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Pulse propagation in nonlinear waveguides is most frequently modeled by resorting to the generalized nonlinear 
Schrödinger equation (GNLSE). In recent times, exciting new materials with peculiar nonlinear properties, such 
as negative nonlinear coefficients and a zero-nonlinearity wavelength, have been demonstrated. Unfortunately, the 
GNLSE may lead to unphysical results in these cases since, in general, it does not preserve the number of photons 
and, in the presence of a negative nonlinearity, predicts a blue shift due to Raman scattering. In this paper, we put 
forth a modified GNLSE that can be used to model the propagation in media with an arbitrary, even negative, non-
linear coefficient. This novel photon-conserving GNLSE (pcGNLSE) ensures preservation of the photon number 
and can be solved by the same tried and trusted numerical algorithms used for the standard GNLSE. Finally, we 
compare results for soliton dynamics in fibers with different nonlinear coefficients obtained with the pcGNLSE and 
the GNLSE. 

wavelength, or a controllable self-steepening parameter [15,23].
It can be shown that the straightforward addition of a complex
wavelength dependence of the nonlinear coefficient on the
GNLSE does not satisfy the strict requirements for photon
number conservation and, hence, leads to unphysical predic-
tions. Thus, a careful modification of the GNLSE, accounting
for the frequency dependence of the nonlinear coefficient,
is needed to adequately model propagation in these peculiar
media [12,15,19,25–28]. In this work, we put forth one such
modification based on a simple quantum theory of the GNLSE
developed in Ref. [29]. In this sense, we extend the work in
Ref. [30], which introduced a modified photon-conserving
nonlinear Schrödinger equation, neglecting the effect of the
Raman (delayed) response of the medium.

The rest of the paper is organized as follows. In Section 2, we
briefly note the problems of the GNLSE to model frequency-
dependent nonlinearities. In Section 3, we summarize our
proposed modification to the propagation equation. Numerical
results are presented in Section 4, and we close with some final
remarks in Section 5.

1. INTRODUCTION

For many years, the generalized nonlinear Schrödinger equation 
(GNLSE) [1] has been proved to accurately model propaga-
tion of light pulses in nonlinear Kerr media. Moreover, the 
existence of powerful numerical algorithms [1,2] that can 
efficiently solve the GNLSE has rendered i ts use widespread. 
However, the validity of the GNLSE is limited, and there have 
been many attempts to introduce modifications i n o rder to 
extend the range of its applicability, for instance, to shorter 
pulses [3–10]. Moreover, it is well known that the approxima-
tions involved in the derivation of the GNLSE do not conserve 
some physical quantities, such as the photon number, unless 
the transmission medium nonlinearity satisfies s ome special 
and restrictive conditions [11–13]. These conditions pose a 
serious limitation to the application of the GNLSE to new kinds 
of materials, such as metamaterials [14–19] and nanoparticle-
doped glasses [20–24]. The nonlinear refractive-index of these 
materials is strongly frequency dependent, giving rise to unusual 
phenomena, such as solitons and modulation instability in the 
normal-dispersion regime, the existence of a zero-nonlinearity
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2. GNLSE WITH A FREQUENCY-DEPENDENT
NONLINEARITY

Let us recall that the GNLSE in the frequency domain reads [1]

∂ Ãω
∂z
= iβ(ω) Ãω + iγ (ω)F

(
A|A|2

)
+ i fRγ (ω)F

×

(
A
∫
∞

0
h(τ )|A(t − τ)|2dτ − A|A|2

)
, (1)

where z is the direction of propagation, A is the complex enve-
lope of the electric field of a light pulse with central frequencyω0

normalized such that |A|2 is the optical power, Ãω =F(A), and
F stands for the Fourier transform. Since we focus on the lossless
case, the mode-propagation profile β(ω) is assumed to be real
valued. fR is the fractional Raman contribution [31], and h(t)
is the delayed Raman response. As shown in Ref. [30], Eq. (1)
does not conserve the number of photons in general, a fact
inconsistent with the underlying photon-conserving physical
processes, namely, dispersion, four-wave mixing, and Raman
scattering. Moreover, although Raman scattering involves the
annihilation of a photon at frequency ω and the creation of a
photon at frequencyω−µ and a phonon of frequencyµ, lead-
ing to a transfer of energy toward lower frequencies (red shift),
an unphysical soliton blue shift is predicted when a negative
nonlinearity is considered [23].

Limitations of Eq. (1) to model both Raman scatter-
ing and arbitrary nonlinearities can be best understood
by resorting to some simple calculations. Let us consider
the interaction between a continuous-wave intense pump
and a small signal. We propose the solution A(z, t)=
A p(z)e−i(ω0+ωp)t + As (z)e−i(ω0+ωs)t for Eq. (1), where
ωs =ωp −µ, µ represents the phonon frequency, and A p and
As are the pump and signal amplitudes, respectively; ω0 is an
arbitrary central frequency such that all other frequencies in this
paper represent a detuning fromω0.

For the sake of simplicity, we neglect the four-wave interac-
tion with an anti-Stokes signal. The evolution of photon fluxes,
8p,s = |A p,s |

2/~(ω0 +ωp,s), is given by (see, e.g., Chapter 10
in Ref. [32])

∂8p

∂z
=−

2 fRγ (ωp)h̃ I
µ

~(ω0 +ωp)
Pp Ps, (2)

∂8s

∂z
=

2 fRγ (ωs)h̃ I
µ

~(ω0 +ωs)
Pp Ps, (3)

where Pp,s = |A p,s |
2 is the optical power and h̃ I

=

Im{F(h(t))}. We focus on the case ωs <ωp , where a
photon-flux transfer from pump to signal is expected.
First, it must be noted that the photon-number conserva-
tion, ∂z8p + ∂z8s = 0, is satisfied only if γ (ωp)/γ (ωs)=

(1+ωp/ω0)/(1+ωs/ω0). Since both ωp and µ are arbi-
trary, the conservation of the number of photons requires
that γ (ω)= γ0(1+ω/ω0), for some constant γ0 and all ω.
This requirement, already found by Blow and Wood [11], not
only prevents the modeling of a more general linear frequency
dependence of the nonlinear coefficient, but it also precludes
the modeling of far more interesting phenomena such as the

existence of zero-nonlinearity wavelengths. Furthermore, these
equations necessitate that γ0 > 0; otherwise, a negative nonlin-
earity would lead to a transfer of photons from the signal to the
pump. All in all, these observations point to the fact that Eq. (1)
is not suitable when applied to arbitraryγ (ω)profiles.

3. PHOTON-CONSERVING GENERALIZED
NONLINEAR SCHRÖDINGER EQUATION

In order to circumvent the difficulties of Eq. (1), we resort to a
simple quantum theory of the GNLSE developed in Ref. [29].
Following an approach similar to that in Lai and Haus [33], it is
shown that, for a standard nonlinearity γ (ω)= γ0(1+ω/ω0)

with γ0 > 0, Eq. (1) can be derived from the quantum master
equation

dρ
dz
= i
[
ĤKerr + ĤR, ρ

]
+

∫
∞

0

[
L̂µρ L̂†

µ −
1

2

{
ρ,L̂†

µ L̂µ
}]

dµ,

(4)
where ρ is the density matrix representing the quantum state of
the electromagnetic field, ĤKerr is the four-wave mixing operator
associated with the Kerr effect,

ĤKerr =

∫∫∫
γ0

4π~ω0
Â†
ω1

Â†
ω2

Âω1−µ Âω2+µdω1dω2dµ, (5)

ĤR is the four-wave mixing operator associated with the real part
of the Raman response [34–36],

ĤR =

∫∫∫
γ0 fR(h̃ R

µ − 1)

4π~ω0
Â†
ω1

Â†
ω2

Âω1−µ Âω2+µdω1dω2dµ,

(6)
and L̂µ is the Lindbladian operator associated with the creation
of a phonon of frequencyµ,

L̂µ =
∫ √

γ0 fRh̃ I
µ

π~ω0
Â†
ω′−µ

Âω′dω′. (7)

The field operators Âω, related to the annihilation operators by
Âω =

√
~(ω0 +ω)âω, provide a clear quantum picture of the

four-wave mixing and Raman scattering processes in terms of
the creation and annihilation of photons. The standard GNLSE
can be straightforwardly obtained as the mean-value evolution
of these operators (for full details of this calculation, we refer the
interested reader to Ref. [29]):

d〈 Âω〉
dz
= i〈[ Âω, ĤKerr + ĤR]〉 +

1

2

∫
∞

0
〈[L̂†

µ, Âω]L̂µ

− L̂†
µ[L̂µ, Âω]〉dµ. (8)

Both Eqs. (5) and (6) must be modified in order to preserve the
number of photons when an arbitrary frequency-dependent
nonlinear coefficient γ (ω) is considered. It can be shown that a
modified photon- and energy-conserving Kerr operator is given
by [30]

ĤKerr =
1

8π~

∫∫∫ (
B̂†
ω1

B̂†
ω2

Ĉω1−µĈω2+µ

+ Ĉ †
ω1

Ĉ †
ω2

B̂ω1−µ B̂ω2+µ

)
dω1dω2dµ, (9)



where the operators are defined as B̂ω = 4
√
γ (ω)/(ω0 +ω) Âω

and Ĉω = (
4
√
γ (ω)/(ω0 +ω))

∗ Âω.
In order to include the effect of Raman scattering in the pres-

ence of arbitrary nonlinearity profiles, we propose rewriting the
Raman operators [Eqs. (6) and (7)] in terms of B̂ , obtaining

ĤR =

∫∫∫ fR(h̃ R
µ − 1)

4π~
B̂†
ω1

B̂†
ω2

B̂ω1−µ B̂ω2+µdω1dω2dµ,

(10)

L̂µ =
∫ √

fRh̃ I
µ

π~
B̂†
ω′−µ

B̂ω′dω′. (11)

It can be easily shown that Eqs. (9)–(11) are consistent with
Eqs. (5)–(7) when setting γ (ω)= γ0(1+ω/ω0) and γ0 > 0
in the definition of B̂ω. That is, these equations agree with the
GNLSE when the frequency dependence of the nonlinear coef-
ficient γ (ω) is linear. However, note that our proposal involves
a subtle difference with the usual approach of preserving the
GNLSE and adding an arbitrary γ (ω) in straightforward fash-
ion; instead, we keep the quantum master equation and allow
γ (ω) to take arbitrary values. This way, we ensure that the
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Fig. 1. Propagation of a fundamental soliton in the anomalous dis-
persion regime of a medium with a positive nonlinear coefficient and
γ (ω)= γ0(1+ω/ω0). Top panel: input spectrum (dashed-dotted
line) and output spectra (GNLSE, solid line; pcGNLSE, dotted line).
Spectral evolution: (a) GNLSE and (b) pcGNLSE. Bottom panel:
energy evolution along propagation. In this scenario, the GNLSE and
pcGNLSE equations yield the exact same spectral shifts and energy
evolution.

physical processes represented by the equation remain the same,
but weighted by different coefficients.

By substituting Eqs. (9)–(11) in Eq. (8), we obtain a photon-
conserving GNLSE (pcGNLSE):

∂Ãω
∂z
= iβ(ω) Ãω + i

γ̄ (ω)

2
F
(
C∗B2)

+ i
γ̄ ∗(ω)

2
F
(
B∗C 2)

+ i fRγ̄
∗(ω)F

(
B
∫
∞

0
hR(τ )|B(t − τ)|2dτ − B |B |2

)
,

(12)

with

B̃ω =
4

√
γ (ω)

ω0 +ω
Ãω, C̃ω =

(
4

√
γ (ω)

ω0 +ω

)∗
Ãω, (13)

γ̄ (ω)=
4
√
γ (ω)× (ω0 +ω)

3. (14)

It must be remarked that Eq. (12) can be efficiently solved
using numerical methods similar to those used for the standard
GNLSE, such as, e.g., split-step Fourier or Runge–Kutta inter-
action picture (Ref. [2]): aside from the extra calculation of the
auxiliary fields B and C , which can be readily obtained from the
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Fig. 2. Propagation of a fundamental soliton in the normal dis-
persion regime of a medium with a negative nonlinear coefficient.
Top panel: input spectrum (dashed-dotted line) and output spectra
(GNLSE, solid line; pcGNLSE, dotted line). Spectral evolution:
(a) GNLSE and (b) pcGNLSE. Bottom panel: energy evolution along
propagation. In this scenario, the pcGNLSE predicts a physically
sound soliton red shift, while the GNLSE produces an unphysical blue
shift.



knowledge of Ãω and γ (ω) using Eq. (13), numerical methods
can be applied in the exact same manner.

As we did in the case of the GNLSE [viz. Eqs. (2) and (3)],
we can analyze the behavior of photon fluxes in the simple case
of a pump and a signal. We can arrive at these flux equations
governing the Raman scattering process by considering a pump
plus signal field A(z, t)= A p(z)e−iωp t

+ As (z)e−iωs t in
Eq. (12), neglecting all four-wave mixing terms (i.e., keeping
only terms in the original pump and signal frequencies) and
then obtaining coupled differential equations for ∂z As ,p(z).
After some cumbersome but straightforward calculations, the

fluxes ∂z8s ,p(z)= 2Re[
A∗s ,p (z)∂z As ,p (z)
~(ω0+ωs ,p )

] are found to be

∂8p

∂z
=−

2 fR
√
|γ (ωs)γ (ωp)|h̃ I

µ

~
√
(ω0 +ωs)(ω0 +ωp)

Pp Ps, (15)

∂8s

∂z
=

2 fR
√
|γ (ωs)γ (ωp)|h̃ I

µ

~
√
(ω0 +ωs)(ω0 +ωp)

Pp Ps. (16)

It is easy to verify that the photon number is conserved
(∂z8s + ∂z8p = 0). Moreover, since ∂z8p ≤ 0 and ∂z8s ≥ 0,
Raman scattering cannot produce a shift towards higher
frequencies, i.e., only a red shift is possible, as expected.
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Fig. 3. Propagation of a fundamental soliton in the anomalous
dispersion regime of a medium with a positive nonlinear coeffi-
cient and a negative self-steepening parameter. Top panel: input
spectrum (dashed-dotted line) and output spectra (GNLSE, solid
line; pcGNLSE, dotted line). Spectral evolution: (a) GNLSE and
(b) pcGNLSE. In this scenario, the GNLSE and the pcGNLSE predict
different soliton red shifts.

4. NUMERICAL RESULTS

In what follows, we show substantially different results obtained
with the GNLSE and the proposed pcGNLSE. Also, we show
a simulation of soliton dynamics with parameters taken from
Ref. [24] where an alternative model, including the frequency-
dependent γ (ω) only in the instantaneous response of the
medium, is introduced.

Figure 1 shows the evolution of a fundamental soliton
of 10-fs half-width (at the 1/e -intensity point), at a cen-
ter wavelength of 1000 nm, in a fiber with a nonlinearity
γ (ω)= γ0(1+ω/ω0) and γ0 =+10−21/W m, and dis-
persion profile β(ω)= 1

2β2(ω)ω
2, where the group velocity

dispersion parameter isβ2(ω)= β2 =−21 ps2/km; the Raman

response function is h(τ )=
τ2

1+τ
2
2

τ1τ
2
2

e−t/τ2 sin(t/τ1), where

τ1 = 0.0155 ps and τ2 = 0.2305 ps, and the Raman fractional
contribution is f R = 0.18 [1]. As expected, in this case, both
equations predict the exact same results. The decreasing of the
pulse energy due to the Raman-scattering red shift is displayed
in Fig. 1 (bottom). More interestingly, differences arise in the
case shown in Fig. 2, where the nonlinear coefficient is negative
(γ0 and β2 signs are alternated with respect to that in Fig. 1).
The GNLSE predicts unphysical results, namely, a soliton blue
shift together with an increase in the total energy (bottom of
Fig. 2). On the other hand, the pcGNLSE predicts a red shift
of the soliton and an energy decrease due to Raman scattering.
Closer observation of the top panel of Fig. 2 reveals not only
the difference in the soliton frequency shift, but also that the
pcGNLSE predicts a soliton of narrower bandwidth.

In order to further asses the physical consistency of
the proposed equation, we compare the evolution of a
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Fig. 4. Energy and photon number evolution corresponding to
Fig. 3: GNLSE, solid line; pcGNLSE, dotted line. Note that, while the
pcGNLSE consistently conserves the photon count and reflects energy
losses due to Raman scattering, the GNLSE predicts the increase in
both photon number and energy.



fundamental soliton, as obtained with the GNLSE and
the pcGNLSE, now including an arbitrary negative
self-steepening parameter γ1 6= γ0/ω0. The simulation
parameters are 3.48 kW peak power, t0 = 10 fs, λ0 = 835 nm,
β2 =−38.3 ps2/km, β3 = 0.25 ps3/km, γ0 = 0.111/W m,
and γ1 =−2.25× 10−4 ps/W m. These parameters are taken
from Ref. [24], where soliton dynamics in a photonic-crystal
fiber with a frequency-dependent Kerr nonlinearity are analyzed
with an alternative ad hoc model. Results obtained with the
pcGNLSE agree well with those in this reference.

In Fig. 3, we observe that, while the GNLSE and the
pcGNLSE predict a physically sound soliton red shift, the
predicted soliton frequency-shift rate and output spectra differ
substantially. Figure 4 shows the energy and photon-number
evolution for both cases; while the pcGNLSE predicts an energy
decrease due to the soliton red shift and conserves the number
of photons, the GNLSE produces unphysical results for both
quantities.

5. CONCLUSION

We showed that the GNLSE does not preserve the photon
number, and thus predicts unphysical results when dealing
with arbitrary frequency-dependent nonlinearities. By resort-
ing to the quantum-mechanical theory of four-wave mixing
and Raman scattering, we derived a new equation, named
pcGNLSE, circumventing this problem. We showed exam-
ples comparing results from the pcGNLSE with the standard
GNLSE. Although the ultimate accuracy of the proposed
pcGNLSE needs to be put to the experimental test, the equation
is shown to reduce to the standard GNLSE for a standard non-
linearity profile γ (ω)= γ0(1+ω/ω0), and to yield physically
sound results such as a soliton red shift even in the presence
of a negative nonlinear coefficient, while strictly preserving
the number of photons. Furthermore, the pcGNLSE can be
solved using the same efficient numerical algorithms used for
the GNLSE, and since it can be successfully applied to study
arbitrary γ (ω), even the ones associated with negative-index
materials, it puts forth a powerful tool to assess nonlinear
propagation in new and interesting media.
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