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Abstract
Due to the progressing climate change, climate-neutral resources are becoming
increasingly important. The forest industry is aware of this problem and hence, is
looking for new technologies to make the production of its natural resource more
ecient. Therefore, this thesis presents an energetic optimization of a forestry
crane. For this purpose, a pseudoinverse solution of the crane kinematics is
optimized by the gradient projection method according to minimum hydraulic
pressure and ow rate. The hydraulic pressure reveals to be the relevant
optimization parameter. By increasing the feedback pressure, its inuence on
high-pressure peaks is increased in order to successfully reduce these. To
maximize the energy savings, a hydraulic transformer is included in this
approach. By coupling the inner and outer boom, potential energy is utilized for
contrary motions of these. The developed algorithm for optimizing the energy
demand is implemented in a holistic simulation model of a forestry crane arm.
The eectiveness of this approach is tested in the model using representative
trajectories. Energy savings of up to 26.9 % compared to a least norm
pseudoinverse solution can be determined using the optimized control system.
When the energy-saving potential of the coupling of the inner and outer boom is
also considered, the total reduction in energy increases to up to 31.8 %.

Keywords:
forwarder, knuckle-boom crane, energy optimization, gradient projection method

Kurzfassung
Durch den fortschreitenden Klimawandel gewinnen klimaneutrale Rohstoe
zunehmend an Bedeutung. Die Forstindustrie ist sich dieser Problematik bewusst
und sucht nach neuen Technologien, um auch die Produktion ihres natürlichen
Rohstoes ezienter zu gestalten. Im Hinblick dessen präsentiert die vorliegende
Arbeit eine energetische Optimierung eines Forstkrans. Dafür wird eine
pseudoinverse Lösung der Krankinematik mit Hilfe der Gradient Projection
Method nach minimalem Hydraulikdruck und Volumenstrom opti miert. Dabei
zeigt sich der Hydraulikdruck als maßgebliche Optimierungsgröße. Durch ein
Potenzieren des Rückmeldedrucks wird dessen Einuss auf Druckspitzen
gesteigert, um diese erfolgreich zu reduzieren. Um die Energieeinsparung zu
maximieren wird ein hydrau lischer Transformator in diesen Ansatz mit
eingebunden. Dabei wird durch eine Kopplung von Hub- und Wipparm potenzielle
Energie bei gegenläugen Bewegungen dieser genutzt. Der entwickelte
Algorithmus zur Optimierung des Energiebedarfs wird in ein holistisches
Simulationsmodell des Forstkrans implementiert. Die Eektivität dieses Ansatzes
wird in dem Modell anhand von repräsentativen Trajektorien geprüft. Dabei kann
eine Ener gieeinsparung von bis zu 26,9 %, gegenüber einer
Least-Norm-Pseudoinversen-Lösung, durch die optimierte Steuerung ermittelt
werden. Wenn man das Energiesparpotential der Kopplung von Hub- und
Wipparm mit einbezieht, erhöht sich die Gesamtreduktion der Energie auf bis zu
31,8 %
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1 Introduction

1.1 Motivation
About one-third of Germany is covered by forest [7]. The demand for
climate-neutral energy sources is growing in times of climate change and global
warming. Furthermore, the amount of damaged timber rises due to insect
infestations and droughts leading to an increase in timber felling. In 2019 the
damage caused by insect infestations was respon sible for half of the total 68 ·



106��3felled timber in Germany. This requires intelligent measures to make the
felling process more eective. At the same time, this process should be designed to
be energy ecient. [38]

In the forestry industry, cut-to-length (CTL) logging has been established as the
main felling process for large-scale production. In this process, the trees are cut
by a harvester and limbed in the forest. The limbed stems are crosscut to the
desired length by the harvester. A forwarder picks up these logs in the felling
area and transports them to a roadside landing, where these are stored until pick
up for long-distance transport. The loading and unloading process of the timber
onto the load-space of the forwarder is accomplished by a knuckle-boom crane.
This crane is maneuvered by an operator on the vehicle. Controlling this crane
arm is a complex task for the operator. Until today in many forwarders, each joint
of the crane arm is steered individually by the operator accordingly, to guide the
crane tip through the workspace. Operators spend more than 70 % of their
working time with crane manipulations [12]. Recent controls of knuckle-boom
cranes simplify the task of controlling the crane arm for the operator, by solving
the motion of each joint to the desired path computational. This path is dened by
the operator. Since the crane arm is a redundant system, an innite number of
congurations are given for each position. This redundancy can be used to
advantage and optimized according to various performance criteria. Since fossil
fuels are becoming increasingly scarce and emission savings are also an issue in
forestry, an optimization with regard to the energy consumed by the crane motion
is desirable. [30]

1.2 Scope of the Thesis
This thesis follows on from previous work. In a former thesis [24], an energy
optimization solution is presented and included in a holistic simulation model. This
approach searches for the minimum kinetic energy of the motion of a
knuckle-boom crane. Furthermore, a hydraulic transformer, that uses potential
energy due to contrary motions of the booms is included in this approach.
Minimal kinetic energy does not necessarily lead to minimal energy consumption
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hydraulically actuated knuckle-boom cranes.
In a novel approach in this thesis, these circumstances shall be incorporated and



a minimal energy solution to the control of a knuckle-boom crane is searched.
Therefore, local and global optimization algorithms should be compared and
examined for the suitability of the given system. An appropriate algorithm should
then be included in the existing simulation model. Furthermore, the hydraulic
transformer is to be integrated into the system. The developed solution can then
be tested regarding its eciency.

1.3 Outline
The necessary fundamentals for understanding the approach of this thesis are
explained in Chapter 2. For this purpose, commonalities in robotics are
examined and kinematic principles are introduced. Furthermore, basic working
principles of a load sensing system are conveyed. In Chapter 3 the structure of a
forwarder and especially the knuckle-boom crane is presented. In regard to a
minimal energy solution furthermore, a state of research on
performance-optimizing algorithms is introduced.

Chapter 4 presents the implementation of the energy optimal algorithm for a given
proto type. For this purpose, the gradient projection method is used. The
performance gradient is a function of the current volume ow and cylinder
pressure. The necessary steps are explained in detail and the formulas to derive
this result are illustrated. Furthermore, the hydraulic transformer is included.

The results of a comprehensive test in a simulation model with regard to the
eectiveness of the designed algorithm, are outlined in Chapter 5. Moreover, the
validity of the working principle is discussed.

A conclusion of the thesis is given in Chapter 6

2

2 Fundamentals

This chapter presents the scientic fundamentals of a forestry crane. To describe
the motion of a crane arm generically, basic kinematics of robotic manipulators are



introduced. Since forestry cranes are hydraulically actuated, the system
characteristics of the working hydraulics are summarized.

2.1 Kinematics of Robotic Manipulators

The scientic study of the kinematics of knuckle-boom cranes, which are used on
for warders is a relatively new eld of science. Due to the structure of the crane
arm, similar problems of the kinematics can be found in industrial robotics, where
this topic is inves tigated for a couple of decades. More precisely, the
knuckle-boom crane of a forwarder can be compared to a serial link robot arm. In
Figure 2.1 an industrial robot arm and a knuckle-boom crane on a forestry
machine are presented. According to Siciliano [37], robotic mechanisms are
systems of rigid bodies connected by joints. This classies the forwarder as a
robotic mechanism. At the forwarder, the booms represent the rigid bodies that are
connected by the joints. The grapple is considered the end-eector of the robotic
arm.
The following sub-chapters describe the fundamentals of the methods used in this
thesis, adapted from industrial robotics. To determine the motion of a serial link
manipulator, basic robotic kinematics are introduced.

(a) Industrial robotic manipulator [2] (b) Knuckle-boom crane on forwarder [21]

Figure 2.1: Comparison of a industrial robotic arm and a forestry crane

3
2 Fundamentals

2.1.1 Elementary Kinematics

The dynamics of a serial link manipulator can be divided into kinematics and
kinetics. Kinematics describes the mechanical structure and motion of a body.
Thereby masses of the body and forces, that are acting onto the structure, are not
considered. Instead, these are investigated when looking at the kinetics of a
system. The optimization method used in this thesis only focuses on the
kinematics of a knuckle-boom crane. The system’s kinetics are not taken into
account. This simplies the complexity of the model in order to reduce
computational eort. Furthermore, no information about the masses and their
center of action is needed, which is variable for each payload and not always
given. By applying the kinematics of a serial link manipulator, the location of a



manipulator is described by dening the position and orientation of each body of
the linked chain. The combination of both is called pose and is mandatory to fully
determine a rigid body in space. The following three paragraphs describe this
approach. [37, 10, 11]

Position The location of any point in a coordinate frame can be dened by a
coordinate vector (Equation 2.1). The dimension of the vector corresponds to the
number of coordinate axes. Since in serial link manipulators many coordinate
systems are dened, the utilized coordinate frame must be claried by a
superscript. [11]

Ẑ

P

{A}

X̂

Ŷ

���� =

���
�
���� ����


(2.1)

Figure 2.2: Position vector, adapted from [11]

Orientation To describe the orientation of a body in space a coordinate system
needs to be attached to it. Thus, the orientation of this coordinate frame can be
expressed relative to the reference frame. In Figure 2.3 the orientation of frame
{��} can be explained relative to {��}. One way to do so is to describe the unit
vectors of the coordinate axes {��} in the base coordinate system {��}. In

Equation 2.2 ��
��ˆ��,

��
��ˆ��,

��
��ˆ�� are the unit vectors of the

coordinate axes of frame {��} expressed in terms of frame {��}. By
combining them into one 3x3 matrix, the rotational matrix of frame {��} relative
to frame {��} is built and called ������. The scalars������ in Equation
2.3 can be substituted by the dot product of a pair of unit
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vectors because the rotation of a unit vector of the observed frame is the
projection onto the unit direction of the reference frame (see Equation 2.4). [11]
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������

=����ˆ��
��
��ˆ��
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��ˆ
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Figure 2.3: Orientation, adapted from

[11]
����

=��������������(2.5)

Pose The position and orientation of a rigid body are often expressed together
and can be combined in one entity called pose. This combination is a set of four
vectors. By looking at Figure 2.3 one vector (����) denes the position of point
���� and three vectors explain the orientation (������). For example,
frame {��} is expressed in dependence of its position and orientation relative to
{��}: [11]

{��} = {������,
���� } (2.6)

To determine the displacement or motion of a rigid body in relation to an initial
coordinate frame, its relative pose is dened via the relative transformation of two
coordinate systems. One coordinate system refers to the rigid body, the second

one is the initial frame. In respect thereof, the transformation matrix is used. This
matrix consists of a rotational matrix and a translational vector for a

three-dimensional coordinate frame, which are combined in a single 4x4 matrix.
Equation 2.8 describes this approach, where ����3��3

��

represents the 3x3 rotational matrix and ���� represents the translational 3D
vector. ���� and ���� represent a positioning vector in coordinate frame
{��} and {��}, which describe the same point according to each coordinate
system. [37, 10, 11]

���� =������
���� (2.7)
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2 Fundamentals

2.1.2 Task Space and Configuration Space
The previous kinematic formulations all refer to three-dimensional euclidean
coordinate frames, which in robotics is named task space (T-space). Task space
coordinates are user-orientated since the pose of the end-eector or each link can
be expressed by main world coordinates. By looking at T-space coordinates, a
pose of a body is directly pic tured, whereas the pose of each link of a serial
chain must be expressed separately or combined by using transformation
matrices. Especially in an over-actuated system by expressing the end-eectors
pose, the position of the links will not be dened. In contrast, the conguration space
(C-space) is introduced. In conguration space, the pose of all joints can be
expressed with the usage of only one coordinate point. The dimension of the
C-space is dened by the number of joints of the observed serial link body. Each
coordinate axis represents a single link of the system. The range of the
coordinate axes is specied by the range of motion of the link. For revolute joints,
an angular position is given, and for prismatic joints, the translational position
along the joint axes is expressed. Hence, the system is fully dened by only
knowing one coordinate point in C-space. [37, 10]

In Figure 2.4 the coordinate system representation of a serial link arm with two
joints is shown. The task space coordinates are expressed by Equation 2.9. The
detailed trans formation matrix is given in Equation 2.8. Since this example only
has two joints, the transformation matrix gives the pose of frame {��}. With
more joints, the transformation matrix is a summary of all transformations and the
explicit pose of each coordinate system can not be identied. For the same
example, the C-space coordinates are given by 2.10. In this case, ��1 and
��2 describe rotational joints. A way of mapping the end-eector by knowing the
C-space variables is presented in the following Chapter 2.1.4 and is known as
forward kinematics.

By looking at the knuckle-boom crane as a serial link arm with four joints, it can
be described in a 4D C-space.

Ẑ

p

p

q

X̂

����

=������
���

� (2.9)
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{B}

Ẑ
Ŷ

Ŷ
�� =
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Figure 2.4: T-space and C-space

coordinates 6

2.1 Kinematics of Robotic Manipulators

2.1.3 Denavit-Hartenberg Parameters

Robotic arms are more formally named serial link manipulators. These can be
dened as a chain of links that are connected by joints. The motion of each link
aects the relative pose of each member of the chain. Aside from the base and the
end-eector, the links in a serial chain manipulator are attached to one another
through joints on both sides. With an increasing number of joints, the pose of the
end-eector becomes a complex function of the state of each joint. [37, 10, 11]

Link A link is regarded as a rigid body that denes the spatial relationship of two
neighboring joint axes of a serial chain manipulator. [11]

Joint Two neighboring links are connected by a joint. Each joint allows one
degree of freedom and can either be rotational (revolute joint) or translational
(prismatic joint). Figure 2.5 shows simple planar robotic arms. Example a
presents a planar arm with one rotational degree of freedom��1, thus this joint
is considered a revolute joint. In example b an additional revolute joint is added,
hence by having two links this is the simplest conguration of a serial link
manipulator. Similarly, example c consists of two links. ��1 further on has a
rotational degree of freedom, whereas ��2 has a translational degree of
freedom and reveals a prismatic joint. {0} displays the base and {��} is the
end-eector. [10]

Figure 2.5: Joint types of serial link manipulators [10]

"For a manipulator with �� joints numbered from 1 to ��, there are �� + 1
links, numbered from 0 to ��. Joint �� connects link �� − 1 to link�� and
moves them relative to each other. It follows that link �� connects joint �� to



joint�� + 1. Link 0 is the base of the robot, typically
xed and link ��, the last link of the robot, carries the end-eector or tool" [10].

This convention limits the motion of each link and allows specic system
simplications. Denavit Hartenberg introduced the notation named after him,
which limits the system parameters due to constraints given by the system [22].
The notation uses only four instead of six parameters to describe the relationship
between two coordinate frames while constraining the others. This limits the
general applicability of this approach but simplies the system if the application of
Denavit-Hartenberg is permissible. The approach of only using four parameters is
explained in Table 2.1 and is illustrated in Figure 2.6. [10, 11]
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Table 2.1: Denavit-Hartenberg Parameters [10]

Parameters Variable Description Type of variable

Joint angle�� �� the angle between
the����−1 and���� axes about the
����−1 axis

Link oset���� the distance form the
origin of frame�� − 1 to the����
axis along the����−1 axis

Link length���� the distance between
����−1 and���� axes along the
���� axis

Link twist���� the angle from the
����−1 axis to the���� axis about

the���� axis

Joint type������ =�� for a
revolute joint,�� =�� for a prismatic
joint
revolute joint variable prismatic joint

variable constant

constant

constant



Figure 2.6: Denition of standard Denavit-Hartenberg link parameters

[10] 8

2.1 Kinematics of Robotic Manipulators

Due to the limitations made through applying the Denavit-Hartenberg method, the
trans formation matrix ��−1���� from the coordinate frame located in joint��
− 1 to the coordinate frame located in joint �� can be reduced to a standard
Denavit-Hartenberg transformation matrix. This matrix only consists of
elementary rotations and translations, as �� ��,����,���� and����.
[10, 11]

��−1����(�� ��,����,����,����) =���� (�� ��) ⊕���� (����) ⊕����
(����) ⊕���� (����) (2.11)

��−1���� =


cos

�� �� − sin��
�� cos����
sin�� �� sin
�������� cos

�� ��

sin�� �� cos��

�� cos���� − cos

�� �� sin����



���� sin�� �� 0

sin���� cos

�������� 0 0 0
1


(2.1

2)
Equation 2.12 expands this standard transformation matrix in homogeneous
matrix form. ���� and ���� are always constant. ����is constant for
revolute joints and �� ��is the joint variable. Prismatic joints resolute in
constant�� ��,���� = 0 and a variable����. [37, 10, 11]

2.1.4 Forward Kinematics

Forward kinematics is a way of mapping robot congurations or joint coordinates
from the base to the end-eector’s pose by knowing the position and the rate of
motion of all members of the chain. For this, it is crucial to know all geometric link
parameters to solve the forward kinematics. In order to express the end-eector’s
pose corresponding to the pose and geometry of each link of the arm, the
transformation from the base coordinate frame to the coordinate frame of the
end-eector must be determined. This process is handled step-by-step for a serial
link manipulator by concatenating the transformation between coordinate frames
xed in each link, starting from the base towards the end eector. Firstly, all
transformation matrices along each link must be known. To determine the overall
transformation matrix from the base of the robot’s arm to the end-eector frame,
all single joint transformations must be multiplied by the standard matrix product
as it is shown in Equation 2.13. [37, 10]

0���� =0��1 ·
1��2 ·

1��2 · . . . ·
1−������ (2.13)

The overall transformation matrix allows an exact determination of the
end-eector’s position through forward kinematics. Hereby, 0�� is the base
coordinate frame and ���� is the end-eectors coordinate frame (see Equation
2.14). [37, 10]

���� =0���� ·0�� (2.14)

By looking at the transformation matrix, it can be observed, that it is a function of
joint variables �� �� and ����, depending on if the joint is revolute or
prismatic. These can be aggregated to ����. The subscript ��indicates the
joint. ���� are the conguration space coordinates as introduced in Chapter
2.1.2. By taking this into account the end-eector’s
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position�� observed in the base coordinate frame is a function of��: [37, 10]

�� =�� (����) (2.15)

To determine the velocity of the end-eector, the forward instantaneous kinematics
needs to be solved. For this purpose, the position of all joints along the serial link
chain, as well as all geometric link parameters must be known. Moreover, the rate
of motion of all joints is necessary to solve the end-eector’s motion. The rst-order



dierential kinematics is applied for determining the end-eector’s velocity. By
dierentiating Equation 2.15 with respect to time, Equation 2.16 is obtained. The
task space velocity vector is given by ��, whereas �� is the conguration
space vector. [37, 10]

����

���� =�� = J(��) ·�� (2.16)

J(��) with respect to �� is known as the Jacobian matrix. This matrix is a��
x �� matrix where �� is the dimension of �� and �� is the dimension of
��. The Jacobian matrix is built by the transposed gradient of each component
of a vector. [37, 10]

����1· · ·����1 (q)
��f(q)




∇����1
(q)




=



��

��1 (q)

������




(2.17)

J������ =

����1· ·

·��f(q)

������

=

...

∇������
(q)
..
.
..
.
...

������
(q)

����1· ·

·��

���� (q)

������

2.1.5 Inverse Kinematics

So far, only the forward kinematics are discussed. This means knowing the pose
and rate of motion of each link, and thus being able to determine the end-eectors
pose and rate of motion. Most problems in robotics are the inverse of this
scenario. This means, determining the rate of motion of each joint, by knowing the
pose of each link and having a desired end-eector velocity as a given input. The
solution to this problem could be either found analytically (closed form) or
numerically. This chapter describes a closed-form solution for solving the inverse
problem. [37, 10]

Closed-Form and Numerical Solutions The inverse kinematics solution can either
be de termined by using a closed-form algorithm that implements geometric or
algebraic ap proaches. The second option is nding an iterative numerical solution.
With an increasing number of links, it becomes harder to nd a closed-form
solution. If the contemplated system is redundant, mostly several combinations of
joint coordinates result in the same end-eector pose. Manipulators with a total of
six degrees of freedom are solvable. Further restrictions must be made to nd a
closed-form solution. This can either be done by analytic expressions or by a
polynomial solution of degree four or less in a way that non-iterative calculations
suce to nd the solution. Numerical solutions include algo rithms that optimize the
inverse solution by multi-iterative methods according to a desired
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performance. Generating numerical solutions is time-consuming in comparison to



analytic solutions and depending on the system. Thus, this approach is not
real-time capable. [37, 10, 11]

By looking at the dierential kinematics equation (Equation 2.18) for a square
Jacobian matrix, which means �� = ��, the inverse solution is determined by
regularly inverting the Jacobian matrix, where the inverse exists: [37, 10]

�� = J(��)−1·�� (2.18)

For some end-eector poses in task space, an inverse solution does not exist (J−1

= 0). These joint congurations are called singularities and should be avoided.
The task of solving the inverse solution becomes dicult when looking at
redundant systems. A redundant system is dened by having more degrees of
freedom than required to accomplish a requested task. This occurs if the robotic
arm has more joints than degrees of freedom of the end-eectors motion. One
approach to solve the inverse problem of a redundant system is the so-called
Moore-Penrose pseudoinverse which was rstly introduced by Moore and
simplied by Penrose and put into modern notation by Ben-Israel [5]. For a low
rectangular and full-rank Jacobian matrix, its pseudoinverse can be expressed
as follows. J��expresses the transpose of the Jacobian matrix. Since only
quadratic matrices (�� = ��) are invertible, the examined Jacobian matrix is
multiplied by its transpose and then inverted. Thereafter, the inverted matrix is
multiplied by the transpose again to generate the desired shape of rows and
columns (��+ =�� and��+ =��). [37, 10]

J+ = J��(JJ��)−1(2.19)

The general solution is expressed in Equation 2.20. The velocities �� are the
end-eectors velocity vectors in conguration space, and ��0 is an arbitrary

conguration space velocity vector. �� is the end-eector’s velocity in the base
frame coordinate system. The general inverse solution �� consists of ����,
which is the special solution of the equation, and ��ℎ, known as the
homogeneous solution. ���� can be a stand-alone solution to the problem and
provides the least square solution of the equation. This implies �� is solved to
minimum joint velocity if ��ℎ = 0. By looking at the homogeneous solution, the
term (I − J+J) is the orthogonal projection matrix into nullspace of J, with I
expressing the unit matrix. The homogeneous solution describes the self-motion
of the serial link arm. Self-motion can only be seen in redundant systems and
describes a motion of the links while the end eector remains in a constant position.
The nullspace corresponds to the solution space of the inverse kinematics. Hence
the homogeneous solution can be chosen accordingly to improve performance.
[37, 10]

�� =���� +��ℎ = J
+
�� + (I − J+J) ·��0 (2.20)

2.1.6 Trajectories
The path of the end-eector between point A and point B over time is called a
trajectory. For this purpose, two approaches can be used. Either Cartesian

motion, which is a designated
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path in task space, or joint space motion, which is a designated path in
conguration space. The pseudoinverse solution needs a given trajectory of the
end-eector to solve the conguration of each joint per time step. Additionally,
numerical solutions can propose a trajectory if only start and end point are given
for the motion of a manipulator. This gives freedom for optimization for a path
over time. Due to the capacity to choose the path, velocities, and accelerations
accordingly to satisfy any performance criterion. [10]

2.2 Load Sensing Hydraulic Systems
To supply hydraulic energy to a multi-manipulator hydraulic system, mainly three
dierent systems are used; Flow-controlled-systems, pressure-controlled systems,
or complex controlled systems. These three systems can be distinguished by the
way the hydraulic pump is controlled. The pump delivers the power needed to
the hydraulic actuators. Load sensing systems are classied as complex-controlled
systems. In classic load sensing systems, the pump displacement is controlled by
the highest pressure of the system. The pressure applied to each manipulator is
sensed and compared. The highest pressure required is forwarded to the pump
controller and used to adjusts the system pressure. The pump controller is
designed to always exceed the load sensing pressure by Δ����������. Due
to system composition, only the volumetric ow rate needed is supplied by the
pump.

p in bar

p

p

A
Δp flowB

power loss

Q in l/min

Figure 2.7: Performance of a load sensing system, adapted from [6]



��ℎ�������������� =�� ∗ Δ������ (2.21)

As it can be observed in Figure 2.7, the required hydraulic power is dened by the
sum of the volumetric ow rate of all consumers and the dierence of the overall

load sensing
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pressure to tank pressure. This correlation is shown in Equation 2.21. The
dierence of the system pressure and the pressure of each consumer multiplied by
the corresponding ow rate are identied as power losses. As it can be seen in the
diagram in Figure 2.7, the yellow area shows the power losses. This area
becomes minimal for equal pressure of each consumer or for small volumetric
ow rates of consumers with lower pressure. With a rising number of consumers,
the power losses increase since for most working conditions the pressure of
each consumer diers. By systematically reducing pressure peaks and
additionally reducing the volumetric ow rate of each consumer, the power losses
and thus the consumed power by the system can be reduced. [17, 18]
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Firstly, the application range of forwarders and their structure and function are
introduced. In a second sub-chapter, a state of the current research on optimizing
energy consumption on knuckle-boom cranes is presented.

3.1 Technical Specifications of a Forwarder



In the following subsections, the structure and function of the forwarder is
explained. Special attention is paid to the knuckle-boom crane.

3.1.1 Forwarder Design

"A forwarder is a log-loading and transport machine consisting of front and rear
frames with six or eight wheels" [30]. Eight wheeled models often use bogies to
increase traction as well as for soil-conserving maneuvering. The steering of a
forwarder is implemented by an active articulated steering system. A passive
rotational joint allows rotation between the front and rear frames of the vehicle.
This ensures maximum traction while passing obstacles. The driver controls the
machine from a cab, which is placed on the front frame. The rear frame consists
of a load space on which the logs are loaded by a crane which is located on the
front of the rear frame. The logs are secured by adjustable stakes. The hydraulic
system consists of power train hydraulics, including hydraulic motors and
steering cylinders, and working hydraulics to power the knuckle-boom crane.
Both of which are powered by the internal combustion engine. A serial link
hydraulic manipulator like the knuckle-boom crane is a mechanically complex
rigid body structure. The crane consists of one rotational joint in the jaw direction
and two joints in the pitch direction. Furthermore, a telescopic boom increases the
reach of the knuckle-boom crane. At the end of the telescopic boom, a log gripper
(grapple) is mounted and functions as an end-eector of the crane. This is
visualized in Figure 3.1. Nowadays the working hydraulics are mostly managed by
a load sensing system (Chapter 2.1.2), which regulates pressure and ow rate by
hydro-mechanical feedback according to the power requirements. [30, 23]
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Figure 3.1: HSM BigFoot technical drawing [20]



3.1.2 Knuckle-Boom Crane

Figure 3.2 shows a 3D drawing of a knuckle-boom crane similar to the one
discussed in this thesis. These cranes are designed to lift heavy payloads and
are driven by hydraulic power. The knuckle-boom crane consists of four links and
a grapple, which functions as an end-eector to grasp wooden logs. The links are
connected by four joints and the grapple has additional links to ensure multiple
degrees of freedom. The links are labeled as��1 −��4 similarly the joints are
labeled as ��1 − ��4. Joints ��1 − ��3 have one rotational degree of
freedom and ��4 has one translational degree of freedom. All joints are
actuated by hydraulic cylinders.
Link ��1 is the base of the crane and functions as a mounting point, where the
crane arm is mounted onto the vehicle base. ��1 also is the housing of the
slewing mechanism ��1, which allows an angular motion of the crane structure
on a horizontal plane. In vehicle-based coordinates, this can be compared to a
rotation around the yaw axis. ��1 connects the crane pillar��2with the crane
base ��1. The remaining joints ��2 − ��4 operate on a vertical plane. In
combination with joint ��1 a 3D working space is generated. The inner boom
��3 is connected to the crane pillar by joint��2 on one side. On the other side,
the outer boom ��4 is attached through ��3. The outer boom is hollow and
houses the telescope joint ��4. The grapple is mounted on the tip of the
telescope unit.
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Figure 3.2: Knuckle-boom crane, adapted from [25]

��1Crane mounting bracket

��2Crane pillar

��3 Inner boom

��4Outer boom
�� Grapple

3.2 Energy Optimization of the Knuckle-Boom Crane

As this thesis focuses on energy optimal solutions to control knuckle-boom
cranes, this chapter presents hydraulic-mechanical methods to save energy
during working cycles, as well as computational control algorithms to do so. In the
rst sub-chapter, a hydraulic transformer is presented. The second sub-chapter
presents closed-form and numerical algorithms to control the crane arm.

3.2.1 Energy Savings Through a Hydraulic Transformer

During the loading process of a forwarder, the crane arm is raised and lowered to
dierent heights to bypass obstacles or reach logs. This implies a dierence in
potential energy. Also on horizontal trajectories, due to the mechanical structure of
the crane arm, the inner and outer boom execute a contrary motion, which leads to
a dierence of potential energy within two links. Whenever a boom is lowered while
a second one is raised, the potential energy can directly be transferred between
these two booms instead of dissipating as heat.
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Therefore, the forwarder discussed in this thesis is equipped with a hydraulic
transformer (HT). With this transformer, the hydraulic cylinder of the inner boom
(IBC) and the hy draulic cylinder of the outer boom (OBC) are connected. This is
shown by the hydraulic circuit in gure 3.3. A hydraulic transformer consists of two
hydraulic pumps/motors, which can work both ways and function as both. These
two displacement units are con nected mechanically. Hence, the hydraulic power
is transmitted mechanically from the OBC to IBC and vice versa. The two
pump/motor units have the same displacement. Thus, the same volumetric ow
rate adjusts on both sides of the hydraulic transformer.



The rod side of the OBC and the piston side of the IBC aect each other through
the unit. If during a loading process, the inner boom ��3 is lowered and the
outer boom ��4 is lifted, the potential energy from lowering the inner boom can
be used to lift the outer boom. This mainly occurs during a lateral movement while
reaching out to load or unload a log. The same process can be seen during a
movement of the crane tip towards the machine, which occurs while loading logs
onto the load space. The inner boom rises while the outer boom lowers. The
potential energy of the outer boom is directly transferred into usable hydraulic
energy to extend the IBC and thus raise the inner boom.
According to Geiger et al. [16], the optimized hydraulic system with the hydraulic
trans former saves energy up to 16 %. [16, 15]

F

LS

Figure 3.3: Hydraulic transformer, adapted from [15]
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With an increase in electrication on mobile working machines, the regeneration
of potential energy can alternatively be accomplished by electric generators and
motors. Potential energy can thereby be stored using an onboard battery. This
opens up the opportunity to use the potential energy independent of the current
consumption. Hence, the energy could be transmitted beyond loading cycles and
lead to greater eciency. [1, 14, 27]

3.2.2 Presentation of Several Closed-Form and Numerical Solutions



Still today the task of controlling a knuckle-boom crane is done manually by a
human operator. Over time, some simplications have been developed to facilitate
the work of the operator. Hereby, the main improvement was made by relieving
the operator from manually solving the inverse kinematics of the crane arm, in
order to maneuver the crane tip along the desired trajectory. Since in general,
knuckle-boom cranes are redundant systems, this task copes with the diculties
entailed with redundancy. Whereas the redundancy also allows many
possibilities to optimize the performance of the motion, which this chapter
focuses on. For closed-form solutions, the task of planning the end eector’s
trajectory remains with the operator. The algorithms describing this task can be
summarized as on-line instantaneous control solutions. In this thesis, on-line
algorithms are limited to closed-form solutions. Due to low computational eort,
these algorithms are real-time capable in most cases.
In a further step, the task of the operator can be simplied by also planing the
trajectory through computational algorithms. The operators or intelligent
assistance systems only determine the start and end position of the trajectory.
Based on this given trajectory, a numerical algorithm can optimize the path of the
manipulator as well as the speed of motion according to desired performance
criteria. These algorithms are not real-time capable, due to heavy computational
eort. Thus, the optimized trajectory must be computed in advance. Therefore,
numerical solutions are classied as o-line solutions.
Furthermore, it is important to note, that on-line solutions of inverse problems
only optimize the motion of a manipulator to a local optimum, since the trajectory
can be continuously modied. Global solutions can only be derived using o-line
algorithms, but their eld of application is very limited to static conditions.
In the following two sub-chapters several on-line and o-line methods are
presented, which solve the inverse problem appearing at the motion control of
serial chain manipulators.

3.2.2.1 On-Line Control Solutions in Closed-Form

General information about closed-form solutions is provided in chapter 2.1.5. This
chapter presents concrete proposals for the solution of the inverse problem
considering the closed from. Furthermore, several performance optimization
methods are presented. For most application cases on knuckle-boom cranes,
these algorithms should deliver an on-line control solution, which means solving
the desired control task in real-time.
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Weighted Pseudoinverse Solution In 1969 Daniel Whitney introduced the control
of a human arm prosthesis via pseudoinverse solution [41]. The inverse navigation
signicantly simplies motion control of the prosthesis arm for the patient. Whitney
implemented a cost function, thus the redundancy of the prostheses arm can be
solved to superior performance. This cost function is embedded into the ��+

matrix (Equation 2.19) in a way that the special solution is solved to a minimum
norm solution with respect to the cost function, which can be seen in the following



equations. Hereby, �� is the cost function (weighting matrix) and�� stands for
the controller’s input.�� describes the joint velocities: [41]

JW
+ =�� −1· J��· (J ·�� −1· J��)−1(3.1)

���� = JW
+·�� (3.2)

In 1999 Beiner and Mattila [3] adapted this approach and focused on the
problem of optimizing the energy consumption of hydraulically actuated cranes.
They extended this approach with the specicity of solving the pseudoinverse
solution to minimal hydraulic actuator velocities instead of joint velocities while
leaving the cost function as a unity matrix. This leads to low volumetric ow rates
and pressure peaks can be avoided because of less acceleration. According to
them, the locally minimized velocity results in an approx imately minimized kinetic
energy. As a second approach, the weighting matrix introduced by Whitney was
modied in order to solve the inverse kinematics to minimal kinetic en ergy. Since
the special solution ����is a least-square solution of the joint velocity, it
suggests itself to search for minimal kinetic energy. This is achieved by including
the inertia matrix as the cost function. Thus, this term resolves to kinetic energy,
which then is minimized by this function. According to the authors, this solution is
fast and therefore most suitable for real-time control. Finally, the two approaches
were compared and discussed. In the comparison of the two presented
algorithms the former results in smoother and lower actuator velocities than the
latter. Another disadvantage of the weighted pseudoinverse solution, presented
by Beiner and Mattila, is the neglect of hydraulic energy losses caused by the fact,
that all cylinders are driven by one pump and are controlled by a load-sensing
system. The eciency of this approach needs to be discussed since minimal kinetic
energy of each link does not necessarily result in an energy optimal control
according to the hydraulic system. [3]

Gradient Projection Method The gradient projection method (GPM) is a way of
modify ing the nullspace arbitrary vector ��0 introduced in equation 2.20, in
order to solve the redundancy of the pseudoinverse method according to the
desired performance. In 1977 Alain Liègeois [26] proved, that it is possible to add
any vector which is consistent with the constraints to the homogeneous solution
as a performance vector. In this approach, the arbitrary nullspace vector of the
homogeneous solution ��0 was replaced by the gradient of a performance
function Δ�� and multiplied by a real scalar vector ��, which leads to the
Equation 3.4. In order to minimize the performance function Δ��, the constant
�� needs to be negative and vice versa to maximize Δ�� the constant�� is
taken as a positive scalar. A higher value of �� achieves a faster optimization,
whereas the maximum value of �� is limited by the maximum joint velocities.
By choosing the performance function wisely,
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the performance of a redundant system can be optimized. In the following
paragraphs, some examples are presented. [26, 19, 35]



��0 =�� · Δ�� (3.3)

�� = J+·�� +�� · (I − J+· J) · Δ�� (3.4)

Joint Limit Avoidance In many serial link manipulators, the joints’ ranges of
motion are restricted, due to mechanical boundaries. Avoiding these boundaries
by solving the redundancy accordingly, can be done by using the weighted
pseudoinverse solution or by gradient projection method. Both methods are
presented. By using GPM the performance gradient Δ���� ���� can be
formulated as a position-dependent scalar performance criterion, which is
minimized by projecting it onto the nullspace through the homogeneous solution of
the pseudoinverse method. This performance criterion furthermore was used by
Liègeois [26] to avoid joint limits. In order to accomplish this challenge, the
performance criterion ���� ���� is established to minimize the distance of the
actual joint position ��1 to the middle �������� of the joint range.
����

������ and ����
������ represent the minimum and maximum

joint positions. This correlation is given by Equation 3.5. The numerator of this
equation becomes small by joint positions near the center of the link. Hence, the
impact of this term on the performance gradient becomes low in these areas. The
joint limit avoidance function (JLA) is individually determined for each joint and
summed up subsequently. [26, 19]
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The gradient vector Δ�������� of the performance criterion��������
is generated by deriving�������� of each joint variable. The number of
rows is given by the number of joints. [26, 19]
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Equation 3.5 was enhanced by Zghal [42] and put into Equation 3.7 by Chan and
Dubey [8]. Both Equations 3.5 and 3.7 solve to minimum oset to the center of the
joint range. In the secondly mentioned form, the gradient of the performance
criterion is almost zero in the middle range and goes to innity at either limit. The
expression presented in Equation 3.7 is a standard practice to avoid joint limits.
[8, 19, 34]
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In [8] the presented joint limit avoidance performance criterion ���� ���� is
embedded into a weighted pseudoinverse solution. Therefore, the weighting
matrix has the shape of a diagonal �� x �� matrix. ����is the ����ℎ

entry of the diagonal matrix as expressed in equation 3.8. [8, 19, 34]
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������

(3.8)

Furthermore, this joint limit avoidance gradient can be optimized to only aect the
solution of the pseudoinverse method when the joint is moving towards its limit.
If the joint is moving away from its limit until it crosses the center, no limitation on
the rate of motion is needed. Therefore, a discontinuous function is created by
investigating the rate of change of the partial derivative of the performance
criterion. Whenever the direction of the joint

motion is changed, Δ
����(��)������
������

changes sign. It also

changes sign when
passing through

the center of the respective joint range. [8, 19, 34]

�����
�

����,��

�����
�=




������
����

������,
ifΔ

0, ifΔ

������
����

������
������
����

������

≥ 0

< 0(3.9)

Optimization of Volumetric Flow Rate In 2021 the latest research of Cheng et al.



[9] presents a volumetric ow optimization of a redundant hydraulically actuated
manipulator with seven joints. The main research goal is to avoid ow saturation in
under-dimensioned hydraulic systems by reducing the volumetric ow rate
demanded by the system. As a side eect, in a constant pressure system, savings
of the overall energy consumption were observed. This approach uses a
performance criterion to optimize the homogeneous solution of the pseudoinverse
solution through GPM. The volumetric ow rate is a function of displaced volume
over time. Hence, in a hydraulic cylinder the volumetric ow rate ����, as a
function of the cylinder motion, is determined by multiplying the acting piston area
���� by the corresponding cylinder velocity����. The acting cylinder area is
distinguished in rod ���� and piston ���� side area depending on if the
cylinder retraces or extends. [9]

���� =����·����(3.10)
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���� =

����,�� , if���� ≥ 0

����,�� , if���� < 0(3.11)

Cheng et al. stated, that depending on the structural integration of the hydraulic
cylinder on a joint, the volume ow is a non-linear function of the joint velocity [9] .
Furthermore, according to the size of the piston areas each joint demands a
dierent volume ow. With having these challenges in mind, a performance criterion
was dened, using the sum of all volume ows demanded, including leakage
����. The Volume ows are functions of the joint angles, including their
non-linear relations. The gradient of the performance criterion simplies to the
corresponding rod or piston area multiplied with the mentioned non-linear relation.
[9]

���� =

∑︁����=1 ���� +
����,
Δ���� =

������
����1

������

����2. .

.������
������

��(3.12)

Furthermore by [9] it is proved, that a volumetric ow rate reduction can be
combined with a joint limit avoidance criterion by adding the two performance
gradients multiplied by the associated scalar ��. The combined expression is
described in Equation 3.13: [9]

�� = J+·�� + (I − J+· J) · (�������� · Δ�������� +���� · Δ����) (3.13)



Configuration Control Pedersen et al. [34] introduced a way of using the
self-motion of a redundant system to enable ne-tuning of the inverse solution. As
visualized in Figure 3.4 one joint was given an additional degree of freedom, for
the operator. This allows adjusting the joint conguration in order to avoid
obstacles or to generate greater forces for increased lifting capacity. To
accomplish this task, the gradient projection method was used with �� as an
arbitrary vector projected onto the nullspace. ����indicates the joint velocity of
the adjustable joint.

��ℎ = (I − J
+· J) ·�� ,�� =0���� 0 0��(3.14) 22
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φ s∙

Figure 3.4: Conguration Control (self motion) [34]

Local Energy Optimization Through Lagrangian Energy Function The redundancy
of a se rial link manipulator can be exploited, in order to reduce the energy
consumption of the system. The total energy consumption of a serial chain
manipulator is composed of potential energy and kinetic energy. Vukobratovic et
al. [39] presented a method of optimizing the consumed energy per time step by
using the Lagrangian function. Thereby, the energy per time step is expressed as
a function of the joint velocities. To determine the optimal velocity of each joint
under the restriction of solving the inverse kinematics and minimizing the energy
consumption, the Lagrangian function of the system is formed. By solving the
Lagrangian function for the joint velocities, the optimization function can be
determined. Moreover, the adaption of this function to hydraulically driven
manipulators is presented. Thereby, the forces acting onto the hydraulic cylinders
are substituted into the general energy consumption equation. Also, the joint
coordinates are transformed into actuator coordinates. In some cases, this leads
to nonlinear equations, that can be solved analytically in most cases. The
hydraulic interaction of the actuators is not considered. [39]



Obstacle Avoidance Through Artificial Potential FieldsWang et al. [40] introduce a
trajec tory planning algorithm for redundant manipulators, with the target to avoid
obstacles. For this purpose, the obstacles are bounded by assigning a repulsive
potential eld to them. With greater distance from the obstacle the repulsive elds
abate. Furthermore, the start position also has a repulsive potential, whereas an
attractive potential eld is assigned to the end position. In consideration of each
joint, a collision-free path is computed by following the areas of attractive
potential and avoiding the areas of repulsive potential.
In the same manner, Luo et al. [29] applies collision-free path planning for a
six-DOF serial harvesting robot in a energy optimal way. The potential eld
approach is used to avoid collision with obstacles in the use of axis-aligned
bounding boxes in joint space. These bounding boxes are used to assign a
repulsive potential to the obstacles. The pos sible collision-free trajectories are
then optimized in search of minimum energy. This is achieved by a minimum sum
of weighted rotating joint angles in joint space. The possible trajectories are
optimized analytically towards the minimum sum of joint rotations in use of Matlab.
This leads to an optimization of minimum energy, because it is assumed that all
joints are energetically similar. [40, 29]
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3.2.2.2 O-Line Control Solutions

This chapter presents three global solutions of either predened trajectories or
point-to point solutions, which do not require a predened trajectory. Since global
solutions are not real-time capable, these are classied as o-line solutions. Some
of these solutions could prove real-time capability under high computational eort.
In respect thereof, a trajectory must be predicted at each time step, for the
operator’s input [32]. Due to the spontaneity of the operator, this approach would
not inevitably deliver a global solution of the driven trajectory. With increasing
autonomy, o-line solutions gain in importance. Especially on forwarders, loading
cycles resemble for ordinary loading cycles. Hence, a small number of
trajectories could cover the active part of the working space [33]. These
trajectories can be optimized to any performance criterion in advance.

GlobalOptimization Through Dynamic Programming The dynamic programming
approach is a powerful, discrete-time algorithm that can provide a global solution
to an optimiza tion problem. For this purpose, performance criteria must be
dened in form of a cost function. This cost function then is optimized over a given
trajectory to a global minimum solution. The continuous-time problem needs to be
divided into smaller discrete time steps, in which the problem can be solved by a
numerical algorithm. By choosing the time steps suciently small, the
approximation to the global solution becomes greater, but the computational time
rises. In search of a global solution, these time-frames are not independent of
each other. Thus, the discrete-time problems share common sub-problems. An
algorithm that solves these sub-problems to a minimum predened cost was
introduced by Richard Bellman [4]. This algorithm stores the optimal solutions of
the increments to avoid computing them several times and then compares them
for the best solution. In search of a global optimum of the dened performance



criterion, this solution is found in two phases. In a rst phase, the given path is
analyzed backwards for the lowest possible input variables. In a second phase,
the position, velocity, and acceleration of each joint are searched to a minimal cost
for the given input variables. This second phase proceeds from the start to the
endpoint of the trajectory.
The complexity of the problem rises with increasing degrees of freedom. Hence,
dynamic programming can only be applied to practical approaches when the
number of dimensions is low. In practice, this can be achieved by only optimizing
one joint and solving the others by inverse kinematics. This approach limits the
redundancy and leads to less complex numerical solutions. [28, 4, 32, 31]
Löfgren [28] introduced a global optimization to minimize trajectory times for a
manipula tor, to maneuver from a start point to an endpoint in an obstacle-free
workspace. For this purpose, a dynamic programming algorithm in the manner of
Bellman is used to generate the optimal path. Due to heavy computational eort,
this method can be used to optimize predened working cycles to time eciency.
Nurmi and Matilla [32, 31] found a global energy solution through the dynamic
program ming approach for a hydraulically actuated manipulator. The suitability of
the proposed algorithm for constant pressure and load sensing systems is
examined. The redundancy of the manipulator is solved by pseudoinverse
solution in respect of the hydraulic actuator coordinates. Furthermore, the system
dynamics are considered by using the Euler method.
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Under consideration of the system’s dynamics, a cost function is formulated
including the volumetric ow rate with respect to the system’s kinetics, as well as
the pressure of the hydraulic system. To reduce the complexity of the solution
the optimization of the redundancy of the system is limited to the telescope joint.
The remaining joints are solved through inverse kinematics. In comparison to
local optimization, the global solu tion achieves a 15-30% smaller energy
consumption. However, this algorithm can only be utilized for predened
trajectories since this o-line solution is not real-time capable. Predicted solutions
could be used to apply this algorithm on on-line applications, but only to a limited
degree of complexity. [32, 31]

Global Energetic Solution Through Lagrangian Energy Function Saramago and
Steen JR. [36] present a global solution through Euler-Lagrange’s equation in the
use of Lagrange’s energy function, to minimize the kinetic and potential energy of
a trajectory. This equa tion is resolved into three components: The Coriolis
forces, the centripetal forces, and the gravity loading vector. Hence, the equation
is a function of the joint velocity and acceleration as well as the geometric
relations expressed in the transformation matrix of the manipulator and the
masses including their center of action. In a second performance criterion, the
trajectory is optimized to minimum executive time. Both criteria are consid ered in
an o-line solution through a numerical approach. To nd the pseudo-objective
function in respect of the Lagrangian performance criterion, polynomial functions
of local optimization are splined together. This leads to an optimized trajectory
formulated in the use of spline functions. [36]
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4 Methods
This chapter focuses on the methods used, to realize energy optimization on a
forwarders knuckle-boom crane. The forwarder discussed in this thesis is a HSM
208F forestry ma chine. The knuckle-boom crane is manufactured by Palnger
Epsilon, model S100F 101.

Determination of the Method to Be Used The aim of reducing the energy
consumption induced by the motion of the crane arm is implemented by use of
the pseudoinverse solution in combination with the gradient projection method
(Chapter 3.2.2.2). This ap proach consigns the operator to individual control of the
desired path. Hence, the energy consumption is optimized in the whole workspace
and even unusual loading processes can be optimized towards minimal energy
consumption. The produced algorithm is classied as an on-line solution in closed
form. Thus, the approach searches for a local optimum in each time step. With
this method, the trajectory is not optimized globally. A local optimization was
explicitly chosen because the computing capacities on the machine are limited.
Real-time optimization is important to ensure the exibility of the loading cycles
and thus to guarantee a reduction of the energy in exceptional situations. No
predesigned trajectories are needed since the operator’s input is directly
permuted into an energy-sparing motion of the system. To avoid singularities a
joint limit avoidance is added to the performance criterion. The energetic
reducing algorithm is established by adapting the approach, of minimizing the
volumetric ow rate presented by Cheng et al. [9], to the introduced machine. This
approach seems most suitable to optimize the energy consumption on a
hydraulic level since in [9] the energy consumption of a constant pressure



system was minimized successfully. The algorithm is extended and adapted to
the load sensing system in order to reduce the system pressure. To the author’s
knowledge, this method is unique compared to the other energy optimization
methods, as no knowledge of the system dynamics is necessary to minimize the
hydraulic energy. This simplies the model and reduces computational eort.
Furthermore, the algorithm is designed suitable for any load weight, as direct
feedback is always provided by the system. This is not necessarily guaranteed for
methods with xed dynamic correlations.

In the following sub-chapters, the exact procedure for the development of this
algorithm is presented as follows: Firstly, the kinematics of the discussed crane
arm is dened by applying Denavit Hartenberg notation. Furthermore, the joint
coordinates are transformed to actuator coordinates of hydraulic cylinders. These
partly non-linear transformations allow optimization on a hydraulic level. Using
the transformation matrices, the inverse kinematics for controlling the crane tip is
set up directly as a function of the actuator coordinates. A performance gradient is
established through the gradient projection method. This gradient consists of a
joint limit avoidance method as well as an energy minimization
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approach. In respect thereof, a volume ow minimization is established as a
gradient of the total volume ow of the system. This gradient is supplemented
with the actual cylinder pressure. By raising the pressure to a higher power, the
inuence of the pressure on the eciency of the algorithm is increased. The
implementation of this algorithm is embedded in an existing simulation model of
the crane arm in the simulation software Simulink Matlab.

4.1 Denavit Hartenberg Notation of the Knuckle-Boom Crane

By applying Denavit Hartenberg notation, as explained in Chapter 2.1.3, the pose
of each joint and link can be described by only using four parameters per joint and
corresponding link. As it can be observed in Figure 4.1, ve coordinate systems
are necessary to fully describe the motion of the crane arm. The main coordinate
system (��, ��, ��) is located in the base of the crane arm {��} and is a
spatially xed cylindrical coordinate system. The motion of the crane tip along
these three main coordinate axes is directly controlled via a joystick by the
operator. The operator controls the motion of coordinate frame {4}, where the
end-eector is located relative to the base frame {��}.
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Figure 4.1: Denavit Hartenberg notation on knuckle-boom crane, adapted from
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Coordinate system {0} is located in the center of the slewing joint ��1 (joint
numbers are assigned in chapter 3.1.2). In the center of joint ��2, coordinate
frame {1} is located. Similarly, coordinate system {2} is located in the center of
joint ��3. Since joint ��4 is a prismatic joint, it needs two coordinate frames to
fully describe its motion, which is the distance between coordinate frame {3} and
{4}. Frame {4} is located in the mounting point of the grapple. Frame {3} is
located on an imaginary line, parallel to the telescope joint and fully dened
through crossing the mounting point of the end-eector. Frame {3} is located
where this imaginary line and a second imaginary line, which is normal to the rst
one, cross. The second imaginary line is fully dened by the intersecting point in the



center of joint��3.

4.1.1 Transformation Matrix from End-Eector to Base

To generate the overall transformation matrix from the end-eectors coordinate
system to the base frame, the transformation matrices from each coordinate
frame to the following must be determined and henceforth multiplied. This is
done by nding the Denavit Hartenberg parameters and lling these into the
Denavit Hartenberg transformation matrix (Equation 2.12) as explained in
Chapter 2.1.3.

Table 4.1: Denavit-Hartenberg parameters of the knuckle-boom crane

Number of Joint��j dj aj��j

0 0��0 0 0
1��1��1��1 −

��2

2��2 0��2 0
3��3 0��3 −

��2

4 0��4 0 0

The frames {0} and {��} are displaced by distance ��0 but have the same
orientation. Hence, no rotation is needed and the only translation is observed in
��0 direction. Equation 4.1 expresses the mentioned transformation in a 4 x 4
matrix.

����0 =



1 0 0 0
0 1 0 0 0 0 1

��0 0 0 0 1


(4.1)

The motion of joint��1 results in a rotation between coordinate systems {0} and
{1}. ��1 describes the angle between the two frames, as can be seen in the
orientation matrix of 0��1. Furthermore, the two coordinate systems are rotated
about the��1-axis by an angle of
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��1 = −��2. Since ��1 is constant, the numerical value is already substituted
in Equation 4.2, and sinus and cousins simplify to −1 and 0. Additionally frames
{0} and {1} are translated along the ��1-axis by distance ��1 and along the
��0-axis by ��1. Due to the mentioned rotations, the two translations result in
a three-dimensional translation.

0��1 =


co

s��1 0 − sin��1

��1 cos��1

sin��1 0 cos

��1��1

sin��1 0 −1 0



��1 0 0 0 1 
(4.

2)

Coordinate system {1} and {2} have an equal orientation of the��-axis, but the
��- and ��-axes are rotated by the angle��2, which describes the motion of
joint ��2. The two frames are displaced by distance ��2 along the��2-axis.
The transformation of these two frames is summarized in the transformation
matrix 1��2, which is assigned as Equation 4.3.

1��2 =


c

os��2 − sin��2

0��2 cos��2

sin��2 cos��2

0��2 sin��2 0
0 1 0 0 0 0 1


(4
.3)

Similar to joint ��2, also ��2 is rotated along the ��2-axis. The angle of
rotation is expressed as angle ��3. In the same manner, coordinate systems {2}
and {3} are not rotated along other axes and are translated by distance ��3

along the ��3-axis. The resulting transformation is expressed in Equation 4.4.
Due to Denavit Hartenberg notation for a rotational angle of �� �� = 0, both
joints ��2 and ��3 result in an angle of ��2between the previous and the
following link. A clockwise rotation of these two joints results in a positive�� ��
angle.

2��3 =


co

s��3 0 −
sin��3��3 cos
��3

sin��3 0 cos

��3��3

sin��3 0 −1 0 0 0
0 0 1


(4
.4)

The translation joint��4 is dened by the variable distance��4. No rotation or
other transla tions are applied. This reduces the transformation matrix to a unit
matrix with a transla
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tional variable in�� direction (Equation

4.5). 1 0 0 0


(4.5)

����0
=
0 1 0 0
0 0 1

��4 0
0 0 1

The overall transformation matrix from frame {4} to the base frame {��} is



computed by the multiplication of all single transformation matrices, as presented
in Equation 4.1.1. Only the angles ��1, ��2, ��3 and the distance ��4 are
variable and constitute the joint variables. The remaining lengths are constants
and are specic dimensions of the investigated knuckle-boom crane.

����4 =
����0
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1��2

2��3
3��4 = (4.6)
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4.2 Transformation of Joint Variable to Hydraulic
Cylinder Position

The joints on knuckle-boom cranes are actuated hydraulically to provide large
forces. Therefore, hydraulic cylinders supply the needed momentum to perform
the required motion while lifting heavy payloads. These hydraulic cylinders are
mounted on both links of a mechanical joint. The distance between the joint and
the mounting point of the hydraulic cylinder generates a lever arm to apply
momentum. The momentum varies depending on the angle of the impressed
force. Hence, the motion of the joint is a function of the hydraulic cylinder motion.
This implies, that also the joint location is a function of the actual cylinder length.
For the rotational joints ��2 and ��3, these functions are nonlinear and are
only solvable for certain angular ranges. Through the limited stroke of the
hydraulic cylinders, the avoidance of these non-solvable ranges, also called
singularities is mechanically implemented. The computational avoidance of these
ranges is presented in a following chapter. Joint ��4 is a prismatic joint, which
means that the transformation to the hydraulic cylinder coordinates is a linear
function. The following sub-chapters describe the correlations between the actual
cylinder lengths (indicated as ��1, ��2, ��3) and the joint variables ��2,
��2, ��4. ��1 is not mentioned due to system simplications explained in
Chapter 4.3.
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Transformation of��2 to Cylinder Position��1

Joint ��2 is actuated by a hydraulic prismatic cylinder and the total length of the
cylinder is given by the variable��1. Figure 4.2 shows the kinematic correlation
between��1 and��2. The joint angle��2 can be computed, by summing the
angles��11,��12,��1:

��2 (��1) =
��

2−��11 −��12 −��1 (��1) (4.7)

The angles ��11 and ��12 are xed angles. ��11 is spanned between lengths
��11 and the vertical axis introduced in the previous chapter as��1.��12 is
spanned between ��12 and the inner boom (Figure 4.2). ��11 and ��12 are
the distances from ��2 to the two anchor points of the hydraulic cylinder. The
angle ��1 is spanned between ��11 and ��12 and therefore directly
dependents on the current length of the hydraulic cylinder ��1. To compute
��1 the law of cosines is applied as can be seen in Equation 4.8. By
substituting Equation 4.7 and Equation 4.8 ��2 can be expressed as a function



of��1.

��1 (��1) = arccos��
2
11 +��

2
12 −��

21

2 ·��11 ·��12 (4.8)
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Transformation of��3 to Cylinder Position��2

The expression of ��3 as a function of ��2 is more complex because of two
deection levers (��221 and ��222) between the anchor point of the hydraulic
cylinder and the inner and outer boom (Figure 4.3). ��22 is a ctional length and
directly dependent on length ��2, which is the actual length of the hydraulic
cylinder. To solve the trigonometric problem of the transformation, the structure
can be divided into two main parts: The lever connected onto the inner boom
and the lever connected onto the outer boom. By looking at Figure 4.3, this
means left and right side of length ��22. To solve the transformation, rstly the
angle ��22 is determined by using the law of cosines. This angle is spanned
between lever arm ��221 and length ��225 (anchor point of hydraulic cylinder
to lever arm bearing point) around the bearing point of the lever arm. ��22 is a
function of��2 (Equation 4.9).

��22 (��2) = arccos��
2
225 +��

2
221 −��

22

2 ·��225 ·��221 (4.9)

��21 (��2) is determined by subtracting��22 (��2) from constant angle��2.

��21 (��2) =��2 −��22 (��2) (4.10)

The length of the ctional lever arm ��22, as a function of ��2, is determined
using the law of cosines.��224 is a constant distance between the bearing point
of the left lever arm and joint��3.

√︃
��22 (��1) =
��2

224 +��
2
221 − 2 ·��224

·��221 · cos(��21 (��2))
(4.11)

To calculate ��21 (��2), which is the angle between��22 and��224 around
joint ��3, the law of sinus is applied. The sum of all angles in a triangle is��.
By subtracting ��21 and the remaining angle, determined by the law of sinus,
from��, the angle��21 (��2) is calculated.

��21 (��2) =�� −��21 −

arcsin��224

��22 (��2)· sin (��21

(��2))

(4.12)

To solve the remaining unknown angles, the lever arm connected to the outer
boom is observed. ��22 (��2) is computed by the law of cosines, by
substituting ��22. This leads to Equation 4.13, where ��222 is the length of



the lever arm connected to the outer boom and ��223 is the distance from the
bearing point of the lever arm ��222 to joint ��3. ��22 (��2) is spanned
between these two lengths.

��23 (��2) = arccos��
2
222 +��

2
223 −��22 (��2)

2

2 ·��222 ·��223 (4.13)
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��22 (��2) is calculated similarly to the left side by using the law of sines.

��22 (��2) =�� −��23 − arcsin��223

��22 (��2)· sin(��23 (��2))(4.14)

Finally ��3 (��2) is computed by summing up the angles��21 (��2),��21,
��21 (��2) and ��21. Thereby, ��21 is the angle between ��224 and the
inner boom and ��22 is the angle between ��223 and the ��3-axis of frame
{3}.

��3 (��2) =��21 (��2) −��21 +��22 (��2) +��22 −�� (4.15)
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Figure 4.3: Kinematics transformation of��3 to��2, adapted from [24]

Transformation of��4 to Cylinder Position��3

The position of the telescope cylinder and thus the total length of the outer boom
��4 is linearly dependent on the hydraulic cylinder position inside the telescope
arm. The variable extension of the telescope arm consists of two segments. The
rst one is guided linearly in the inner boom, the second segment is guided
similarly in the rst segment. These two segments are connected through a chain,
therefore the actual telescope position is twice the hydraulic cylinder position. The
total length of the outer boom is computed by adding the minimal length��3.
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��4 (��3) =��3 + 2 ·��3 (4.16)

d
⁴

L₃
q
₃×2

Figure 4.4: Kinematics transformation of��4 to��3, adapted from [24]

4.3 Forward Kinematics

The basic mathematics of the forward kinematics are introduced in the
fundamentals (Chapter 2.1.4). The forward kinematics of the knuckle-boom crane



are described according to therein dened notations. For this purpose, the vector
����4 is introduced, which is a vector from the center of the base coordinate
frame {��} to the center of the coordinate frame {4}, which is assigned as the
end-eector of the system (Figure 4.1). To generate this vector, the overall
transformation matrix ����4 is multiplied by the zero point of coordinate frame
{4} in Equation 4.17. The fourth dimension of this vector is necessary due to the
general form of the transformation matrix. This multiplication simplies the
transformation matrix to the translational vector. This vector is located in the last
column of the matrix.

����4 =
����0



000

1

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��3 cos(��2 +��3)
−��4 sin(��2 +��3)
+��2 cos��2)
sin��1 (��1 +��3
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��4 sin(��2 +��3) +

��2 cos��2)��0 +

��1 −��4 cos(��2 +

��3) −��3 sin(��2 +

��3) −��2 sin��2) 1


(4.17)

Due to specicities of the knuckle-boom crane’s structure, joint ��1 is the only
joint solely operating in the horizontal plane of the base coordinate system, thus
the rotation around the ��-axis is independent of the remaining joints. Hence,
the transformation of the base frame to a cylindrical coordinate system is
considered. This transformation is expressed in Equation 4.18. The cylindrical
base coordinate frame consists of the two axes, ��, ��, and an angle Θ,
which describes a rotation around the ��-axis. The orientation of the base
coordinate frame does not change, but the��-axis is replaced by the��-axis.
The independence of joint ��1 is proved by comparing vector ����4 of the
spatial coordinate frame
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with the vector ���� ��4 of the cylindrical coordinate frame. In vector ����

��4 the joint variable ��1 only appears in the Θ component. The Θ component
solely is described by the joint angle ��1. The �� and�� components of the
vector are independent of ��1. This circumstance enables simplifying the
forward kinematics and all following considerations to a two-dimensional problem
in a vertical plane spanned by the��- and��-axes.
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To make the motion of the knuckle-boom crane directly dependent on the motion
of the hy draulic cylinders, the previously determined transformations from joint
variables ��2, ��3, ��4 to hydraulic cylinder variables ��1, ��2,��3 are
substituted in the vector ���� ��4. Therefore, ���� ��4,�� and ����

��4,�� are both a function of ��1, ��2, ��3. All remaining parameters are
constant and can further be simplied by inserting the dimensions and angles for
which they stand. The detailed �� and �� components of the in Equation 4.19
expressed vector can be found in the Appendix in section A.4.
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����4
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��
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��4,��

��
��

��4,�� =

��1

(��1,��2,

��3)��2

(��1,��2,

��3)

(4.19)

To not only determine the end-eector’s position but further compute its motion
depending on the velocities of each joint the Jacobian matrix is computed. By
multiplying the Jacobian matrix and the derivation of the hydraulic cylinder length
��1, ��2, ��3, the motion of the end-eector is expressed as the rst-order
derivative of ������4 in Equation 4.20. In this equation, ������4 denotes
the end-eectors position in the task space, whereas �� denotes the same
position in the conguration space. In C-space the absolute dimensions of the
hydraulic cylinders span a three dimensional space.

��������4

���� = ������4 = J(��)�� (4.20)

Since determining the Jacobian matrix consist of several derivations, it is done
computa tional via Matlab. Due to the size of the complete Jacobian matrix, a
presentation of it here is not useful for the clarication of the topic. The Matlab
script to follow the computation is attached in the Appendix A.3. In Equation 4.21 a
symbolic representation of the Jacobian
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matrix is

presented. J

=
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(4.21)

4.4 Inverse Kinematics by Using the Pseudoinverse Solution
The previously presented forward kinematics does not nd application in modern
forestry cranes but is a necessary step to determine the motion of the crane arm.
On the contrary, the inverse solution to this problem is sought after. This means
the operator species the speed of the end-eector as input. The joint velocities
should be solved to generate the demanded end-eectors trajectory.
Mathematically this would mean rearranging Equation 4.20, so �� is found as a
function of ������4. Since the knuckle-boom crane is a redundant system, the
Jacobian matrix obtained in the previous chapter is a 3 x 2 matrix. As explained in
Chapter 2.1.5, the inverse of the Jacobian matrix can not be found, if the number
of rows and columns are not equal. Therefore, the pseudoinverse solution is
contemplated. This is a proposed solution to the inverse problem of a redundant
system. It consists of a special and a homogeneous solution, which are
elucidated in the following sub-chapters. For a clearer notation, the operator’s
input ������4 is substituted by �� in the following notations. This velocity
vector consists of the desired end-eector velocity in�� and�� direction of the
cylindrical base coordinate frame.

4.4.1 Special Solution
The special solution can be obtained using Equation 4.22. In this equation,
J+stands for the pseudoinverse of the Jacobian matrix and is determined thusly:
J+ = J��(JJ��)−1. The necessity of this step is stated in Chapter 2.18. The
minimum norm solution is found, by multiplying the pseudoinverse Jacobian
matrix by the operator’s input velocity ��. The minimum norm solution
computes the inverse solution according to minimum cylinder velocities ��,
because the Jacobian matrix is generated by deriving each component of the
position vector by the hydraulic cylinder variables ��. Since the special solution
solves the problem completely it can be a stand-alone solution:

�� =���� = J+·�� (4.22)

4.4.2 Homogeneous Solution
The homogeneous solution describes the remaining solution space, which can be
imagined as self-motion of the crane arm while the grapple remains in a constant
position. As further explained in Chapter 2.1.5, this solution space is called
nullspace and is expressed by (I − J+J) in Equation 4.23. The variable��0 is an
arbitrarily chosen vector. By replacing this vector with a performance function, the
redundant solution of the inverse problem
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can be optimized towards a desired performance. This opens the door for
optimization of the crane motion in every aspect.

��ℎ = (I − J
+J)��0 (4.23)

4.4.3 Comprehensive Solution

The comprehensive solution (Equation 4.24) of the pseudoinverse method is
calculated by summing the special- and homogeneous solution. It describes the
required cylinder velocities depending on the desired end-eector velocity and the
current hydraulic cylinder positions �� since these are enclosed in the Jacobian
matrix. The least norm solution can be modied through adding any nullspace
solution by��0.

�� =���� +��ℎ = J
+·�� + (I − J+· J) ·��0 (4.24)

4.5 Gradient Projection Method

In this thesis, the gradient projection method is used to nd an energy-saving and
joint limit avoiding solution of the pseudoinverse method. This approach allows
combining both requirements while having a great inuence on the self-motion of
the crane arm. In the following sub-chapters rstly a joint limit avoidance method
is included in the gradient projection method, secondly, an optimization
concerning a reduction of the volumetric ow rate is embedded and then this
approach is modied to a reduction of energy consumption.

4.5.1 Joint Limit Avoidance

Similarly as introduced in Chapter 3.2.2.2 the nullspace vector��0 of Equation
4.24 is replaced by the gradient of a performance criterion to avoid joint limits.
This criterion is adopted from Chan et al.[8] and adapted to GPM in the same
manner as it is proposed by Cheng [9]. The performance criterion��������
is expressed in Equation 4.25 and its gradient is built as demonstrated in
Equation 4.26.
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In Figure 4.5a the third row of the JLA gradient Δ�������� is visualized over
the position of the telescope hydraulic cylinder ��3. It can be seen, that the
function minimizes for hydraulic cylinder positions close to the center and rises to
innity at the maximum and minimum limits. Two points of improvement can be
mentioned by looking at this graph. Firstly, even though the value of Δ����
���� is small, in the middle range there still is some inuence on the
homogeneous solution of the inverse problem. This aects other optimization
methods in combination with the JLA. As in [8] is substantiated, using the JLA in
combination with the GPM instead of a weighted pseudoinverse solution results
in high self-motion. To avoid unnecessary self-motion in positions far away from
the cylinder limits, a piecewise function is established. This function can be found
in Equation 4.27. If the hydraulic cylinder position����is distant from the limits
by more than 15% the corresponding row of the JLA gradient will be set to zero.
This function is visualized in Figure 4.5b.
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Figure 4.5: Variations of JLA gradient function of the telescope cylinder

The second point of optimization is a function similar to Equation 3.9 which was
introduced by Chan et al.[8], in order to have no eect on the homogeneous
solution ��ℎ, when the hydraulic cylinder is moving away from the joint limits,
towards the center. For this, the approach of Chan et al. needs to be modied to
be suitable for GPM instead of the
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weighted pseudoinverse solution. This is achieved by building the dierence
quotient of the performance gradient separately for each row in respect to time. If
the absolute value of the performance gradient of the actual time step is smaller
than the one of the previous time step, this means the cylinder is moving towards
the center. Hence, the value of the corresponding row of ������ ���� will
be set to zero. For the contrary case, the value of ������ ���� stays the
same. This can be seen in the following condition:

�����
�

����,��

�����
�=




������
����

������,

ifΔ��

0, ifΔ��
������
����

������
������
����

������

≥ 0

< 0(4.28)

For the real machine operation algorithm, both modications of the JLA are
intertwined in "if" conditions and are queried every time step. The Matlab code
describing these conditions can be found in the Appendix A.3

To ensure a suitable application of the JLA for all loading cycles, the weighting of
the gradient Δ���� ���� on the nullspace must be set correctly. This is done
by setting the parameter ���� ���� to a suciently high value. At the same
time, however, this value should be as small as possible in order to hinder
optimization according to the minimum energy as little as possible. By iterative
methods, the parameter ���� ���� is adjusted in such a way, that complete
maneuverability in the workspace is guaranteed. The embedding of the JLA in the



inverse solution is shown in the following equation:

�� = J+·�� +�������� · (I − J+· J) · Δ�������� (4.29)

4.5.2 Volumetric Flow Rate Reduction

In Chapter 3.2.2.2 a ow reduction method elaborated by Cheng et al. [9] is
introduced. This algorithm is adapted to the discussed knuckle-boom crane in this
chapter. Therefore, in section 4.2, the joint angles are transformed to the hydraulic
cylinder positions. This is a mandatory step to compute the volume ow consumed
by each joint, depending on the joint motion. By looking at the results of
transformation functions (Equations 4.7, 4.15), it is clearly seen that these
transformation functions are not linear. The correlation of cylinder position ��1

as a function of ��2 is visualized as exemplary for joint ��2 in Figure 4.6a.
Due to the nonlinear function, the volume ow is not constant over joint angle
��2. This corresponds only to revolute joints actuated by linear hydraulic
cylinders. In the case of the telescope cylinder, the function remains linear, just
multiplied by 1

2because of the internal transmission of the telescoping section.
Furthermore, since the hydraulic cylinders have dierent acting areas on the rod
and piston sides, the volume ow also depends on the direction of motion. In [9] a
ow consumption rate (FCR) is introduced, which describes these correlations.
The FCR denes the displaced volume of hydraulic
uid by each joint angle. By multiplying the FCR with the angular joint velocity,

the volumetric ow rate of the joint motion is computed. The FCR is dened by the
derivative
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of the ���� to ����−1 transformation resolved to ����−1. The hydraulic
volume is spanned by multiplying the acting area dependent on the direction of
joint velocity onto the term. Since the FCR directly depends on the derivative of
the correlation between joint angles to hydraulic cylinder positions, the FCR varies
over the joint range. Also, the FCR in liter per degree of joint angle is visualized
exemplary for joint ��1 over joint angle in degree (Figure 4.6b). In this gure, the
negative joint velocity of ��2 is plotted. This function proves that volume ow is
not only dependent on joint speed but also the position or range in which the joint
operates. Both have an inuence on the volume ow consumed. This states the
importance of a volumetric ow reduction algorithm as a function of the cylinder
positions.
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(b) FCR as a function of joint angle��2

Figure 4.6: Cylinder position and FCR as a function of joint angle��2

Since the acting areas of the hydraulic cylinders vary dependent on the direction
of joint velocity, piecewise functions describe the cylinder areas. Due to the
underlying conventions of the Denavit-Hartenberg notation, an extending, an
extending motion of the hydraulic cylinders acting on joints �� ��2 and ��3,
results in a negative joint velocity. The prismatic joint ��4 acts in the same
direction as its hydraulic cylinder. Furthermore, joint ��2 diers from the
remaining joints, because it is actuated by a single acting hydraulic cylinder.
Hence, only volume ow must be supplied by the pump to lift the inner boom.
While lowering, the potential energy of the crane arm is used to displace the oil in
the hydraulic cylinder. The hydraulic cylinder of joint ��3 and ��4 are
double-acting. Thus, the area of the piston and rod are taken into account. The
piecewise function describing these correlations is expressed in Equation 4.30.
����,�� stands for the rod side area and ����,�� for the piston side area.
The subscript ��indicates the considered cylinder. The count is similar to the
cylinder length����, which is always�� − 1 to the depending joint����.
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(4.30)

The performance criterion to minimize the volumetric ow rate is dened by the sum
of the volumetric ow rates of each cylinder as a function of the cylinder area
���� and the cylinder velocity ����(Equation 4.31). Equivalently it can be



said, that the performance criterion is a function of the FCR of each joint
multiplied by the joint velocity. This distinguishes the method chosen in this
thesis, from the method of Cheng et al. [9], since the transformation functions of
the joint velocity to cylinder velocity are already included in the Jacobian matrix.

∑︁3

���� =
��=1

���� =��1 ·��1 +

��2 ·��2 +��3 ·��3
(4.31)

The performance gradient reduces to the piston or rod side area of the
corresponding hydraulic cylinder:
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The magnitude of the performance gradient is crucial for the success of the
optimization. For this purpose, a coecient���� is used to trim the gradient to a
suitable magnitude, similar to the JLA. As introduced by Cheng et al. [9]���� is
designed as a ow-adaptive coecient matrix. This matrix consists of a parameter
���� and a diagonal matrix of the current cylinder velocity (Equation 4.33). This
guarantees direct feedback of the current volume ow as the cylinder velocity is a
system response. The parameter ���� sets the magnitude of the gradient and
therefore, determines the inuence of the gradient on the nullspace solution.With a
greater magnitude, the eciency of the algorithm maximizes and results in greater
self-motion. The sign of ���� needs to be set negative since this algorithm is a
minimization problem. The motion of each joint and thus, the self-motion is
limited by the maximal volumetric ow rate of each hydraulic cylinder. Due to
dierent areas of the cylinder’s rod and piston side areas, this value varies for
every hydraulic cylinder and direction of motion. Euler et al. [13] conceived an
algorithm to dene the parameter �� for every time step. This approach
computes�� to exploit the limits of self-motion while complying with
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the performance criterion. The algorithm was introduced on a non-hydraulic
robotic arm. Thus, no eects due to dierent cylinder areas or non-linear
transformation functions between the joint variable and the cylinder variable are
considered. Furthermore, no system variable like ����is included by Euler.
Kaupp [24] implemented the discussed algorithm on an energy-solving approach
and observed heavy oscillations caused by the variability of the parameter ��.
Since in this thesis the coecient ���� already contains a variable, it is decided
against a continuous adjustment of the parameter����. This would distort the
inuence of the variable ���� on optimizing the volumetric ow rate. Instead, an



iterative method is applied to nd a constant parameter ���� that ensures
stable operation of the algorithm while approaching optimal results. The iterative
adaption of ���� is inspired by an algorithm introduced by Dubey et al. [35].
This algorithm nds a suitable parameter ���� in an iterative manner. In this
approach, the joint velocities are calculated for one time-step and checked for
meeting the boundary conditions. If the boundary conditions are exceeded, the
parameter will be lowered. If not, ���� will be raised to a higher value. This
leads to an approach to the optimal parameter. In the model investigated in this
thesis, no clear boundaries are observed. By approaching the limit of an optimal
condition the model resulted in high oscillations. Inserting a low-pass lter to the
return signal of���� helps to use higher values of����.

���� =
���� ·
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�

�1 0 0
0��2 0 0 0

��3


(4.

33)

The performance gradient ���� and the corresponding ow-adaptive coecient
���� are included in the JLA method by adding both gradients and coecients
(4.34). The validity of this procedure is proofed by Cheng et al. [9].

�� = J+·�� + (I − J+· J)�������� · Δ�������� +���� · Δ����(4.34)

4.5.3 Energy Optimization

The hydraulic power consumed by each hydraulic cylinder����is composed of
the volumetric ow and the pressure of each cylinder for each time instant. The
overall power of the load sensing system�������� is a function of the sum
of all volumetric ow rates and the highest cylinder pressure. This is a simplied
consideration, as leakage and pressure losses through the system are neglected.
The power consumed by each hydraulic cylinder and the power of the system
can be computed as follows:

���� =����·���� =����·����·����(4.35)
∑︁3

����·�������� (4.36)
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The energy consumption by the system over a time period [��0,����], is the
integral of the instantaneous power over this time period:
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In the following two sub-chapters, an approach to reduce the hydraulic energy
consumption of the load sensing system is presented. This method is an
extension of the volumetric ow optimization algorithm presented in Chapter 4.5.2.

4.5.3.1 Reduction of Hydraulic Power

In order to reduce the hydraulic power at each time step, the volumetric ow
optimization algorithm must be extended by the hydraulic pressure. Therefore,
the corresponding pressure of each hydraulic cylinder is chosen. The
performance criterion dened in Equation 4.32 can be used unchanged and also
its gradient (Δ���� = Δ���� ). This is justied since this term is responsible
for the optimization of the volumetric ow rate. The current cylinder pressure is
incorporated in the ow-adaptive coecient. For this purpose, it is directly
integrated into the diagonal matrix. ���� then becomes ���� and
resembles the Equation below:

���� =���� ·


��

1 ·��1 0 0
0��2 ·��2 0 0

0��3 ·��3


(4.38

)

Multiplication by the pressure shifts the magnitude of the power optimizing
gradient compared to the volumetric ow rate optimizing gradient. This can be
compensated by adjusting the parameter ���� . For this purpose, ���� is
set equal to ���� and resolved after the parameter ���� to be set. By
inserting the values of pressure and ow rate of a representative operating
condition, the new value for ���� can be determined. This equation yields
three solutions, one for each row of the matrix. The hydraulic cylinder with the
biggest impact on energy consumption should be chosen for this purpose. The
calculated value is only a suggestion and must be further optimized with the
iterative adjustment algorithm according to Dubey et al. [35]. If necessary the
low-pass lter also must be adjusted. In this thesis, a further low-pass lter is
avoided for returning the actual hydraulic pressure. If necessary, further
oscillations can be avoided by including a low-pass lter to the feedback pressure.
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(a) Gradient Δ���� of cylinder 1 (b) Gradient Δ���� of cylinder 2

(c) Gradient Δ���� of cylinder 3

Figure 4.7: Power gradient Δ���� as a function of���� and����

The previous steps form a performance gradient that is dependent on the current
pressure and velocity of each hydraulic cylinder. This gradient, separately for
each cylinder, is visualized in Figure 4.7. Thereby, the pressure ���� and the
cylinder velocity����is displayed on the horizontal axes. The���� axis rises
from the right to the left for better visualization. The power optimizing gradient is
plotted on the vertical axis. A bend of the linear curves for the velocity���� = 0
is conspicuous. This is caused by the dierent areas for the piston and the rod side
as expressed in Equation 4.30. For cylinder 1, the gradient is zero in the range of
negative cylinder speeds, since this is a single-acting cylinder. The gradient rises
to a minimum and maximum value for great pressure and great volumetric ow rate.
These are the operation points with the greatest energy consumption. If the ow
rate is positive, the gradient is maximal and vice versa. This contrary eect leads to
self-motion
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reducing these energy-intensive operation points.

The newly formed gradient can be included in the composite pseudoinverse
solution in the same manner as the volumetric ow reduction gradient, by simply
replacing it. This leads to the following notation of the JLA and the power optimal
method of the pseudoinverse solution:

�� = J+·�� + (I − J+· J)�������� · Δ�������� +���� · Δ����(4.39)

4.5.3.2 Influence of Pressure on Hydraulic Power

The volumetric ow rate of the system is a direct result of the system’s kinematics
since the only variable factor is the cylinder velocity ����. Furthermore, the
volumetric ow rate and thus, the resulting cylinder motion is a direct-control
variable of the system and are regulated via the valve openings of the hydraulic
control valves. The cylinder pressure is not a direct-controlled variable of the
system and results from the system dynamics. The pressure is applied to the
respective cylinders by external forces such as gravitational, Coriolis, and inertial
forces. Hence, the hydraulic pressure is not directly controllable by only one
control variable, instead, it results from joint congurations, velocities, and
accelerations. This makes it hard to lower the system’s pressure by having the
cylinder velocity and position as the only control variable. To gain a greater
inuence on the pressure, the exponent ��is introduced. This leads to the
following equation of���� :

���� =���� ·


��1

·��1
��0 0

0��2 ·��2
��0

0 0��3 ·

��3��


(4.40
)

Thereby �� must be chosen similarly for all cylinders to not weight the cylinders
dierently. By changing the power ��, the magnitude of ���� changes as well.
The parameter ���� must be adjusted in the same manner as explained in the
previous sub-chapter. Furthermore, the same procedure as for optimizing the
parameter���� can be applied to nd the optimal value of ��.

In the following gure, a 2D and 3D presentation of the power optimization
gradient for dierent exponents �� of the pressure is presented in two graphs. The
hydraulic cylinder 3 of the telescope joint is shown exemplarily. The left plot is a
2D plot and shows the power optimization gradients over the hydraulic pressure
for the mentioned cylinder. This plot presents the instance of maximal volumetric
ow rate since the eects of the exponent are the clearest to see. On the right side,
the 2D plot is extended over the full range of the cylinder velocity. The gradient is
visualized for three dierent powers of the pressure (��1

3=yellow,��
1,5

3=red,��
2
3=blue). The three lines don’t all cross in one point,

because the parameter ���� is adjusted according to the lift cylinder. This
scenario is caused by dierentiating cylinder velocities due to dierent cylinder
areas. Nevertheless, it is clearly visible, that for low-pressure sectors the gradient
decreases with increasing potency.
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For high pressures, a rapidly increasing nonlinear response can be seen with
increasing potency. This promises very good feedback in order to mitigate the
hydraulic operating points with high energy consumption since low pressures are
less penalized but higher pressures more so.

(a) Gradient Δ���� of cylinder 3 (b) Gradient Δ���� of cylinder 3

Figure 4.8: 2D and 3D plot of the power gradient Δ���� as a function of
����3and��3 for dierent potencies

4.6 Inclusion of Hydraulic Transformer

In Chapter 3.2.1 a hydraulic transformer as a further energy saving component is
presented and its hydraulic operating principle is discussed. In order to enhance
further energy savings, this hydraulic transformer is included in the previously
presented algorithms. The transfer of energy between joint ��2 and ��3 can
be incorporated directly into the pseudoinverse solution. For this purpose, Kaupp
[24] has presented a solution to integration the characteristics of the hydraulic
transformer directly into the Jacobian matrix. The hydraulic transformer consists
of two pumps/motors each connected to hydraulic cylinder 1 and cylinder 2. These
motors/pumps are coupled mechanically and thus, result in the same rotational
speed. The two motors/pumps have the same displacement. Hence, the same
volumetric ow rate is conveyed. Due to dierent piston areas, this results in dierent
cylinder velocities ���� for each cylinder. This correlation is expressed in
Equation 4.41. By solving this term to velocity��1,���� , the additional cylinder
velocity due to the transformer is expressed for cylinder 1 (Equation 4.42). [24]
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��1,���� =��2,����

��1,�� ·��1,���� =��2,�� ·��2,���� (4.41)

��1,���� =��2,���� ·��2,��

��1,��(4.42)

Since a part of the required volume ow, to meet the required joint velocity ��1

results from the hydraulic transformer (��1,���� ), the part of the velocity
resulting from the volume ow provided by the pump (��∗

1) has to be adapted.
The requested cylinder velocity ��1 depends only on the driver input and the
kinematics and thus remains unchanged. Only ��∗

1has to be adjusted to
compensate the hydraulic transformer. This is presented in Equation 4.43. [24]

��1 =��
∗
1 +��1,���� =��∗

1 +�� ·��2,���� =��∗
1

+��2,��

��1,��·��2,���� (4.43)

The constant �� is inserted into the Jacobian matrix to adapt the forward
kinematics in order to include the hydraulic transformer. �� consist of the
corresponding cylinder areas of hydraulic cylinder 1 and 2. The product of ��
and the rst column is added onto the second column of the Jacobian matrix. The
forward kinematics under consideration of the hydraulic transformer is presented
in Equation 4.44. The pseudoinverse can be formed regularly by just using the
new variation of the Jacobian matrix J���� . [24]

��11��12 +
��11��2,��




��∗1��2


(

4.44)

��

= J���� ·
��∗ =
��1,����

23

��1,����

13

��

��21

��22 +
��21��2,�

�

��3

4.7 Integration of inverse solution in simulation model

In previous work, a simulation model of the working hydraulics was developed
[16]. This model is built in the simulation software Simulink Matlab. A schematic
visualization of the simulation model is presented in Figure 4.9. The model
contains all hydraulic correlations of the working hydraulics. Furthermore, the
kinematics and dynamics of the crane arm are embedded in the system. This



allows a realistic simulation of working cycles considering all hydraulic and
mechanical parameters. The input to the system is the velocity of the end-eector.
According to the input, the corresponding cylinder velocities are computed in an
energy minimal form, by the pseudoinverse solution developed in this thesis. To
compute this solution, feedback of the hydraulic system is given by the position,
velocity, and pressure corresponding to each hydraulic cylinder. The input ��,
which controls the slewing motion executed by joint��1, is directly forwarded to
the working hydraulics, since this joint works independent of the remaining and
linear to the operator’s input. A
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visualization of the source code (Appendix A.3)for integrating the energy optimal
solution and a glimpse into the realization in Simulink Matlab is presented in the
Appendix A.2.

hydraulic cylinder positions
hydraulic cylinder velocities
hydraulic cylinder pressures

pseudoinverse
solution with
performance

q˙

q˙

q˙
simulation of the

working
hydraulics
with kinematic
and dynamic

operator optimization

input

correlations input r˙ input z˙

input θ˙

Figure 4.9: Schematic representation of the integrated inverse solution in a
simulation model
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In this chapter previously introduced algorithms are validated and discussed.
Thereby, two main algorithms are distinguished. The optimization of volumetric ow
rate and the optimization of hydraulic power in variation of the exponent are
presented and compared. These algorithms are validated by performing three
dierent test cycles for two variations of speed. Furthermore, the system is tested
with and without the hydraulic transformer, and the inuence of the HT on the
eectiveness of the optimization algorithms is discussed. In the rst sub-chapter, the
results are presented and discussed in the following sub-chapter.

5.1 Results

The results of the energetic investigations are subdivided into the behavior of the
system along three trajectories. These are explained in the rst sub-chapter. In
the second sub-chapter, the general conditions under which the results are
investigated are stated. Subsequently, the outcomes of the inquiries are
presented separately for each trajectory.

5.1.1 Test Trajectory

In a former thesis, [24] three trajectories have been dened. These represent
common loading processes of a knuckle-boom crane in the full range of the



workspace. The presented trajectories only cover two dimensional motions in��
and �� direction, since the slewing motion in Θ direction is independent of the
remaining axes and thus, is irrelevant for the presented algorithms. The
trajectories are divided into a horizontal (h), a vertical (v), and a diagonal (d)
motion of the end-eector. Each trajectory consists of two sections, in which the
crane arm is extended and retracted along a linear path. In the rst section, the
motion is paused for 3 �� between the change of direction. In the second
section, the direction is changed instantly. These two sections are also separated
by a pause of 3 ��. Furthermore, the system rests for 5 �� before section
one, to generate an initial idle state. The trajectories are operated at two dierent
speeds. Hereby, the velocity vectors in �� and �� direction have a magnitude
of either 0.5����or 1

��
��. In Figure 5.1 the three trajectories are visualized as

a function of the end-eector position over time, for a velocity of 0.5���� along
the corresponding axes. [24]
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Figure 5.1: Test trajectories for slow horizontal, vertical, and diagonal cycle,
adapted from [24]

Horizontal Trajectory To generate this trajectory, the velocity input along the��



axis is set either to 0.5����or 1
��
��. The velocity along the�� axis is set to

0����. For the velocity of 0.5����, this results in an extending motion of the
end-eector for the time periods 5 �� − 17 �� and 35 �� − 47 ��. The
retracting motion proceeds during the time intervals of 20 �� − 32�� and 47
�� − 59��. [24]

Vertical Trajectory To generate this trajectory, the velocity input along the ��
axis is set either to 0.5����or 1

��
��. The velocity along the�� axis is set to

0����. Due to the boundaries of the workspace, this trajectory needs an extra
motion in �� direction, before the main work period. Afterward, for the velocity
of 0.5����the input results in a lifting motion for the time periods 11 �� − 23
�� and 41 �� − 53 ��. The lowering motion proceeds during the time
intervals of 26�� − 38�� and 53�� − 65��. [24]
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Diagonal Trajectory To generate this trajectory, the velocity input along the ��
and �� axis are set either to 0.5����or 1

��
��. This results in a velocity of

0.71 ����or 1.41
��
��, because of the vectorial sum of the velocities. Due to

the boundaries of the workspace, also this trajectory needs an extra motion in
�� and �� directions, before the main work period. For the velocity of
0.5����this results in an extending motion of the end-eector for the time
periods 11 �� −17 �� and 29 �� −35 ��. The retracting motion proceeds
during the time intervals of 20�� − 26�� and 35�� − 41��. [24]

For the trajectories with the velocity of 1����, the motion time in each section is
halved, to ensure the same path.

5.1.2 Simulation Results

The performance-optimizing algorithms presented in Chapter 4 are evaluated
according to their energy reduction performance along the predened test
trajectories. These al gorithms are tested in the simulation model presented in
Chapter 4.7. As a reference condition, the least norm pseudoinverse solution,
including a joint limit avoidance through gradient projection method (Chapter
4.5.1) is designated. The JLA is necessary to success fully follow the trajectories
without reaching the joint limits. The algorithm for optimal volumetric ow rate
(Chapter 4.5.2) and for optimal power (Chapter 4.5.3) are compared to the
reference condition. In both, the JLA is implemented. The power optimal method
is tested in three variations of the exponent ��(�� = 1, �� = 1.5, �� = 2).
The algorithms are tested on a hydraulic system including the hydraulic
transformer (Chapter 4.6) and are compared to a conventional system without the
HT.
To generate static test conditions, the parameter ���� ���� of the joint limit
avoidance is set equally for all algorithms to ���� ���� = −0.005. The JLA
includes the piecewise function, which sets the Δ�������� to zero when the



joint is distant to the cylinder limits by more than 15% (Figure 4.5b). The second
exception, which sets Δ���� ���� to zero when the joint is moving towards
the center (Equation 4.28), is not implemented for this test, because oscillation
occurs when switching directions, which leads to incomparable conditions. The
parameter ���� is set to ���� = −800 for the volumetric ow rate optimization
method. In the power optimizing method,���� is set according to the exponent
��. For �� = 1 the parameter ���� = −0.0001, for �� = 1.5 the parameter
���� = −0.000000036 and for �� = 2 the parameter ���� =
−0.000000000012.
For the optimization algorithms, a low-pass lter is inserted to the feedback signal
���� of the hydraulic system. The low-pass prevents the system of oscillations
due to the direct feedback by smoothing ����. Furthermore, a control
algorithm developed in a former thesis [24], ensures correct trailing of the
trajectory.

The energy consumed over one test cycle is computed by integrating the hydraulic
power demanded by the system. The hydraulic power is computed by multiplying
the volumetric ow rate of the pump���������� and Δ��. The pressure
Δ�� is the pressure dierence of the system’s pressure to tank pressure. This
leads to the following equation:

51
5 Evaluation

�� =

∫ ������0

��������
���� =

∫ ������0

�������� ·
Δ������
(5.1)

To compare the energy consumption between the algorithms the percentage of
consumed energy per cycle is expressed in relation to the reference condition
(solely JLA). In the following equation,�������� is the consumed energy of
the reference condition, and �������� indicates the energy consumption of
an optimization algorithm:

�������� −��������
��������· 100% (5.2)

The following results are presented in three bar diagrams (Figure 5.6, Figure 5.7,
Figure 5.8) , one for each trajectory. In each diagram, the absolute energy
consumption over the tested trajectory is visualized in the rst row. In the second
row, the percentage of energy savings in comparison to the reference condition is
presented. Each row is divided into two sub-sections. These sub-sections
distinguish by the speed of motion. In the
rst one, the trajectory has a velocity of 0.5����along the�� or�� axes and

is named slow cycle. The fast cycle presents the trajectories with a velocity of
1����. For each sub-section, the conventional system is compared to the
system including the hydraulic transformer. Through the rst bar, the reference



condition (JLA) is represented, for each cycle. In the second row of each diagram,
this bar is 0 %, since it is the one compared to. The second bar represents the
optimization of the volumetric ow rate (Q-optimal). The three remaining bars all
depict the power optimal algorithm with a dierent exponent of the feedback
pressure ����. Hereby the exponent rises from the left to the right in
increments of 0.5, starting with �� = 1. Additionally the same results are
presented in Table 5.1. The same structure as for the bar plot is used to sort the
results.

Horizontal Trajectory

In Figure 5.2 the energy consumption along the horizontal trajectory is
presented. All results are compared to the performance of the reference
algorithm (JLA) for each test cycle. The reference algorithm consumes less
energy for the slow cycles than for the fast cycles. Furthermore, the system
including the hydraulic transformer, compared to the conventional system
consumes less energy for both velocities. Exact values are presented in the rst
third of Table 5.1. By comparing the volumetric ow rate optimization algorithm to
the reference algorithm, the energy consumption of the conventional system is
signicantly higher for both velocities. 12.2 % and 14.6 % more energy is needed
for the slow and fast cycle. The system with the HT achieves better results, as for
the slow cycle 1.7 % is saved. The Q-optimal algorithm during the fast cycle
consumes 2.7 % more energy than the reference cycle. The three variations of
the power optimizing algorithm all consume less energy than the reference cycles
and less than the Q-optimal cycle. Furthermore, for rising exponents the energy
savings increase. The greatest energy saving occurs with the HT system for the
fast cycle. In this case, 17 % energy can be saved in comparison to
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the reference. The algorithm with the conventional system achieves assimilable
energy savings (16 %) for the fast cycle. In the slow test cycle, the P-optimal
algorithm saves more energy in combination with the conventional system, than
with the HT-system, for an exponent of 1.5 and greater. The absolute energy
consumption for the conventional system is higher, though. Concerning the
P-optimal algorithm in conclusion can be said, that with higher velocity the
energy-saving potential is greater. When comparing same velocities, the HT
system consumes less energy than the conventional system.



Figure 5.2: Energy consumption of one horizontal cycle for dierent methods

Vertical Trajectory

The results of the tested algorithms on the vertical trajectory are presented in
Figure 5.3. The exact values of this plot are presented in the second third of
Table 5.1. The
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energy consumption of the reference algorithm (JLA) is greater for the higher
velocity. In contrary to the horizontal trajectory, the energy consumption of the
system with the HT is higher compared to the conventional system. This trend
also is apparent for the Q-optimal algorithm. By comparing both, the Q-optimal
algorithm consumes more energy, except for the conventional system during the
fast cycle. The P-optimal algorithm saves energy in all three variations of the
exponent. Similar to the horizontal trajectory, the energy savings increase with
rising exponent. The energy savings for the conventional system are greater than
for the HT system. Also, similar to the horizontal trajectory, the energy savings of



all algorithms are greater for higher velocity. Therefore, the P-optimal algorithm
with �� = 2, applied on at the conventional system during the fast cycle saves
the most energy. With a value of 26.9 % this is the greatest energy saving of all
trajectories.

Figure 5.3: Energy consumption of one vertical cycle for dierent
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Diagonal Trajectory

Figure 5.4 presents the results of the tested algorithms on the diagonal trajectory.
This tra jectory is a combination of both previously shown trajectories. Thus, the
results also have similarities to both. Similar to the horizontal trajectory, the
reference algorithm consumes more energy in the conventional system. Also, for
the fast cycles, more energy is consumed.



Figure 5.4: Energy consumption of one diagonal cycle for dierent methods

It must be said, that the reference algorithm (JLA) of the conventional system
during the fast cycle is not able to follow the path in the �� direction. This is
caused by reaching the limits of volumetric ow rate at hydraulic cylinder 1. As it
can be seen in Figure 5.5, the end-eector is not lowered to the full range of Δ��,
which results in lower potential energy per cycle. Hence, the consumed energy of
this cycle is excepted to be higher for a correct
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trailing of the path. Also, less volume ow is needed since the cylinders extend
less. Since the remaining algorithms follow the path suciently well during this
cycle, this leads to the assumption, that the percentage of energy saving for the
other algorithms would be greater for a correct trailing of the reference algorithm.
Therefore, the energy savings of the explicit cycle are not further mentioned. The
trailing in along the R-coordinate is suciently ne as visualized in Figure 5.5.
The Q-optimal algorithm consumes more energy than the reference algorithm in



the conventional system. Although, the additional energy only is 0.2 % for the HT
system in the fast cycle. With one exception, the variations of the P-optimal
algorithm consume less energy than the reference in each cycle. Only for the
power �� = 1, during the slow cycle in the HT system, more energy than the
reference is consumed. With a higher exponent, the energy savings increase.
The greatest energy savings of 24.3 %, are achieved in the HT system during
the fast cycle. Also, the absolute consumed energy is lower for each algorithm in
the HT system. This holds true for both velocities.
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Figure 5.5: R-coordinate and Z-coordinate trailing of diagonal trajectory for fast
cycle with conventional system
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By comparing all three trajectories, it is shown, that the same system needs more
energy for higher velocities. Furthermore, if only the same systems are
compared, the energy saving potential is greater with higher velocity. The HT
system consumes less energy during the horizontal and diagonal trajectory. This
statement is not valid for the vertical trajectory. The P-optimal algorithm
consumes less energy with rising exponent, except for one cycle of the diagonal
trajectory. By only comparing same system types, the power optimization reduces
the consumed energy up to 26.9 % on a conventional system during a vertical
trajectory. When also comparing system types with each other, the greatest



energy savings can be found. In this case, the HT-system with the P-optimal
algorithm consumes up to 31.8 % less energy, than the reference algorithm on a
conventional system on a horizontal trajectory.
In almost all cycles, besides two exceptions, the Q-optimal algorithm consumes
more energy than the reference.

Table 5.1: Energy consumption of all three trajectories, absolute values and
percentage of energy savings.
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0.5����no HT 664 - 745 -12.2 650 2.1 611 8.0 595 10.4 HT 544 -
535 1.7 524 3.7 509 6.4 502 7.7 h

1����no HT 801 - 918 -14.6 749 6.5 673 16.0 673 16.0 HT 662 -
680 -2.7 600 9.4 570 13.9 546 17.5

0.5����no HT 376 - 387 -2.9 317 15.7 312 17.0 312 17.0 HT 372 -
415 -11.6 369 0.8 350 5.9 338 9.1 v

1����no HT 454 - 442 2.6 351 22.7 341 24.9 332 26.9 HT 462 -
485 -5.8 414 10.4 389 15.8 373 19.3

0.5����no HT 573 - 606 -5.8 522 8.9 476 16.9 453 20.9 HT 426 -
468 -9.9 437 -2.6 417 2.1 404 5.2 d

1����no HT 605 - 674 -11.4 588 2.8 556 8.1 532 12.1 HT 600 -
601 -0.2 501 16.5 474 21.0 454 24.3
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5.2 Discussion

In order to build a better understanding of the impact of the algorithms on energy
con sumption, some aspects are discussed in more depth, in this chapter.

Energy Reduction Through P-Optimal Algorithm

Since this thesis searches for a minimal energy algorithm, the discussion rstly
focuses on the power optimization algorithm in its three variations. To understand
the operating principle of the algorithm, the volumetric ow rate and the pressure
measured at the pump, must be contemplated to understand the operating
principle of the algorithm. Since the power and thus, the energy is a function of
these two parameters, these two functions are visualized in the top row of Figure
5.6. The resulting power and energy of the system are plotted in the bottom row.
The reference algorithm is displayed as a blue line, whereas the power



optimization algorithm is displayed in red. For this comparison, the power
optimization algorithm of power 2 is chosen. The displayed test cycle is the
diagonal trajectory for the fast cycle and the conventional system.

Figure 5.6 conrms, that the P-optimal algorithm has a positive inuence on the
volumetric ow rate, as well as on the pressure of the system. The algorithm
lowers the peaks of the volumetric ow rate successfully over a signicant time

range of the trajectory. Espe cially during the extending motion of the crane arm,
the volumetric ow rate is lowered signicantly. At the rst peak (�� = 5��)
oscillations occur. These always have a negative inuence on the eect of the

optimization. Thus, the energy consumed is higher for this peak. Due to the direct
feedback of the cylinder velocity and the cylinder pressure, these oscillations
have a direct impact on the feedback matrix���� . With greater parameter

���� the oscillations increase due to feedback eects. These eects are greater
for the cylinder veloc ity than for the pressure since the cylinder velocity is a direct

control variable of the system.

The eects on the reduction of pressure peaks are even greater than on the
volume ow. Figure 5.6b shows, that the maximum pressure over the whole cycle is
reduced by 27%. In sections of lower pressure, the pressure rises. The higher
pressure is caused by dierent joint congurations of the crane arm in comparison to
the reference cycle. The highest load sensing pressure is set by a dierent cylinder
due to the algorithm. This eect mostly does not have a negative impact on the
energy consumption of the system, since often in these areas the volumetric ow
rate is zero. In Figure 5.7, the pump pressure of the same cycle is plotted for a
variation of all three tested exponents. With a higher exponent, the pressure
peaks decrease. The theoretical eects of the exponent on the performance
gradient are presented in Chapter 4.5.3.1. These are mirrored in the simulation.
In sections of high pressure, the algorithms with greater exponent achieve a
major reduction of pressure, whereas in low-pressure areas the pressure rises
with a higher exponent. With rising exponent, the pressure magnitude is
distributed more equally over the trajectory, since high- and low-pressure peaks
are equaled out. This is a deliberate eect in order to reduce energy consumption.
Especially during the extending motion, a major reduction of power can be
observed, of up to 50 %. This is visualized in Figure 5.6c.
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(a) Pump volumetric ow rate over time (b) Pump pressure over time

(c) Power over time (d) Energy over time

Figure 5.6: Comparison of pump parameters of JLA and P-optimal power 2
algorithm for conventional system on (d) trajectory (see Figure 5.1) in fast cycle

The exponents chosen for this evaluation are only examples. In most cycles, the
energy savings rise with each increase of the power ��. Only in few cases,
these energy savings stagnate for exponent �� = 2. This leads to the
assumption, that for further increase of the exponent, the energy savings will rise
for most cycles. In an iterative process, an optimal condition can be
approximated. This process copes with certain diculties since, with every change
of the exponent ��, the parameter����must also be adjusted to an optimal
condition in multiple iterations. Furthermore, the optimal exponent �� can be
approximated to a certain extend since, for each trajectory and velocity, the
system reacts dierently.
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Figure 5.7: Comparison of pressure reduction for various exponents�� of
P-optimal algo rithm

Influence of Cycle Velocity on Energy Consumption

When comparing the energy consumption due to the cycle speed, it can be seen
that the fast cycle always consumes more energy for the same path. A greater
velocity of the end-eector results in a greater velocity of the hydraulic cylinders
and thus, the volumetric
ow rate is higher. The same eect can be seen for the pressure. The pressure is a
function of the forces applied to the system. These forces are dependent on
velocity and accelera tion. Higher velocities also result in higher acceleration,
since the trajectory velocities are constant for most of the time and have a ramp
form for each change of velocity. The power optimization algorithm achieves
greater energy saving for the fast cycles. This can be explained by the fact, that
for higher velocities the peaks of pressure and volume ow are more intense.
Hence the previously explained attening eects of the algorithm have a greater
impact. This leads to a greater decrease of energy consumed by the system.

Problems Concerning the Q-Optimal Algorithm

For most cycles, the energy consumed by the Q-optimal algorithm is higher than
by the reference algorithm. Firstly must be stated, that the reference algorithm
already is the least norm solution with respect to minimum hydraulic cylinder
velocities. That means the non-linear relation, discussed in Chapter 4.5.2 and
presented through the FCR, is already taken into account. The Q-optimal
algorithm only distinguishes through a vector that consists of the cylinder areas.
These cylinder areas weight the motion and direction of
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motion of each cylinder dierently and hence, change the magnitude of the FCR
by a constant factor.
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Figure 5.8: Comparison of Volumetric ow rate for Q-optimal algorithm and
reference algorithm

To further discuss the performance of the Q-optimal algorithm, this algorithm is
compared to the reference algorithm in Figure 5.8. The volumetric ow rate is
plotted for both of them, for the (h) trajectory of the conventional system
performing a fast cycle. Similar to the P-optimal algorithm, the Q-optimal
algorithm successfully lowers the peaks of each section. In the test simulations of
the Q-optimal algorithm increased oscillations occur. In Figure 5.8 this can be
seen, at the peak of the volumetric ow rate during the retracting motions of the
crane arm. These oscillations occur due to a poorly adjusted parameter ����
and the according low-pass lters. The feedback cylinder velocity of the hydraulic
system is a direct control variable of the algorithm, which leads to back coupling
oscillation eects. The oscillations aggravate the search after low volumetric ow
rates, for the algorithm, since no clear feedback is given. In the visualized cycle,
immediately after the oscillations decay, an increase of volume ow can be
observed, for example during the time intervals 15��-20�� and
30��-35��. This phenomenon can be explained by these aggravated
conditions for the algorithm due to oscillating feedback. Better adjustment of the
parameter ���� and correspondingly a suitable setting of the low-pass lter, will
reduce oscillations and can produce better results. This can be seen in the test of
the P-optimal algorithm since this algorithm only is an extension of the Q-optimal
algorithm. For the cycle, presented in Figure 5.6c, the volume ow is reduced
eectively, while only few oscillations occur.
An additional problem is, that this algorithm does not search for a global
optimum. Ex plicitly in this cycle, this could explain the poor performance.
Hydraulic cylinder 1 is single-acting and therefore while retracting has no eect on
the volumetric ow rate.
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While extending the crane arm, cylinder 1 is retracted as far as the joint limit
avoidance allows. In contrast, while extending cylinder 1 again for the contrary
motion of the crane arm, a major volume ow is needed due to the large cylinder
area. Hence, this motion is
rstly avoided by the Q-optimal algorithm. Due to the joint limits of the remaining

joints and limitations of possible joint congurations, the trajectory can not be
trailed without a motion of cylinder 1. This leads to an inevitable extending motion
of the cylinder in congurations with poor performance. The discussed issue
explains why during the time period 5��-12�� the volume ow consumption of
the Q-optimal algorithm is similar or less than the reference cycle. For repeating
the same motion during the time interval 23��-28��, the start conditions are
dierent, due to a total retract of the IBC during the rst period. This leads to a
worse volume ow consumption in the second period.
Likely a combination of both problems presented leads to the poor results of this
algorithm. Apart from this, this algorithm is not expected to reduce energy, since it
only searches for low volumetric ow rates.

Performance of the HT System in Collaboration with the P-Optimal Algorithm

The results proof, that the inclusion of the hydraulic transformer into the power
opti mization algorithm is accomplished successfully. Especially the horizontal
trajectory is favorable for the HT-system. During the fast cycle, the P-optimal,
power 2 algorithm saves 19 % more energy in the HT-system, compared to the
same algorithm in the conventional system. This eect occurs due to the contrary
motions of the inner and outer boom during a horizontal motion of the
end-eector. The potential energy of the booms can be transformed, while one
boom is lowering and the other is raising. This is used by the algorithm by
preferring this motion.
The vertical trajectory in contrast is not favorable for the HT system. The test
cycles of this trajectory mostly lead to higher energy consumption of the HT
system compared to the conventional system. During this trajectory, the inner and
outer boom mainly both raise or lower at the same time. No potential energy can
be transferred. Hence, the coupling of the inner and outer boom is rather
hindering the algorithm.
Since the diagonal trajectory is a combination of the horizontal and the vertical
trajectories, both cases can be observed. In this case, the absolute energy
consumed by the HT-system is greater, than by the conventional system.
Whereas the percentage energy savings of the P-optimal algorithm are greater
for the conventional system. Since the algorithm can not in all cases prefer a
contrary motion of the inner and outer boom, in the remaining cases the coupling
can be hindering.

Problems Due to Oscillations

The algorithms presented are very vulnerable to oscillations. On the one hand
oscillation emergence for a great parameter of ���� , due to the direct
feedback from the hydraulic system of cylinder velocity and pressure. On the
other hand, these oscillations have a negative eect on the eectiveness of the



algorithm. Especially the feedback of the cylinder velocity has a great impact on
oscillations of the system. A low-pass lter helps to reduce these. The interplay of
the low-pass lter and the parameter���� is very sensible. Hence,
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to set a test environment that is comparable for all systems and algorithms, the
factor ���� in combination with the low-pass lter is rather set to moderate
conditions. For each system and algorithm, this can be done separately in an
iterative manner, instead of having one overall condition. This would improve the
energy consumption of each algorithm individually.
As stated in Chapter 5.1.2, in all tested cycles, the joint limit avoidance was not
set to zero for a cylinder motion towards the center as explained in Chapter 4.5.1
(Equation 4.28). This decision was made due to problems with oscillations for
changing directions of motion. This step is valid since due to the GPM, the JLA
gradient adds a velocity with opposite direction onto the corresponding joint
through the homogeneous solution. If the JLA proportion of velocity was set to
zero immediately after the joint is stopped before reaching the joint limit, the joint
could continue towards the joint limit. Then, because of a velocity towards the joint
limit, the JLA is active again until the joint changes direction. This procedure
repeats and leads to an oscillation.
In contrast, having a JLA when not absolutely need can limit the eectiveness of
the energy optimizing algorithm. One way of solving this problem is including a
delay time before turning the gradient to zero after the direction of motion is
changed towards the center. This time-dependent method can be implemented in
addition to the already existing cylinder position-dependent method of turning JLA
to zero when not necessary (Figure 4.5b). This time-dependent method
guarantees, that due to a longer inuence of the JLA and hence a greater distance
to the joint limit, the inuence of the velocity due to the JLA is suciently small when
turned to zero, to not result in a change of velocity direction. Also, this time
period is dependent on the system and algorithm. When this condition is set
correctly the impact of the JLA on the nullspace solution can be reduced. This
increases the inuence of the energy optimizing algorithm on self-motion and
leads to greater energy reduction.

Limitation of Energy Reduction Through Local Solution

All presented algorithms search for optimal conditions regarding their particular
perfor mance criterion for each instant. This does not necessarily lead to an
optimal condition over the complete trajectory, since each instance is not
compared to the previous and following instant. These eects have already been
discussed for the Q-optimal algorithm. Since the P-optimal algorithm is an
extension of the Q-optimal algorithm, it is shown that this algorithm as well would
prot from a global solution. Also, the optimization in relation to the HT-system
could prot from a global solution since favorable motions of the inner and outer
boom would be chosen with a foresight of the following motion. As presented in
Chapter 3.2.2, the application of global solutions is limited by the computing
capacity of onboard control units. Furthermore, if the trajectory is planed
spontaneously by the operator, the future motions will not be known at the
instantaneous time step. Pre-calculated trajectories of common motions could
provide a remedy to this problem. These would need to be stored on the onboard



control unit and could be retrieved by the operator.
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6 Conclusion and Prospects

Conclusion
This thesis presents a novel approach to a power optimizing algorithm applied
on a knuckle-boom crane. This algorithm enables an energy-saving control of the
end-eector by solving the redundancy of the crane arm with respect to the
volumetric ow rate and pressure of the hydraulic load sensing system.
An existing approach was given by a former thesis [24], addressing this problem,
by the use of a weighted pseudoinverse solution. This thesis provides a
functioning simulation model, which supplies an applicable test environment for
the novel approach of this thesis. With the aim of an energy-saving solution,
existing approaches to this problem are pre sented, distinguishing between
on-line and o-line solutions. Due to limited computational capacity and the
advantages of real-time capability, an on-line solution is chosen. There fore, the
kinematics of the knuckle-boom crane are investigated and the motion of the
end-eector is expressed as a function of the hydraulic cylinder motion. This is
done by coordinate transformations by applying Denavit Hartenberg notation.
The redundancy of the crane arm is solved by a least-norm solution using the
pseudoinverse formulation. Inspired by Cheng et al. [9], in use of the gradient
projection method, the pseudoinverse so lution is modied to a volumetric ow rate
optimizing solution. This approach is extended to a power optimizing solution by
considering the hydraulic pressure of each hydraulic cylinder. This is achieved,
by including a feedback of the cylinder’s pressure into the performance gradient
of the gradient projection method. To increase the inuence of the pressure
feedback, an exponent is applied to the feedback. In order to enhance further
energy savings, a hydraulic transformer is included in the pseudoinverse solution
in a similar manner to [24]. This transformer exploits the potential energy of the
inner and outer boom during contrary motions.
The volumetric ow rate optimizing algorithm from [9] and the power optimal
solution designed in this thesis are tested and validated in a simulation model, by
performing repre sentative trajectories. The energy consumption due to the
performance of the algorithms is compared for a conventional system and a
system including the hydraulic transformer. As a reference condition, the least
norm solution is chosen, which solves the redundancy by pseudoinverse solution.
All algorithms contain a joint limit avoidance to obey the kinematic restrictions of
the crane arm.
The volumetric ow rate optimizing algorithm performed poorer than the reference
con dition while testing on the energy optimization potential. Whereas the power
optimizing algorithm successfully reduces the system energy up to 26.9 %. The
hydraulic transformer improves the energy-saving potential of the algorithm for
horizontal motions. In compari son to a conventional system with a regular least
norm solution, up to 31.8 % more energy is saved by the HT system with a power
optimizing algorithm. For vertical motions, the
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