximum eigenvalues of P/2. The function V
is a common weak Lyapunov function for this system and As-
sumption 2 is satisfied, since

V̇i(t, ξ) = ξ′PÃiξ − ξ′C2e4 g̃i(t, e′4ξ)

= −Gi(t)(e′4ξ)
4 =: −ηi(t, ξ) ≤ 0.

Note that PÃi is skew-symmetric for i = 1, 2 and hence
ξ′PÃiξ = 0 for all ξ ∈ Rn . The switched-linear system ẋ =
Ãσx is thus lossless, since ∂

∂ξ V̄ (ξ)Ãiξ ≡ 0. As a consequence,
the evident decomposition of the system into the form (3)
with nominal system function f̂(t, ξ, i) = Ãiξ is not useful
because the GUAS w.r.t. S requirement of Assumption 1 is
not satisfied. Let K > 0 and put the system into the form
ẋ = Aσx + gσ (t, x), with, for i = 1, 2,

Ai = Ãi − Ke4e
′
4 , gi(t, ξ) = −e4 [g̃i(t, e′4ξ) − Ke′4ξ].

Following the same lines as in Lemma 1 and Theorem 2 of [44],
we can show that the switched-linear system ẋ = Aσx is GUAS
w.r.t. S. Assumption 1 is now satisfied by decomposing the
system into the form (3) with f̂(t, ξ, i) = Aiξ and g(t, ξ, i) =
gi(t, ξ). Note however that V is not a strong Lyapunov func-
tion for the nominal system and no such function exists in this
case. We have |gi(t, ξ)| ≤ |g̃i(t, e′4ξ)| + K|e′4ξ|, |g̃i(t, e′4ξ)| ≤
(1 + εi)|e′4ξ|3/C2 , and Gi(t) ≥ εi > 0. Then, Assumption 3 is
satisfied. In addition, εi(e′4ξ)

4 ≤ ηi(t, ξ) ≤ (1 + εi)(e′4ξ)
4 for

all t and hence Condition (C) of Theorem 3.1 is satisfied. By
Theorem 3.1, the system is GUAS w.r.t. S. ◦

Remark 3.1: Given a switched system (1) which satisfies
Assumption 2 and a family of switching signals S, two issues
arise in the application of Theorem 3.1: a) how to decompose the
switched system into suitable nominal and perturbation parts and
b) how to prove that the nominal part is GUAS w.r.t. S. Usually,
the nominal system is obtained by replacing f by some function
f̂ which is simpler than f and such that, roughly speaking, f −
f̂ → 0 when the virtual output h =

√
η → 0. This step should

be carefully performed, since if f̂ is too simple it could result in a
non GUAS nominal part. For example, if in Example 3.1 we take
f̂i = [0 − ξ3

1 ]′ for i = 1, 2, then the perturbed terms satisfy (C)
in Theorem 3.1 but the nominal system is not GUAS w.r.t. any
family of switching signals. The same occurs in Example 3.2 if
we take as the nominal terms: f̂i(t, ξ) = Ãiξ, for i = 1, 2.

Once the decomposition of the system is performed, the
GUAS of the nominal part w.r.t. S may be proved by means
of existing results or ad hoc methods as, e.g., in [45]. There are



systems for which no useful decomposition is possible, save for
the trivial one f̂ = f and g = 0. The latter happens, e.g., for the
switched system (29) in Section V of [36], which is GUAS for
arbitrary switching. ◦

IV. INPUT-TO-STATE STABILITY

In this section, we consider system (8) and provide conditions
for the ISS w.r.t. the disturbance input u, uniform over switching
signals in a given setS. We say that (8) is forward complete w.r.t.
S if for every initial time t0 ≥ 0, initial state x0 ∈ R, switching
signal σ ∈ S and input u ∈ Um , every maximal solution x of (8)
corresponding to σ and u that satisfies x(t0) = x0 , is defined for
all t ≥ t0 . Besides standard ISS involving the essential supre-
mum norm ‖u‖∞ = ess supt≥0 |u(t)|, we will also consider the
following family of norms, which we will collectively name
the power norms. Given p ∈ [1,∞) and τ > 0, we define for
u ∈ Um :

‖u‖p,τ := sup
t≥0

(∫ t+τ

t

|u(s)|p ds

)1/p

. (11)

We employ the following definitions.
Definition 4.1: Let S be a family of switching signals. Sys-

tem (8) is input-to-state stable (ISS) uniformly w.r.t. S if it is
forward complete w.r.t. S and there exist β ∈ KL and ν ∈ K
such that for every t0 ≥ 0, x0 ∈ Rn and maximal solution x
of (8) corresponding to any switching signal σ ∈ S, any input
u ∈ Um , and such that x(t0) = x0 , the following holds:

|x(t)| ≤ β(|x0 |, t − t0) + ν(‖u‖∞) ∀t ≥ t0 . (12)

Definition 4.2: Let S be a family of switching signals. Sys-
tem (8) is power ISS (pISS) uniformly w.r.t. S if it is forward
complete w.r.t. S and there exist τ > 0, β ∈ KL and ν ∈ K
such that for every t0 ≥ 0, x0 ∈ Rn and maximal solution x
of (8) corresponding to any switching signal σ ∈ S, any input
u ∈ Um , and such that x(t0) = x0 , then

|x(t)| ≤ β(|x0 |, t − t0) + ν(‖u‖1,τ ) ∀t ≥ t0 . (13)

Remark 4.1: By the Markov and causality properties, equiv-
alent definitions of ISS and pISS are obtained if u in (12) and
(13) is replaced by u[t0 ,t] . ◦

Remark 4.2: By means of techniques analogous to those
used for proving Lemma 2.7 of [46], one can prove that system
(8) is ISS (pISS) uniformly w.r.t. S if and only if the following
conditions hold with ‖ · ‖ = ‖ · ‖∞ (‖ · ‖ = ‖ · ‖1,τ ):

i) For every T > 0, r > 0 and s > 0 there exists C > 0
such that every maximal solution x of (8) corresponding
to any switching signal σ ∈ S, any input u such that
‖u‖ ≤ s, and any t0 ≥ 0 for which |x(t0)| ≤ r, satisfies
|x(t)| ≤ C for all t ∈ [t0 , t0 + T ].

ii) For each ε > 0 there exists δ > 0 such that every max-
imal solution x of (8) corresponding to any switching
signal σ ∈ S, any input u such that ‖u‖ ≤ δ, and any
t0 ≥ 0 for which |x(t0)| ≤ δ, satisfies |x(t)| ≤ ε for all
t ≥ t0 .

iii) There exists ν ∈ K such that, for any r ≥ ε > 0, there
is a T > 0 so that for every maximal solution x of (8)

corresponding to any switching signal σ ∈ S, any input
u, and any t0 ≥ 0 for which |x(t0)| ≤ r, then

|x(t)| ≤ ε + ν(‖u‖) ∀t ≥ t0 + T. ◦
Remark 4.3: The following assertions hold.

i) Given positive real numbers τ and τ ′, there exists a con-
stant k = k(τ, τ ′) such that ‖u‖1,τ ≤ k‖u‖1,τ ′ . In con-
sequence, if ‖u‖1,τ is finite for some τ > 0, then ‖u‖1,τ ′

is finite for every τ ′ > 0.
ii) Taking into account that for p > 1, τ > 0 and ev-

ery t ≥ 0,
∫ t+τ

t |u(s)| ds ≤ τ 1/q (
∫ t+τ

t |u(s)|p ds)1/p ,
where q satisfies 1/p + 1/q = 1, we have that ‖u‖1,τ ≤
τ 1/q‖u‖p,τ .

iii) Since for every τ > 0 and every t ≥ 0,
∫ t+τ

t |u(s)| ds ≤
τ ‖u[t,t+τ ]‖∞ ≤ τ‖u‖∞, it follows that ‖u‖1,τ ≤
τ‖u‖∞.

iv) For t ≥ t0 ≥ 0, we have that ‖u[t0 ,t]‖p,τ is finite for all
p ≥ 1 and all τ > 0. In addition, the norm inequalities
in the previous items hold when replacing u by u[t0 ,t] . ◦

Remark 4.4:
i) From Remark 4.3i) we have that if (13) holds for some

norm ‖ · ‖1,τ , then it holds for any norm ‖ · ‖1,τ ′ if we
replace ν by ν̃(r) := ν(k(τ, τ ′)r).

ii) It follows from Remark 4.3ii) that if system (8) is pISS
uniformly w.r.t. S, then (13) holds with ‖u‖p,τ instead
‖u‖1,τ and with ν̃(r) := ν(τ 1/q r) instead of ν. ◦

Remark 4.5: Due to Remark 4.3iii), if (8) is pISS uniformly
w.r.t. S then it is ISS uniformly w.r.t. S. In addition, the bound
(13) gives a better description of the behavior of the switched
system than the bound (12). For example, consider an input u
unbounded on [0,∞) and whose integrals on any interval of
length τ are uniformly bounded. Then (12) does not give useful
information while (13) implies that the states remain bounded
and converge to a ball centered at the origin. ◦

Assumption 4 below is somewhat weaker than requiring As-
sumption 1 and that the nominal part of the zero-input system
(1) be switched LTV.

Assumption 4 (Switched LTV GUAS Nominal System) The
function f in (8) can be written as in (3), where the nominal
system function f̂ : R≥0 × Rn × Γ → Rn satisfies

f̂(t, ξ, i) = A(t, i)ξ, (14)

with A(t, i) ∈ Rn×n measurable in t ≥ 0 for every i ∈ Γ, and
for every T ≥ 0 there exists M > 0 such that ‖A(t, i)‖ ≤ M
for all t ∈ [0, T ] and all i ∈ Γ. In addition, the nominal system
ẋ = A(t, σ)x is GUAS w.r.t. S.

Remark 4.6: Consider Assumption 4, and let Φ(t, s, σ) de-
note the state transition matrix of the GUAS w.r.t. S LTV system
ẋ = A(t, σ)x, satisfying Φ(s, s, σ) = I . Following similar lines
as in, e.g., [8, Theorem 4.11], it follows that there exist positive
constants Ψ and λ such that

‖Φ(t, s, σ)‖ ≤ Ψe−λ(t−s) , ∀t ≥ s ≥ 0,∀σ ∈ S. (15)

We require the following strengthened version of Assump-
tion 2 and Condition (C) of Theorem 3.1.

Assumption 5: Let Assumption 2 hold. Suppose that there
exist a nondecreasing and Borel measurable function ω :



R≥0 → R≥0 , such that ω(s) > 0 if s > 0, a continuous func-
tion φ3 : R≥0 → R≥0 such that φ3(0) = 0 and a continuous and
nondecreasing function φ4 : R≥0 → R≥0 such that φ4(s) > 0
if s > 0 and

i) for all t ≥ 0, all ξ ∈ Rn and all i ∈ Γ,

|gi(t, ξ)| ≤ φ3(ηi(t, ξ)), (16)

‖G(t, ξ, i)‖ ≤ ω(V (t, ξ)), (17)∣∣∣∣∂V

∂ξ
(t, ξ)G(t, ξ, i)

∣∣∣∣ ≤ φ4(V (t, ξ)), and (18)

ii) The function φ5 defined in (19) satisfies φ5 ∈ K∞.

φ5(s) =
∫ s

0

1
φ4(τ)

dτ, (19)

where the integral is considered in the Lebesgue sense.
We require the following lemma, whose proof is given in the

Appendix.
Lemma 4.1: Let φ : R≥0 → R≥0 be a continuous function

such that φ(0) = 0. The following are equivalent
i) There exists a continuous and nondecreasing function

γ : R≥0 → R≥0 such that γ(0) = 0 and
∫ 1

0
φ(|h(s)|)ds ≤ γ

(∫ 1

0
|h(s)|ds

)
, ∀h ∈ L1([0, 1]);

ii) lim sup
r→∞

φ(r)
r

< ∞.

The following is our main ISS result based on weak Lyapunov
functions.

Theorem 4.1: Consider (8) and a family S of switching sig-
nals, for which Assumptions 4 and 5 hold, as well as item a) be-
low. Consider Ψ as in (15) in Remark 4.6 and κ2(s) := φ2(2Ψs).
If item b) holds with

�̃(a, b, r) := φ−1
5

(
φ5(a) + rb

)
(20)

and item c) holds, then (8) is ISS uniformly w.r.t. S.
If item b) holds with

�̃(a, b, r) := φ−1
5

(
φ5(a) + b

)
(21)

and item d) holds, then (8) is pISS uniformly w.r.t. S.
a) There exists a continuous and nondecreasing function

γ : R≥0 → R≥0 with γ(0) = 0, such that for all h ∈
L1([0, 1]),

∫ 1

0
φ3(|h(s)|)ds ≤ γ

(∫ 1

0
|h(s)|ds

)
; (22)

b) lim sup
a→∞

ρ(a, b,M)
a

<
1
2

for all b ≥ 0 and M > 0, where

ρ(a, b,M) := sup
0<r≤M

h5(a, b, r), (23)

h5(a, b, r) := κ2

{
rγ
(

�̃ (a , b , r )−a
r

)
+
∫ �̃(a,b,r)

a

ω(s)
φ4(s)

ds

}
;

c) lim sup
a→∞

φ−1
1 (a)

φ−1
2 (a/2)

< ∞;

d) sup
a>0

φ−1
1 (a)

φ−1
2 (a/2)

< ∞.

The proof of Theorem 4.1 is given in Section V-B. We next
provide some comments on the required assumptions.

According to Lemma 4.1 and since φ3 : R≥0 → R≥0 is con-
tinuous and satisfies φ3(0) = 0 by Assumption 5, the existence
of γ as required by item a) is equivalent to lim supr→∞

φ3 (r)
r <

∞. Once the function φ3 is known, the latter inequality can be
used to easily decide whether such φ3 is suitable. The function
γ is then required in order to build ρ for item b). A suitable
tool for establishing a) directly is Hölder inequality, which can
be employed when φ3 is of the form φ3(s) =

∑k
i=1 cis

1/pi for
some k ∈ N, ci > 0 and pi ≥ 1, yielding γ(s) = φ3(s). In case
φ3 does not have such form, the proof of Lemma 4.1 gives some
indication on how the required function γ can be constructed.
The evaluation of items c) or d) is straightforward, as is that of
item b) once γ is known.

Remark 4.7: The assumptions required in Theorem 4.1 in
order to ascertain the pISS property imply those required for
the ISS property. This is because item d) implies item c) and if
item b) holds with �̃ as in (21) then item b) also holds with �̃
as in (20). To see the latter fact, let ρISS and ρpISS denote (23)
with �̃ as in (20) or (21), respectively. Note that ρISS(a, b,M) ≤
ρpISS(a, bM,M) for all a > 0, b ≥ 0, and M > 0, and then

lim supa→∞
ρ ISS(a,b,M )

a ≤ lim supa→∞
ρpISS(a,bM ,M )

a < 1/2. ◦
The proof of Theorem 4.1 takes advantage of the linear +

perturbation ( + input) form of the system dynamics. The ISS
property is established via the equivalent formulation of Re-
mark 4.2. A very interesting strategy that is employed in the
proof is that solutions are ‘sampled’ at specific time instants.
These time instants are selected so that either the ‘nominal part’
of the solution is ensured to cause a substantial decrease in the
value of the (weak) Lyapunov function or the increase in this
value caused by the input u does not exceed a specific thresh-
old. See Section V-B for details. Existing results that employ
a related type of sampling in order to ensure the decrease of a
weak Lyapunov function or of the magnitude of the state can be
found in [47], [48].

Corollary 4.1 below gives simpler to check but more restric-
tive assumptions that also ensure the uniform ISS and pISS
properties considered.

Corollary 4.1: Consider (8) and a family S of switching
signals. Let Assumption 2 hold, with φ1 , φ2 satisfying item
c) of Theorem 4.1 and φ2(s) =

∑k2
j=1 bj s

lj for some k2 ∈ N,
bj > 0 and lj > 0. Let Assumptions 3 and 4 hold. Let (16)
be satisfied with φ3(s) =

∑k3
j=1 cj s

1/pj for some k3 ∈ N,
cj > 0 and pj ≥ 1. Let (17) hold for some ω : R≥0 → R≥0
nondecreasing, Borel measurable, and satisfying ω(s) > 0 if
s > 0 and ω(s) = �snω for all s ≥ s̄, for some � > 0, nω ≥ 0
and s̄ > 0. Let (18) be satisfied with φ4(s) = ds1/m for
some d > 0 and m > 1. If max1≤j≤k2 lj < m min1≤j≤k3 pj

and nω < 1
max1≤j ≤k 2 lj

, then (8) is ISS uniformly w.r.t. S. If,

in addition, φ1 , φ2 are such that item d) of Theorem 4.1 is
satisfied, then (8) is pISS uniformly w.r.t. S.

Proof: As explained above, the fact that pj ≥ 1 allows
the application of Hölder inequality and shows that item a)



of Theorem 4.1 is satisfied with γ = φ3 . By direct com-
putation from the definition (19), we have φ5(s) = q

d s1/q ,
where we defined q := m/(m − 1). Note that φ5 ∈ K∞ be-
cause m > 1 gives q > 0. Then, Assumption 5 is satisfied. Let
κ2(s) = φ2(2Ψs) =

∑k2
j=1 bj (2Ψ)lj slj . Define h(a, b, r) :=

rγ
(

φ−1
5 (φ5 (a)+b)−a

r

)
+
∫ φ−1

5 (φ5 (a)+b)
a

ω (s)
φ4 (s) ds. For a ≥ s̄, we

can compute

h(a, b, r) = r

k3∑
j=1

cj

[(
a1/q + db/q

)q − a

r

]1/pj

+ �Ξ,

with Ξ =
q/d

qnω + 1

[(
a

1
q +

db

q

)qnω +1

− anω + 1
q

]
.

Define also

h′(a, b,M) :=

{
sup0<r≤M κ2{h(a, br, r)} (ISS)

sup0<r≤M κ2 {h(a, b, r)} (pISS)

Since pj ≥ 1 for all j = 1, . . . , k3 , then both h(a, br, r) and
h(a, b, r) are nondecreasing in r. In consequence, we have

h′(a, b,M) :=

{
κ2{h(a, bM,M)} (ISS)

κ2 {h(a, b,M)} (pISS)

Note that h′ is continuous, h′(a, 0,M) = 0, and that h′(a, ·,M)
is nondecreasing. Since pj ≥ 1, m > 1, 0 < max1≤j≤k2 lj <
mmin1≤j≤k3 pj and nω < 1

max1≤j ≤k 2 lj
, simple computations

show that

lim
a→∞

h′(a, b,M)
a

= 0. (24)

This follows after taking into account that, for all K ∈ R,

lim
a→∞

(a� + K)1/� − a

at
= 0 if � + t > 1.

Then, item b) of Theorem 4.1 is satisfied because ρ = h′ in
either case. By Theorem 4.1, the result follows. �

Example 4.1: Consider a switched system of the form (8),
where f(t, x, σ) coincides with that of Example 3.2 and
G(t, ξ, i) = I (identity matrix) for all t ≥ 0, ξ ∈ Rn , i ∈ Γ.
The system equations may represent, for example, the semi-
quasi-Z-source inverter under time-varying input voltage [45].
Consider the same set of switching signals S and weak Lya-
punov function V of Example 3.2. Since V is quadratic,
then V satisfies (5) with φ1(s) = λmins2 , φ2(s) = λmaxs

2

and λmin , λmax the minimum and maximum eigenvalues of
P/2. Note that φ1 , φ2 satisfy item d) and hence item c)
of Theorem 4.1. Consider the same decomposition (3) for
the zero-input system as that in Example 3.2. We have
|gi(t, ξ)| ≤ Gi (t)

C2
|e′4ξ|3 + K|e′4ξ| and ηi(t, ξ) := Gi(t)(e′4ξ)

4 ,

whence |e′4ξ| = [ηi(t, ξ)/Gi(t)]1/4 with εi ≤ Gi(t) ≤ 1 + εi

for all t ≥ 0. Consequently, (16) is satisfied with φ3(s) =
c1s

1/p1 + c2s
1/p2 , with c1 = (1 + max{ε1 , ε2})1/4/C2 , c2 =

K/(min{ε1/4
1 , ε

1/4
2 }), p1 = 4/3, and p2 = 4. Also, (17) is sat-

isfied with ω(s) ≡ 1 = 1 · s0 . Since V is quadratic, then (18)
is satisfied with φ4(s) = ds1/m , with d = 2λmax/

√
λmin and

m = 2. Since 2 < 2 · 4/3 and 0 < 1/2, by Corollary 4.1, the

considered system is pISS uniformly w.r.t. S and in conse-
quence also ISS w.r.t. S. As regards the semi-quasi-Z-source
inverter connected to the specific nonlinear load considered,
this establishes a very important property: if the input voltage u
is bounded or, more generally, the integrals of |u| or of |u|2 on
intervals of length τ are uniformly bounded, then irrespective
of its time evolution (even if it is discontinuous and changes
sign) the system variables will be bounded when switching
is performed so that the corresponding switching signals are
in S. ◦

Remark 4.8: Examples 3.2 and 4.1 deal with a real applica-
tion: the semi-quasi-Z-source inverter switched model. Being a
physical system, a ‘natural’ Lyapunov function is given by the
circuit’s energy function. Neither subsystem of this switched
system is ISS since neither zero-input subsystem is asymptot-
ically stable. As a consequence, neither strong common nor
strong individual Lyapunov functions (and in consequence nei-
ther ISS common nor individual ISS Lyapunov functions) exist
for the zero-input system. In addition, not even standard multiple
Lyapunov functions exist for this circuit. This happens because
the usual requirement that the value of the Lyapunov function
at every onset time of a same subsystem must be lower than
the previous one cannot be satisfed, since the constraints on the
switching times are time-dependent but not state-dependent. As
a consequence, Example 4.1 gives a practical example where,
to the best of our knowledge, no other existing results can be
applied in order to establish the ISS uniformly w.r.t. S property,
let alone by means of the natural energy function. ◦

V. PROOFS

A. Proof of Lemma 3.1

For proving Lemma 3.1 we will employ the concept of lim-
iting solution of a switched system introduced in [34]. We next
give a definition of this concept adapted to our purpose.

Definition 5.1: A continuous function x̄ : R≥0 → Rn is a
limiting solution of the switched system (1) with switching sig-
nals in S if there exist an unbounded sequence {tk} in R≥0 ,
a sequence {(xk , σk )}, with xk a maximal solution of (1) cor-
responding to the switching signal σk ∈ S, and a compact set
K ⊂ Rn such that xk (t) ∈ K for all t ∈ [tk , tk + k] and all
k, and {xk (· + tk )} converges to x̄ uniformly on [0, T ] for all
T > 0.

Remark 5.1: Note that the sequence of switching signals
{σk (· + tk )} in Definition 5.1 is not required to converge in
any sense. ◦

The following lemma is a consequence of Lemma 3 in [34].
Lemma 5.1: Consider the switched system (1) with switch-

ing signals in S. Suppose that f in (1) is uniformly bounded. Let
{tk} be an unbounded sequence in R≥0 , K ⊂ Rn be compact
and {(xk , σk )} be a sequence such that for every k:

1) xk is a maximal solution of (1) corresponding to the
switching signal σk ∈ S; and

2) xk (t) ∈ K for every t ∈ [tk , tk + k].
Then there exists a subsequence {kl} of {k} and a limiting

solution x̄ : R≥0 → Rn of (1) with switching signals in S such



that {xkl
(· + tkl

)} converges to x̄ uniformly on [0, T ] for all
T > 0.

Now, we are in position to prove Lemma 3.1.
Proof of Lemma 3.1: We will prove the lemma by contradic-

tion. Suppose that the pair (h, f) is not output-PE. Then there
exist 0 < ε0 ≤ 1 and sequences {t′k} in R≥0 , {σk} in S and
{zk}, where for every k ∈ N zk is a solution of (1) correspond-
ing to σk ∈ S, such that for each k ∈ N:

1) ε0 ≤ |zk (t)| ≤ 1/ε0 for all t ∈ [t′k , t′k + 2k];
2)
∫ t ′k +2k

t ′k
|h(s, zk (s), σk (s)|2 ds ≤ 1/k.

Let tk = t′k + k. Then tk → ∞. If we consider the compact
set K = {ξ ∈ Rn : ε ≤ |ξ| ≤ 1/ε0}, we have that zk (t) ∈ K

for all t ∈ [tk , tk + k]. Since the functions f̂ and g are uniformly
bounded, it follows that f is also uniformly bounded. By apply-
ing Lemma 5.1 there exists a subsequence of {tk}, which we still
denote by {tk}, and a limiting solution x of (1) with switching
signals in S such that the sequence {xk}, with xk = zk (· + tk ),
converges to x̄ uniformly on [0, T ] for all T > 0. Note that from
1) above, we have that |x(t)| ≥ ε0 for all t ≥ 0.

Now, taking 2) into account, for every k we have

0 ≤
∫ k

0
η(s + tk , xk (s), σtk

k (s)) ds ≤ 1/k.

For any k let ρk (s) := η(s + tk , xk (s), σtk

k (s)) for s ∈ [0, k]
and ρk (s) := 0 for s > k. Then

lim
k→∞

∫ ∞

0
ρk (s) ds = 0.

From the latter, the nonnegativeness of the integrands and well-
known results of real analysis it follows that there exists a sub-
sequence of {ρk}, which we still denote by {ρk} such that for
almost all s ∈ R≥0

lim
k→∞

ρk (s) = 0.

Since ρk (s) = η(s + tk , xk (s), σtk

k (s)) for all s ≤ k, then

lim
k→∞

η(s + tk , xk (s), σtk

k (s)) = 0 (25)

for almost all s ∈ R≥0 . Let s ≥ 0 be such that (25) holds. Then,
due to condition (C),

lim
k→∞

g(s + tk , xk (s), σtk

k (s)) = 0.

Since (25) is true for almost all s ∈ R≥0 , it follows that

lim
k→∞

g(s + tk , xk (s), σtk

k (s)) = 0 a.e. on R≥0 . (26)

Next we prove that x̄ is a limiting solution of the switched
system (4) with switching signals in S.

Taking into account that for all t ≥ 0

xk (t) = xk (0) +
∫ t

0
f̂(s + tk , xk (s), σtk

k (s)) ds

+
∫ t

0
g(s + tk , xk (s), σtk

k (s)) ds, (27)

that xk → x̄ uniformly on [0, t], that f̂ is locally Lipschitz uni-
formly in t and in i, the boundedness condition on g, (26) and

the Lebesgue Convergence Theorem we arrive to

x̄(t) = x̄(0) + lim
k→∞

∫ t

0
f̂(s + tk , x̄(s), σtk

k (s)) ds. (28)

For any k, let wk be the maximal solution of (4) corresponding
to the switching signal σk that satisfies wk (tk ) = x̄(0). Since
(4) is GUAS w.r.t. S, the solution wk is defined for every t ≥ tk
and |wk (t)| ≤ β(|x̄(0)|, t − tk ) for all t ≥ tk , where β ∈ KL.
So wk (t) ∈ K∗ for all t ≥ tk , where K∗ is the compact set
K∗ = {ξ ∈ Rn : |ξ| ≤ β(|x̄(0)|, 0)}. If in addition we take into
account the boundedness condition on f̂ , Lemma 5.1 asserts that
there exist a subsequence of {tk}, which we still denote by {tk},
and a limiting solution w̄ of (4) with switching signals in S such
that {wk (· + tk )} converges to w̄ uniformly on any interval
[0, T ], with T > 0. If for any k we denote ωk (·) = wk (· + tk )
then

ωk (t) = x̄(0) +
∫ t

0
f̂(s + tk , ωk (s), σtk

k (s)) ds.

The uniform convergence of {ωk} to w̄ on [0, t] and the Lipschitz
condition on f̂ yield

w̄(t) = x̄(0) + lim
k→∞

∫ t

0
f̂(s + tk , w̄(s), σtk

k (s)) ds. (29)

From (28) and (29) it follows that for every t ≥ 0

w̄(t) − x̄(t) = lim
k→∞

∫ t

0
θk (s) ds,

where θk (s) = f̂(s + tk , w̄(s), σtk

k (s)) − f̂(s + tk , x̄(s), σtk

k

(s)). The fact that x̄(s) and w̄(s) belong to some compact set for
all s ≥ 0 and the Lipschitz condition on f̂ imply the existence
of a constant L ≥ 0 such that |θk (s)| ≤ L|w̄(s) − x̄(s)| for all
s ≥ 0. In consequence, for all t ≥ 0

|w̄(t) − x̄(t)| = lim
k→∞

∣∣∣∣
∫ t

0
θk (s) ds

∣∣∣∣

≤ lim sup
k→∞

∫ t

0
|θk (s)| ds

≤
∫ t

0
L|w̄(s) − x̄(s)| ds.

By applying Gronwall’s Lemma, it follows that |w̄(t) −
x̄(t)| ≤ eLt |w̄(0) − x̄(0)|. Since w̄(t) = limk→∞ wk (t + tk ),
then w̄(0) = x̄(0) and hence w̄(t) = x̄(t) for all t ∈ R≥0 . Also,
since |wk (t + tk )| ≤ β(|x̄(0)|, t) for all t ∈ R≥0 , it follows that
|x̄(t)| ≤ β(|x̄(0)|, t) for all t ≥ 0, and a posteriori that x̄(t) → 0
as t → ∞, which contradicts the fact that |x̄(t)| ≥ ε0 > 0 for
all t ≥ 0. �

B. Proof of Theorem 4.1

The proofs of the ISS and pISS cases are very similar and
hence we will establish both cases simultaneously. We first prove
that item i) of Remark 4.2 holds for the norm ‖ · ‖∞ and for the
norm ‖ · ‖1,τ , with any τ > 0.

Let t0 ≥ 0, let x0 ∈ Rn , let u ∈ Um and let x denote any max-
imal solution of (8) corresponding to some σ ∈ S and satisfying



x(t0) = x0 . By Assumption 5, we have

d

dt
[V (t, x(t))] ≤ ∂V

∂ξ
(t, x(t))G(t, x(t), σ(t))u(t)

≤ φ4 ◦V (t, x(t)) |u(t)|, (30)

for almost all t ≥ t0 for which x is defined. Applying the Com-
parison Lemma (see, e.g. [8, Lemma 3.4]), then for all t ≥ t0
for which x is defined,

V (t, x(t)) ≤ φ−1
5

(
φ5(V (t0 , x(t0)) +

∫ t

t0

|u(s)|ds

)
. (31)

Due to (5), (31) and standard results for differential equations
we have that (8) is forward complete w.r.t. S.

Let T > 0, r > 0 and s > 0. Then, if |x(t0)| ≤ r and the input
u satisfies ‖u‖∞ ≤ s or ‖u‖1,τ ≤ s, from (5), (31), Remark 4.3i)
and the fact that u ∈ Um , it follows that |x(t)| ≤ C for all
t ∈ [t0 , t0 + T ], where C = φ−1

1 (φ−1
5 ◦φ2(r) + Ts) in the case

of the supremum norm and where C = φ−1
1 (φ−1

5 ◦φ2(r) +
k(T, τ)s) in the case of the norm ‖ · ‖1,τ .

We next introduce auxiliary functions. Define R : (0,∞) →
(0,∞) and R̄ : (0,∞) → (0,∞) as

R(a) :=
1
λ

log
2Ψφ−1

1 (a)
φ−1

2 (a/2)
.

R̄(b) := sup
a≥b

R(a). (32)

Note that item d) implies item c), and that R̄(b) is finite for all
b > 0 due to continuity and item c). For a > 0 and b ≥ 0, define

�(a, b) := �̃(a, b,R(a))

and consider the expression

h1(a, b, c) := a/2+

κ2

{
R(a)γ

(
�(a, b) − c

R(a)

)
+
∫ �(a,b)

a

ω(s)
φ4(s)

ds

}
,

valid for 0 ≤ c ≤ �(a, b). Define the function h2(·, ·) via

h2(a, b) = sup
{
c ∈ [0, �(a, b)] : c ≤ h1(a, b, c)

}
.

Note that h2 satisfies h2(a, b) ≤ �(a, b). The following claims,
whose proofs are given in the Appendix, will be used in the
proof of the theorem.

Claim 1: There exist α, α̃ ∈ K∞ such that α̃(b) ≥ α(b) for
all b ≥ 0 and (33) holds. In addition, (34) holds for the ISS proof
and (35) holds for the pISS proof.

0 < h2(a, b) < a for all a ≥ α(b), b > 0. (33)

φ−1
5 [φ5(α(b)) + R̄(α(b))b] ≤ α̃(b) for all b > 0. (34)

φ−1
5 (φ5(α(b)) + b) ≤ α̃(b) for all b > 0. (35)

Claim 2: Consider sequences {yk} and {wk} of nonneg-
ative real numbers satisfying supk≥0 wk ≤ U and yk+1 ≤
h2(yk , wk ) for all k ∈ N0 for which yk ≥ α(U). Then, for all
r̃ > 0 and 0 < U0 ≤ U ≤ U1 , there exists K = K(r̃, U0 , U1) ∈
N such that if α(U) ≤ y0 ≤ r̃ then yk < α(U) for some k ≤ K.

We next proceed to prove that items ii) and iii) of Remark 4.2
hold for the norms ‖ · ‖∞ and ‖ · ‖1,τ , where

τ := lim
b→0+

R̄(b).

Note that item d) implies that τ < ∞.
Let U > 0. Let x denote any solution to (8) corresponding

to a switching signal σ ∈ S and to an input u ∈ Um such that
‖u‖ ≤ U , where in the sequel ‖u‖ denotes ‖u‖∞ for the ISS
proof (in which case u ∈ L∞

m ) and ‖u‖1,τ for the pISS proof.
Let t0 ≥ 0 be such that x(t0) is defined. In correspondence

with solution x, U and t0 , we define recursively the sequences
{tk}, {xk} and {Vk} as follows

r0 := 0, x0 := x(t0), V0 := V (t0 , x0),

and, while Vk ≥ α(U)

rk+1 := R(Vk ) tk+1 := tk + rk+1

xk+1 := x(tk+1) Vk+1 := V (tk+1 , xk+1).

For any k such that tk and tk+1 are defined, we also define

uk := ess suptk ≤t≤tk + 1
|u(t)|. (ISS)

uk :=
∫ tk + 1

tk

|u(s)|ds. (pISS)

Note that the sequences are finite if for some k ∈ N0 , Vk <
α(U). In particular, if V0 < α(U) the sequences {tk}, {xk}
and {Vk} are only defined for k = 0, while the sequence {uk} is
undefined. Note also that uk ≤ U for every k for which uk is de-
fined. The latter fact follows straightforwardly for the ISS proof
and from tk+1 = tk + R(Vk ) ≤ tk + τ for the pISS proof.

The following fact about the sequences defined above is
proved in the Appendix.

Claim 3: The sequences {Vk} and {uk} satisfy

Vk+1 ≤ h2(Vk , uk ) ≤ h2(Vk , U) < Vk .

In consequence, combining Claims 2 and 3 we can establish the
following fact about the sequence {Vk}:

Fact 1: For every r̃ > 0 and positive numbers U0 ≤ U1 there
exists K = K(r̃, U0 , U1) such that: if V0 ≤ r̃ and U ∈ [U0 , U1 ]
then there exists k∗ ≤ K such that Vk ∗ < α(U).

From Fact 1, the definition of {tk} and the monotony of {Vk},
we derive the following result.

Fact 2: Let r̃ > 0 and 0 < U0 ≤ U1 . Then there exists T =
T (r̃, U0 , U1) such that for every solution x of (8) corresponding
to a switching signal σ ∈ S, an input u such that ‖u‖ ≤ U , with
U ∈ [U0 , U1 ], and such that V (t0 , x(t0)) ≤ r̃ for some t0 ≥ 0,
there exists tx ∈ [t0 , t0 + T ] such that

V (tx , x(tx)) < α(U).

If x is in the conditions of Fact 2, and {tk}, {Vk} are the
sequences defined above, from Fact 1 we have that for some
0 ≤ k∗ ≤ K = K(r̃, U0 , U1), Vk ∗ < α(U). If k∗ = 0, then
tx = t0 . If k∗ > 0, then V (tk ∗ , x(tk ∗)) < α(U) and tk ∗ = t0 +∑k ∗−1

j=0 R(Vj ) ≤ t0 + k∗R̄(α(U)) ≤ t0 + KR̄(α(U0)). In both
cases Fact 2 holds with T = KR̄(α(U0)).



Fact 3: Let U > 0 and let x be a solution of (8) corresponding
to a switching signal σ ∈ S and input u such that ‖u‖ ≤ U . If
V (tx , x(tx)) ≤ α(U) for some tx ≥ 0, then

V (t, x(t)) ≤ α̃(U) ∀t ≥ tx . (36)

Suppose that (36) does not hold for some solution x in the condi-
tions of Fact 3. Then, from the continuity of V (·, x(·)), there ex-
ists t∗ > t′0 ≥ tx such that V (t′0 , x(t′0)) = α(U), V (t, x(t)) >
α(U) for all t ∈ (t′0 , t

∗] and V (t∗, x(t∗)) > α̃(U). If we con-
sider the sequences {tk}, {xk}, {Vk} and {uk} defined above,
but with the initial data t0 := t′0 , x0 := x(t′0) and V0 :=
V (t′0 , x(t′0)), from Claim 3 we have that V1 = V (t1 , x(t1)) <
α(U), where t1 = t′0 + R(α(U)). So, necessarily t∗ ∈ (t′0 , t1).
Using (31) with t0 replaced by t′0 , it follows that for all
t ∈ [t′0 , t1 ]

V (t, x(t)) ≤ φ−1
5

(
φ5
(
V (t′0 , x(t′0))

)
+
∫ t1

t ′0

|u(s)| ds

)
.

In consequence,

V (t∗, x(t∗)) ≤ φ−1
5

(
φ5(α(U)) + R(α(U))U

) ≤ α̃(U),

for the ISS case, and

V (t∗, x(t∗)) ≤ φ−1
5

(
φ5(α(U)) + U

) ≤ α̃(U),

for the pISS case. In both cases we arrive to a contradiction. So,
Fact 3 holds.

Next, we prove that item ii) in Remark 4.2 (recall Re-
mark 4.2) is satisfied. Let ε > 0, let U = α̃−1 ◦φ1(ε), and δ =
min{U, φ−1

2 ◦α(U)} > 0. Let x be a solution of (8) correspond-
ing to a switching signal σ ∈ S and an input u such that ‖u‖ ≤ δ,
and |x(t0)| ≤ δ. Then, ‖u‖ ≤ U and |x(t0)| ≤ φ−1

2 ◦α(U). The
latter inequality implies that V (t0 , x(t0)) ≤ α(U). From Fact 3,
we have that V (t, x(t)) ≤ α̃(U) = φ1(ε) for all t ≥ t0 . From
(5), then |x(t)| ≤ ε for all t ≥ t0 .

Next, we show that item iii) in Remark 4.2 is also satisfied. Fix
0 < ε ≤ r. Then, φ1(ε) ≤ φ2(r). Suppose that x is a solution of
(8) corresponding to a switching signal σ ∈ S and to an input
u, such that for the time t0 ≥ 0, |x0 | = |x(t0)| ≤ r. The latter
implies that V0 = V (t0 , x(t0)) ≤ φ2(r) =: r̃. We will consider
two cases:

a) V0 ≤ α(‖u‖).
b) V0 > α(‖u‖).

In case a), from Fact 3 with U = ‖u‖ we have that
V (t, x(t)) ≤ α̃(U) and hence |x(t)| ≤ ε + φ−1

1 ◦ α̃(‖u‖) for all
t ≥ t0 .

In case b), and since V0 ≤ r̃, then α(‖u‖) < r̃. Let
ε̃ := α ◦ α̃−1(φ1(ε)), U0 := α̃−1(φ1(ε)) = α−1(ε̃) and U1 :=
max{α−1(r̃), U0}. Take U = max{‖u‖, U0} and note that
0 < U0 ≤ U ≤ U1 . Let T be as in Fact 2. Then, there exists tx ∈
[t0 , t0 + T ] such that V (tx , x(tx)) ≤ α(U). From the latter and
Fact 3 it follows that V (t, x(t)) ≤ α̃(U) for all t ≥ t0 + T . If
‖u‖ ≥ U0 , then U = ‖u‖ and we have that V (t, x(t)) ≤ α̃(‖u‖)
and hence |x(t)| ≤ φ−1

1 ◦ α̃(‖u‖) + ε for all t ≥ t0 + T . If
‖u‖ < U0 , then U = U0 and V (t, x(t)) ≤ α̃(U0) = φ1(ε) and
hence |x(t)| ≤ φ−1

1 ◦ α̃(‖u‖) + ε for all t ≥ t0 + T .

In either case, item iii) in Remark 4.2 is satisfied with ν =
φ−1

1 ◦ α̃. �

VI. CONCLUSION

We have provided a set of novel stability results for switched
nonlinear and time-varying systems under restricted switching.
These results are based on weak Lyapunov functions. The ap-
proach employed consists in decomposing the system dynamics
into a nominal part that is GUAS with respect to the set S
of switching signals considered, and a perturbation term that
should satisfy specific bounds. Both GUAS w.r.t. S results and
uniform w.r.t. S ISS results are provided. Our GUAS results re-
quire the perturbation term to satisfy a mild vanishing condition.
The uniform ISS results provided require the nominal part of
the system to be switched linear-time-varying, and more strin-
gent assumptions are placed on the perturbation and the weak
Lyapunov function. To the best of the authors’ knowledge, no
other GUAS or ISS results exist for switched nonlinear and
time-varying systems under restricted switching based on weak
Lyapunov functions and employing a perturbation approach. In
addition to standard ISS involving the essential supremum norm
of the input, we also provide another type of ISS result that em-
ploys a power-type norm of the input. An interesting approach
employed in the ISS proofs consists in ‘sampling’ the system
solutions at specific time instants related to a specific decrease
in the magnitude of the solution.

APPENDIX ISS SUPPLEMENTARY PROOFS

A. Proof of Claim 1: This proof requires the following
result.

Lemma A.1: Let ρ : R>0 × R≥0 × R>0 → R≥0 ∪ {∞} be
continuous and satisfy, for all a > 0 and M > 0,

a) ρ(a, 0,M) = 0;
b) ρ(a, ·,M) is nondecreasing.

If lim sup
a→∞

ρ(a, b,M)
a

<
1
2

for all b ≥ 0 and M > 0, then for

every M > 0 there exists γ̃ ∈ K such that ρ(a, b,M) < a/2 for
all a > γ̃(b) and b ≥ 0.

Proof: Given M > 0, for each b ≥ 0 consider

C(b) := {c ≥ 0 : ∀a > c, ρ(a, b,M) < a/2},
ϕ(b) := inf C(b).

Note that ϕ(b) ≥ 0 for all b ≥ 0, C(0) = [0,∞) by a) and hence
ϕ(0) = 0, and also ϕ(b) < ∞ for all b ≥ 0. By definition, we
have ρ(a, b,M) < a/2 for all a > ϕ(b) and by continuity of
ρ, ρ(ϕ(b), b,M) = ϕ(b)/2 if b > 0. By b), then ϕ(·) is nonde-
creasing. Hence, there exists L ≥ 0 such that limb→0+ ϕ(b) =
L. For a contradiction, suppose that L > 0. Consider a sequence
{dj} of positive numbers satisfying limj→∞ dj = 0. We have
ρ(ϕ(dj ), dj ,M) = ϕ(dj )/2. But limj→∞ ρ(ϕ(dj ), dj ,M) =
ρ(L, 0,M) = 0 and limj→∞ ϕ(dj )/2 = L/2 > 0, which is a
contradiction. Then, L = 0. The function ϕ thus satisfies ϕ(0) =
0, is nondecreasing, and continuous at 0, and hence can be
bounded by a function γ̃ ∈ K so that ϕ(b) ≤ γ̃(b) for all b ≥ 0.
Then, ρ(a, b,M) < a/2 for all a > γ̃(b), for all b ≥ 0. �



For a > 0, b ≥ 0 and 0 ≤ c ≤ �(a, b), h1(a, b, c) is con-
tinuous and nonincreasing in c. So h1(a, b, c) − c is strictly
decreasing. Since h1(a, b, 0) > 0, then the set of values c ∈
[0, �(a, b)] satisfying c ≤ h1(a, b, c) is an interval of the form
[0, h2(a, b)], and h2(a, b) > 0. For a > 0 and b ≥ 0, define
h3(a, b) := h1(a, b, a) − a/2. Note that h3 is well defined be-
cause a ≤ �(a, b). The inequality h3(a, b) < a/2 implies a >
h1(a, b, a). The latter means that c = a does not satisfy c ≤
h1(a, b, c) and hence h3(a, b) < a/2 implies that h2(a, b) < a.
Consider

A(b) := {c ≥ 0 : ∀a > c, h3(a, b) < a/2}
h4(b) := inf A(b).

We have A(0) = [0,∞) because h3(a, 0) = 0 for all a > 0.
Then, h4(0) = 0. Since h3(a, b) is nondecreasing in b (because
h1 is), then b1 ≤ b2 ⇒ A(b1) ⊇ A(b2) and hence h4(b1) ≤
h4(b2). This shows that h4 is nondecreasing. We next show
that A(b) = ∅ for all b > 0. Note that h3(a, b) = h5(a, b,R(a)).
Let L > 0 and M = R̄(L). Then R(a) ≤ M whenever a ≥ L.
For all a such that R(a) ≤ M , it follows that h3(a, b) ≤
sup0<r≤M h5(a, b, r) = ρ(a, b,M). Note that ρ is continuous,
ρ(a, 0,M) = 0, and that ρ(a, ·,M) and ρ(a, b, ·) are nonde-
creasing. Hence, let γ̃ ∈ K correspond to M as per Lemma A.1.
Then, for all a > γ̃(b) such that R(a) ≤ M it happens that
h3(a, b) ≤ ρ(a, b,M) < a/2. Hence, h3(a, b) < a/2 for all
a > max{L, γ̃(b)} and A(b) is thus nonempty. As a conse-
quence, h4(b) < ∞ for all b ≥ 0.

We next show that limb→0+ h4(b) = 0. Since h4 is nonde-
creasing, there exists L = limb→0+ h4(b) ≥ 0. For a contra-
diction, suppose that L > 0. Let 0 < ε < L, let γ̃ ∈ K cor-
respond to M = R̄(L − ε) according to Lemma A.1 and let
b > 0 be sufficiently small so that γ̃(b) < L − ε. Note that
a ≥ L − ε implies that R(a) ≤ M and hence h3(a, b) < a/2
for all a ≥ L − ε. Then, h4(b) ≤ L − ε, contradicting the fact
that h4 is nondecreasing. The function h4 is thus nondecreasing,
continuous at 0, and satisfies h4(0) = 0 and h4(b) < ∞ for all
b > 0. Therefore, we can find α ∈ K∞ so that h4(b) < α(b) for
all b > 0. We then have h3(a, b) < a/2 for all a ≥ α(b), a > 0,
which implies that h2(a, b) < a for all a ≥ α(b), a > 0. We
have now established (33).

We next proceed with the ISS proof in order to estab-
lish (34). We have 0 ≤ h3(a, b) < a/2 for all a ≥ α(b),
a > 0. In particular, h3(α(b), b) < α(b)/2 and then
limb→0+ h3(α(b), b) = 0. From the definition of h1 , h3

and �, it follows that h3(a, b) ≥ κ2

(∫ �(a,b)
a

ω (s)
φ4 (s) ds

)
≥ 0. De-

fine F via F (r) :=
∫ r

0
ω (s)
φ4 (s) ds for r ≥ 0. Since ω is positive for

s > 0, Borel measurable and nondecreasing, φ4 is continuous
and positive on (0,∞) and φ5 ∈ K∞, then F (0) = 0, F is con-
tinuous and strictly increasing and h3(a, b) ≥ κ2(F (�(a, b)) −
F (a)) ≥ 0. Since �(a, b) = φ−1

5 (φ5(a) + R(a)b), κ2 ∈
K∞, and limb→0+ h3(α(b), b) = 0, it follows that limb→0+

F (�(α(b), b)) = limb→0+ F (α(b)) = 0. Then limb→0+ �(α
(b), b) = 0 and, a posteriorilimb→0+ [R(α(b))b] = 0. Next,
we show that limb→0+ [R̄(α(b))b] = 0. Since R̄(α(·)) is
nonincreasing, then limb→0+ R̄(α(b)) exists (but may equal

∞). If limb→0+ R̄(α(b)) < ∞, then limb→0+ [R̄(α(b))b] = 0.
If limb→0+ R̄(α(b)) = ∞, consider a decreasing sequence
{bk} of positive real numbers, satisfying limk→∞ bk = 0. Due
to the continuity of R(·) and hypothesis c), then R̄(a) < ∞
for all a > 0, and for each bk there exists a corresponding ak

satisfying 0 < bk ≤ ak < ∞ and R̄(α(bk )) = R(α(ak )). The
sequence {ak} necessarily satisfies limk→∞ ak = 0. Therefore,
0 ≤ R̄(α(bk ))bk ≤ R(α(ak ))ak and limk→∞[R̄(α(bk ))bk ] =
0. This shows that limb→0+ [R̄(α(b))b] = 0. The func-
tion �̄(b) := φ−1

5

(
φ5(α(b)) + R̄(α(b))b

)
thus satisfies

limb→0+ �̄(b) = 0 and is continuous for all b > 0. The
existence of α̃ ∈ K∞ satisfying (34) is thus ensured. The fact
that α(b) ≤ α̃(b) for all b ≥ 0 is a consequence of φ5 ∈ K∞
and R̄(α(b))b > 0 for all b > 0.

Finally, we establish (35) for the pISS case. Since α, φ5 ∈
K∞, then α̃ defined as α̃(b) = φ−1

5 (φ5(α(b)) + b) satisfies α̃ ∈
K∞, (35) and α(b) ≤ α̃(b) for all b ≥ 0. �

B. Proof of Claim 2: By the analysis performed at the be-
ginning of the proof of Claim 1, we know that for a > 0 and b ≥
0, the set of values c ∈ [0, �(a, b)] satisfying c ≤ h1(a, b, c) is an
interval of the form [0, h2(a, b)], with h2(a, b) > 0. If a ≥ α(b),
by (33) and the fact that a ≤ �(a, b), then h2(a, b) < �(a, b). As
a consequence, if a ≥ α(b), then h2(a, b) is the unique value of
c ∈ [0, �(a, b)] satisfying h1(a, b, c) = c. Consider the set C =
{(a, b) ∈ R2

≥0 : a ≥ α(b), b > 0} and a sequence {(ak , bk )} in
C that converges to (a, b) ∈ C. We have 0 < h2(ak , bk ) < ak

for all k, and there exists a subsequence {(akl
, bkl

)} so that
h2(akl

, bkl
) → c, where 0 ≤ c ≤ a ≤ �(a, b). By the conti-

nuity of h1 , then h2(akl
, bkl

) = h1(akl
, bkl

, h2(akl
, bkl

)) →
c = h1(a, b, c), and hence c = h2(a, b). This shows that
h2(ak , bk ) → h2(a, b) and hence h2 is continuous in C.

Let D = {(a, b) : α(b) ≤ a ≤ r̃, U0 ≤ b ≤ U1}. Define m =
m(r̃, U0 , U1) via m = min(a,b)∈D [a − h2(a, b)]. The function
a − h2(a, b) is continuous and positive in the compact set D ⊂
C, and hence m > 0. Since supk≥0 wk ≤ U , then yk ≥ α(U)
implies that yk ≥ α(wk ). By (33), then for each k for which
yk ≥ α(U), we have yk − yk+1 ≥ yk − h2(yk , wk ) ≥ yk −
h2(yk , U), where the last inequality follows because h2(a, ·)
is nondecreasing. Let l = inf{k ∈ N0 : yk < α(U)}. Since
y0 ≥ α(U), then l ≥ 1 and yk ≥ α(U) for k = 0, 1, . . . , l − 1.
Note that (yk , U) ∈ D and hence yk − yk+1 ≥ m whenever
k = 0, 1, . . . , l − 1. This shows that l < ∞, and the result fol-
lows by taking K equal to the lowest integer not less that r̃/m.�

C. Proof of Claim 3: Suppose that Vk and Vk+1 are de-
fined. Then Vk ≥ α(U) > 0 and tk+1 = tk + R(Vk ) < ∞. Let
Φ(t, s, σ) denote the state transition matrix of the linear time-
varying system ẋ(t) = A(t, σ(t))x(t), satisfying Φ(s, s, σ) =
I . From (3) and (14), we have

xk+1 = Φ(tk+1 , tk , σ)xk+
∫ tk + 1

tk

Φ(tk+1 , s, σ)
[
g(s, x(s), σ(s))+G(s, x(s), σ(s))u(s)

]
ds

Using (5) and the fact that for all a, b ≥ 0 and φ ∈ K, then φ(a +
b) ≤ φ(2a) + φ(2b), it follows that Vk+1 = V (tk+1 , xk+1) sat-



isfies, using (15),

Vk+1 ≤ φ2
(
2|Φ(tk+1 , tk , σ)xk |

)
+

κ2

(∫ tk + 1

tk

[∣∣g(s, x(s), σ(s))
∣∣+∣∣G(s, x(s), σ(s))u(s)

∣∣
]
ds

)
.

The first summand above satisfies

φ2 (2 |Φ(tk+1 , tk , σ)xk |) ≤ φ2(2Ψe−λ(tk + 1 −tk )φ−1
1 (Vk ))

where we employed (15). Given that tk+1 − tk = R(Vk ),

e−λ(tk + 1 −tk ) = e−λR(Vk ) =
φ−1

2 (Vk/2)
2Ψφ−1

1 (Vk )
,

where we have used (32). It thus follows that

φ2(2|Φ(tk+1 , tk , σ)xk |) ≤ Vk/2, ∀σ ∈ S.

By means of (22), we can write for every h ∈ L1([tk , tk+1])∫ tk + 1

tk

φ3(|h(s)|)ds ≤ R(Vk )γ
(∫ tk + 1

tk

|h(s)|
R(Vk )

ds

)

We next employ (16) and the above inequality to reach
∫ tk + 1

tk

|g(s, x(s), σ(s))|ds ≤R(Vk )γ
(∫ t k + 1

t k

η σ ( s ) ( s , x ( s ) )

R (V k ) ds

)

≤ R(Vk )γ
(

Vk − Vk+1

R(Vk )
+
∫ tk + 1

tk

φ4(V (s, x(s)))|u(s)|
R(Vk )

ds

)
,

where we have used (30) and (18).
Using (31) with t0 replaced by tk , it follows that

V (t, x(t)) ≤ φ−1
5

(
φ5(Vk ) +

∫ t

tk

|u(s)|ds

)
(37)

for t ∈ [tk , tk+1]. Since φ4 is nondecreasing, we may employ
(37) to derive the following bound

∫ tk + 1

tk

φ4(V (s, x(s)))|u(s)|ds

≤
∫ φ5 (Vk )+

∫ t k + 1
t k

|u(s)|ds

φ5 (Vk )
φ4 ◦φ−1

5 (τ)dτ

= φ−1
5

(
φ5(Vk ) +

∫ tk + 1

tk

|u(s)|ds

)
− Vk ,

where the last equality follows because, according to As-
sumption 5, then

∫ s

0 φ4 ◦φ−1
5 (τ)dτ = φ−1

5 (s). Following similar
lines, using (17), (37), and since ω is nondecreasing, then

∫ tk + 1

tk

∣∣G(s,x(s),σ (s))u(s)
∣∣ds ≤

∫ tk + 1

tk

ω (V (s,x(s))) |u(s)| ds

≤
∫ φ5 (Vk )+

∫ t k + 1
t k

|u(s)|ds

φ5 (Vk )
ω ◦φ−1

5 (τ)dτ

=
∫ φ−1

5 (φ5 (Vk )+
∫ t k + 1

t k
|u(s)|ds)

Vk

ω(r)
φ4(r)

dr,

where the last equality follows via the change of variables
r = φ−1

5 (τ). Combining the bounds obtained into the inequal-
ity for Vk+1 , and considering that

∫ tk + 1

tk
|u(s)|ds ≤ R(Vk )uk

for ISS and that
∫ tk + 1

tk
|u(s)|ds = uk for pISS, it follows that

Vk+1 ≤ h1(Vk , uk , Vk+1). Evaluating (37) at t = tk+1 , then
Vk+1 ≤ �(Vk , uk ). From the definition of h2 , it follows that
Vk+1 ≤ h2(Vk , uk ). The function h2(a, ·) is nondecreasing
because h1(a, ·, c) is. Thus, h2(Vk , uk ) ≤ h2(Vk , U). Then,
h2(Vk , U) < Vk follows from Vk ≥ α(U) and (33). �

D. Proof of Lemma 4.1: The proof requires the following
preliminary result.

Lemma A.2: Let XM be the set of Lebesgue measur-
able functions h : [0, 1] → [0,M ], where M > 0. Let ρ :
[0,M ] → [0, 1] be continuous, strictly increasing, and such that
ρ(0) = 0 and ρ(M) = 1. Then, there exists γ ∈ K such that∫ 1

0 ρ(h(s)) ds ≤ γ
(∫ 1

0 h(s) ds
)

for all h ∈ XM .

Proof: Let γ∗ : [0,M ] → [0, 1] be defined by

γ∗(l)=sup
{∫ 1

0
ρ(h(s)) ds : h ∈ XM ∧

∫ 1

0
h(s) ds ≤ l

}
.

Note that γ∗ is nondecreasing. Consider the strictly decreas-
ing sequence {sk}∞k=0 , sk = ρ−1(2−k ). Note that s0 = M .
Let ε > 0 and k ∈ N0 be such that 2−k+1 < ε. Suppose
that l > 0 satisfies l < δ = 2−k sk . Let h ∈ XM be such
that

∫ 1
0 h(s) ds = l and let A1 = {s ∈ [0, 1] : h(s) ≤ sk}

and A2 = {s ∈ [0, 1] : h(s) > sk}. The fact |A2 |sk ≤∫
A 2

h(s) ds ≤ l, implies that |A2 | ≤ l/sk < 2−k , where
|A2 | denotes the Lebesgue measure of A2 . Then, taking
into account that ρ is strictly increasing,

∫ 1
0 ρ(h(s)) ds =∫

A 1
ρ(h(s)) ds +

∫
A 2

ρ(h(s)) ds ≤ ∫A 1
ρ(sk ) ds + |A2 | ≤

2−k + 2−k = 2−k+1 < ε. Therefore γ∗(l) < ε ∀l < δ and
liml→0+ γ∗(l) = 0. Since γ∗ is nondecreasing, γ∗(0) = 0,
and liml→0+ γ∗(l) = 0, then there exists γ ∈ K such that
γ∗(s) ≤ γ(s) for all s ≥ 0. Thus, for all h ∈ XM , we have∫ 1

0 ρ(h(s)) ds ≤ γ∗
(∫ 1

0 h(s)ds
)
≤ γ

(∫ 1
0 h(s)ds

)
. �

Proof of Lemma 4.1: i) ⇒ ii). For every r ≥ 1, consider the
function hr ∈ L1([0, 1]) defined by hr (s) = r if s ∈ [0, 1/r]
and hr (s) = 0 otherwise. We have

∫ 1
0 φ(|hr (s)|)ds = φ(r)

r ≤
γ(1), for all r ≥ 1. As a consequence, lim supr→∞

φ(r)
r ≤

γ(1) < ∞.
ii) ⇒ i). We can suppose, without loss of general-

ity, that φ is, in addition, strictly increasing. If it is
not, just replace φ by any class-K function which ma-
jorizes φ and satisfies item ii) of the lemma. Let r̄ > 0
and K > 0 satisfy φ(r) ≤ Kr for all r ≥ r̄. For every
h ∈ L1([0, 1]), define f(h) = {s ∈ [0, 1] : |h(s)| < r̄},
g(h) = {s ∈ [0, 1] : |h(s)| ≥ r̄} and h(s) = h(s) if s ∈ f(h)
and h(s) = 0 otherwise. Note that [0, 1] = f(h) ∪ g(h) and∫ 1

0 φ(|h(s)|)ds =
∫

f (h) φ(|h(s)|)ds +
∫

g (h) φ(|h(s)|)ds =∫ 1
0 φ(|h(s)|)ds +

∫
g (h) φ(|h(s)|)ds. Define ρ : [0, r̄] → [0, 1]

via ρ(s) = φ(s)/φ(r̄). By Lemma A.2, there exists

γ̃ ∈ K such that
∫ 1

0 ρ(|h(s)|)ds ≤ γ̃
(∫ 1

0 |h(s)|ds
)

and

hence
∫ 1

0 φ(|h(s)|)ds ≤ φ(r̄)γ̃
(∫ 1

0 |h(s)|ds
)

. In addition,



∫
g (h) φ(|h(s)|)ds ≤ ∫g (h) K|h(s)|ds ≤ K

∫ 1
0 |h(s)|ds. Then,∫ 1

0 φ(|h(s)|)ds ≤ φ(r̄)γ̃
(∫ 1

0 |h(s)|ds
)

+ K
∫ 1

0 |h(s)|ds ≤
γ
(∫ 1

0 |h(s)|ds
)

, with γ(s) := φ(r̄)γ̃(s) + Ks. �
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cenciado en Matemática degree and the Doc-
tor’s degree in mathematics from the Universi-
dad Nacional de Buenos Aires (UBA), Argentina,
in 1994 and 2001, respectively.

From 1993 to 1995, he received a Research
Fellowship from the Argentine Atomic Energy
Commission (CNEA) in nonlinear control. Since
1995, he has been with the Department of Math-
ematics of the Facultad de Ingenierı́a (UBA),
where he is currently a part-time Associate Pro-

fessor. Since 2005, he has held a Professor position at the Department
of Mathematics of the Instituto Tecnológico de Buenos Aires (ITBA) and
currently is the head of the Centro de Sistemas y Control (CeSyC). His
research interests include hybrid systems and nonlinear control.

Hernan Haimovich received the Electronics En-
gineering degree from the Universidad Nacional
de Rosario (UNR), Argentina, in 2001 and the
Ph.D. degree from The University of Newcastle,
Australia, in 2006.

In 2006, he worked as a Research Assis-
tant at the Centre for Complex Dynamic Sys-
tems and Control at the University of Newcastle,
Australia, and later as an Argentine Research
Council (CONICET) Postdoctoral Research Fel-
low at the UNR, Argentina. Since 2007, he holds

an Investigator position from CONICET, currently at the International
French-Argentine Center for Information and Systems Science (CIFA-
SIS). Since 2008, he also holds an Adjunct Professor position at the
School of Electronics Engineering, UNR. His research interests include
switched systems, networked control systems, and nonlinear control.

Rafael Antonio Garcı́a received the Engineer-
ing degree in electronics, the Licenciado degree
in mathematics, and the Ph.D. degree in mathe-
matics from the University of Buenos Aires, Ar-
gentina, in 1979, 1984, and 1993, respectively.

From 1979 to 1987, he worked in the Instituto
de Investigaciones Cientı́ficas y Técnicas de las
Fuerzas Armadas in advanced communications
systems. Since 1995 he has been Professor of
Mathematics and of Control Theory at the Fac-
ulty of Engineering of the University of Buenos

Aires, where he is currently a part-time Associate Professor. Since 2002,
he has been the head of the Department of Mathematics of the Instituto
Tecnológico de Buenos Aires (ITBA). His main research interests are in
nonlinear control, hybrid systems and stochastic optimization.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


