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a b s t r a c t 

Local Field Potentials (LFPs) are easy to access electrical signals of the brain that represent the summation

in the extracellular space, of currents originated within the neurons. As such, LFPs could contain infor- 

mation about ongoing computations in neuronal circuits and could potentially be used to design brain

machine interface algorithms. However how brain computations could be decoded from LFPs is not clear.

Within this context, a methodology for signal classification is proposed in this study, particularly based

on the Dynamic Mode Decomposition method, in conjunction with binary clustering routines based on

supervised learning. Note that, although the classification methodology is presented here in the context

of a biological problem, it can be applied to a broad range of applications. Then, as a case-study, the

proposed method is validated with the classification of LFP-based brain cognitive states. All the analysis,

signals, and results shown in this study consider real data measured in the hippocampus, in rats perform- 

ing exploration tasks. Consequently, it is shown that, using the measured LFP, the method infers which

context was the animal exploring. Thus, evidence on the spatial codification in LFP signals is consequently

provided, which still is an open question in neuroscience.
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. Introduction

Understanding the human brain is probably the last frontier of 

iological sciences. Our brain works by the organized activity of 

illions of neurons that express through electrical signals. At the 

xtracellular space the correlate of those neuron-generated cur- 

ents originates spatial and temporal voltage gradients that could 

e measured and used to study brain functions. The local field po- 

ential (LFP), which can be mathematically described as a quasi- 

eriodic stochastic process [1] , is the sum of all trans-membrane 

ell currents within a volume. In this way, the LFP is the result 

f a neuronal population activity that could be used as a read- 

ut of local computations. Two relevant aspects of the LFP signal 

hould be highlighted. Firstly, LFP, like EEG, is an easy to access 

nd low dimensional signal and, secondly, since LFP represents the 

patial summation of currents from a vast number of sources, un- 

erstanding its relationship with neuronal activity is highly com- 

lex. This complexity is ubiquitous in computational neuroscience, 
Corresponding author.
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ue to multi-scale physical interactions and to the high connec- 

ivity of the networks responsible of the brain dynamics, which 

n turn have a variable architecture. Due to the intrinsic brain 

eatures, it is not straightforward to obtain models via classical 

hysical approaches as, for example, energy and mass balances. 

here are a variety of modeling strategies and model identifica- 

ion techniques that use data coming from real systems [2] . These 

ata can be interpreted as knowledge about certain variables re- 

ated to the states of the system. The methods based on time se- 

ies obtained from measurements or simulations that aim to infer 

he evolution of a dynamical system to, for example forecast or 

ontrol, are within the scope of data-driven methods [3] . A sub- 

lass of these methods, are referred to as equation-free methods, 

nd in that approach the dynamical equations may be unknown. 

heir goal is to approximate the systems under study with a vari- 

ty of numerical, algorithmic, and multi-scale sampling strategies. 

n this regard, the obtained representations circumvent the deriva- 

ion of explicit equations that may exist, but are not available in 

losed-form. 

Generally, a widespread way to understand complex networks 

s to apply modal decomposition techniques to data, whether con- 

idering spatial or temporal correlations, as well as analytic or 
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mpirical kernels. These methods allow, for example, source sepa- 

ation like in Independent Component Analysis (ICA) or data com- 

ression, performed by Principal Components Analysis (PCA). But 

erhaps, the most widely used tools to analyze brain signals are 

elated to Fourier decomposition, such as the Fast Fourier Trans- 

orm (FFT) or the Power Spectral Density (PSD). For example, dif- 

erent cognitive states are characterized by their spectral content, 

.g., the θ rhythm (typical in exploration tasks) shows an oscilla- 

ion frequency in the 8 Hz–12 Hz band [4]. 

The Dynamic Mode Decomposition (DMD) method can be in- 

erpreted as a combination of dimensionality reduction techniques, 

uch as PCA, along with time-domain Fourier analysis. The main 

dvantage of DMD is its dynamical approach, in which, the data 

nder study are assumed to be observations from an underlying 

ynamical system and does not rely on explicit modeling equa- 

ions. This characteristic is particularly useful to study the complex 

rain signals, since the dynamic variation can occur simultaneously 

patio-temporally. 

There are several examples of DMD applications in the neuro- 

cience field, in particular the following works are related, either 

n the biological approach, or for having inspired the analytical 

ethodology [5,6].  The first one applies the DMD method to iden-

ify coherent patterns in large scale neural recordings, particularly 

ocusing on episodes related to spindles. In the second one, DMD 

s applied to detect seizures in electroencephalograms (EEG) 

Based on the previous arguments, a method to extract informa- 

ion concerning neuronal activity from LFP recordings and test its 

alidity in a well-understood example of neuronal encoding, entails 

n important application. 

Here we use as a model the well-studied cognitive representa- 

ion of the context encoded at the hippocampus. The hippocam- 

us is an essential brain area for the memory process. Particu- 

arly, its role in spatial memory, its neuronal representation of the 

ontext, and its relationship with spatial memory, has been exten- 

ively studied since the discovery of hippocampal place cells [7]. 

hese neurons are active when the animal goes through a certain 

ocation in a given context and different contexts will be repre- 

ented by distinct population of active place cells [8].  While place

ells activity appears to depend on the environment, the LFP seems 

o be invariant for any location, environment, or context. 

In this work, we apply DMD to obtain a dynamical representa- 

ion of the systems underlying the LFP recorded in the CA1 region 

f the hippocampus in rats exploring different contexts. To test 

he hypothesis that the hippocampal representation of the context 

ould be read from the LFP, the obtained systems were subject to 

 classification task. If the dynamical representation obtained from 

he LFPs, recorded in a given environment is characteristic of that 

nvironment, a classifier should be able to infer the context from 

he LFP. The motivation for this work is two-fold. In the first place, 

o extract information from a complex signal such as the hip- 

ocampal LFP remains an open question, although some advances 

ave been made, in particular, for position encoding, by applying 

tatic methods such as ICA [9].  Secondly, the study of population

ignals, such as LFPs, involves a recording process that is more ro- 

ust to adverse experimental conditions than recording single cell 

ctivity, such as place cells. Thus if complex brain representation 

ould be extracted from LFPs, it would be a better approach to 

rain-machine interfaces for human patients. 

The present work is a consequence of previous research by the 

uthors in García-Violini et al. [10],  Bertone-Cueto et al. [11].  Th

xperimental data has been presented here for the first time. 

The remainder of this paper is organized as follows. In 

ection 2 the general context classification methodology is de- 

cribed. Particularly, the basics of the DMD method are recalled 

n Section 2.1 while in Section 2.2 the clustering methodology 

mployed in this study, for the classification of the results ob- 
ained with DMD, is described. Section 3 details the experimen- 

al setup which includes both the biological parts and the signal 

cquisition platforms. The results obtained here are discussed in 

ection 4 . Finally, conclusions on the overall application of the pro- 

osed methodology are provided in Section 5 . 

. Classification approach

In this section, the classification approach used for the context 

haracterization is described. The interested reader is referred to 

utz et al. [12] and Zheng et al. [13] for a detailed discussion about 

hese methods. A graphical scheme is presented in the center and 

ight part of Fig. 1 . 

.1. Dynamic mode decomposition 

The goal of DMD is to describe the measured states with 

mpirically computed vectors, or “dynamic modes”, extracted di- 

ectly from data [12] . Thus, patterns that represent spatial cor- 

elation modes are associated with a specific linear dynamic be- 

avior, which may be, fixed-frequency oscillatory and/or be com- 

ined with exponential decay or growth. For the application of 

he method, a fixed-sampling rate with Zero-Order Hold (ZOH) is 

sed, i.e., the measured voltages x are sampled at times t k , with 

 = 1 , 2 , 3 , . . . , m . Then, a regression is performed on the linear dy-

amical system x k +1 = Ax k , choosing A such that ‖ x k +1 − Ax k ‖ 2 ,
s minimized over the k = 1 , 2 , 3 , . . . , m − 1 samples. Therefore, the

tate-matrix A , represents the best (finite) linear operator that ad- 

ances the states from k to k + 1 , over the chosen time window.

n most cases of practical interest, the assumption of linearity 

 k +1 = Ax k , is satisfied approximately within certain bounds. For 

he cases where this approach fails, there exist extensions of the 

tandard method. Specifically, the extension used in this work, em- 

loys time-lagged samples or delay coordinates, in order to include 

istorical information of the system. This is particularly useful for 

omplex systems with periodic or quasi-periodic behavior [14] , and 

lso, when the relevant number of states ( n ) and time samples 

 m ) are unbalanced, e.g., like in the case of this study ( n = 15 and

 = 300 ). This approach constitutes a generalization of the stan- 

ard method and is implemented, for example, in Higher Order 

ynamic Mode Decomposition (HODMD) [15] , where its goal is to 

ield a more general expansion than that obtained by DMD. This 

s possible due to the following higher order Koopman assump- 

ion [15] : 

 k + s = A 1 x k + A 2 x k +1 + . . . + A s x k + s −1 , (1) 

ith k = 1 , . . . , m − s and s , a tunable parameter. This relation can

e reformulated as: 

˜ 
 k +1 = 

˜ A ̃

 x k , (2) 

here the augmented state vectors and the augmented Koopman 

atrix are explicitly: 

 

 

 

 

x k +1 

x k +2 

. . .

x k + s −1 

x k + s 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

0 I 0 . . . 0 0 

0 0 I . . . 0 0 

. . . . . . . . . . . . . . . . . . 

0 0 0 . . . 0 I 
A 1 A 2 A 3 . . . A s −1 A s 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x k 

x k +1 

. . .

x k + s −2 

x k + s −1 

⎤ 

⎥ ⎥ ⎦ 

, (3) 

ith I and 0 , the n × n identity matrix and n × n zero matrix, re-

pectively. In this way, HODMD is performed by applying DMD to 

he augmented samples given by (3) . Using delay coordinates, the 

ata matrices are augmented by stacking (hence the s parameter 



Fig. 1. Left: The signals of interest (LFPs) are acquired during the different behavioral tasks. The raw data is pre-processed. Center: Linear time-invariant state space models

are obtained by applying the HODMD method to each set of signals, over the chosen time window. Right: The classifier is trained with the state matrices corresponding to

each context, then, the binary clustering of the predictors is performed.
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ame) the shifted state vectors in the block-Hankel form: 

 au = 

⎡ 

⎢ ⎢ ⎣ 

x 1 x 2 . . . x m −s 

x 2 x 3 . . . x m −s +1 

.. . 
.. . 

. . .
.. . 

x s x s +1 . . . x m −1 

⎤ 

⎥ ⎥ ⎦ 

, (4) 

 

′ 
au = 

⎡ 

⎢ ⎢ ⎣ 

x 2 x 3 . . . x m −s +1 

x 3 x 4 . . . x m −s +2 

.. . 
.. . 

. . .
.. . 

x s +1 x s +2 . . . x m 

⎤ 

⎥ ⎥ ⎦ 

. (5) 

Then, a regression is performed to obtain the augmented state 

atrix for each set of signals, i.e.: 

˜ 
 i = X 

′ 
au X 

† 
au , (6) 

here † denotes the Moore–Penrose pseudo-inverse, and i , the 

indow number. The validation of this stage takes into account the 

odel outputs versus the measured voltages, such that, the abso- 

ute error is bounded. 

.2. Context classification and clustering 

In order to serve as predictors, the obtained matrices should 

epresent a distinctive characteristic for each context. Unlike com- 

on cases where the predictors are in scalar or vector-form, deal- 

ng with matrices carry an issue: a typical approach is to reshape 

he matrices for further classification, losing the intrinsic structural 

nformation in the process [16] . 

Given this difficulty, the binary matrix classifier, Sparse Support 

atrix Machine (SSMM) [13] was chosen. It should be noted that 

he state matrices show a clear structure, as depicted in (3) , that 

s not context-dependent but rather due to the HODMD method it- 

elf. The SSMM method uses a hinge-loss function to train the clas- 

ifiers under the large-margin principle, including a regularization 

rocess on the regression matrix, in order to prevent over-fitting. 

et { ̃  A i , y i } be a training set of samples, where ˜ A i ∈ R 

sn ×sn is the i th

nput matrix and y i ∈ { 1 , −1 } its corresponding class (true label). A

f : R 

sn ×sn → R function was trained to identify new data category 

y optimizing the following objective function: 

rg min 

W ,b

γ ‖ 

W ‖ 1 + τ‖ 

W ‖ ∗ +
k ∑ 

i =1

{ 1 − y i [ tr(W 

T ˜ A i ) + b] } + ,

here, W is the regression matrix, b and offset term, { 1 −
 } + = max (0 , 1 − u ) denotes the hinge-loss function, and ‖ W ‖ 1 =
 

i, j | w i, j | and ‖ W ‖ ∗ = 

∑ r 
i =1 σi are the � 1 -norm and nuclear norm,

espectively. The restrictions imposed via linear combination of 

hese two norms, and weighted by γ and τ respectively, promote 

wo characteristics: the sparsity property, which removes redun- 

ant information retaining explanatory features, and the low-rank 
roperty, which is used to capture the correlation within matrices, 

egulating the classifier complexity. These parameters were empir- 

cally tuned to achieve high precision in the primary α − β classi- 

cation, as shown in Section 4 . 

In order to estimate the classification error, a cross-validation 

cheme was implemented using the k -folds method [17] . This 

ethod roughly consists in using a fraction of the data to fit the 

odel (in this case, the classifier), reserving a different part to 

est its performance. The available data is partitioned in k sets, us- 

ng k − 1 to train, and leaving one out to validate. It is important

o note, that the use of random indices to choose the partitions, 

hould mitigate, in a sense, the effect of time-variability of the un- 

erlying dynamical systems. All tests were performed using k = 10 

olds, choice that generally performs well in terms of the bias- 

ariance trade-off [18] , and i = 25 , number of windows for each 

et of signals (coming from 15 electrodes) that represent 6 s worth 

f the recorded LFPs. This amount of data was determined focus- 

ng on the balance between classification performance, as well as 

raining time. 

The classification success and error cases are defined as: True 

ositives (TP), the classifier assigns α class to samples obtained 

rom signals acquired in the α context. False Positives (FP), the 

lassifier assigns α class to samples obtained from signals acquired 

n the β context. False Negatives (FN), the classifier assigns β class 

o samples obtained from signals acquired in the α context. And 

nally, True Negatives (TN): the classifier assigns β class to sam- 

les obtained from signals acquired in the β context. For the as- 

essment of the classifiers, three metrics are used. The sensitivity 

etric, represents the rate of real positives detected, and the speci- 

city metric, represents the rate of real negatives detected: 

ensitivity = 

T P 

T P + F N 

, Specificity = 

T N 

T N + F P 
.

he Matthew’s Correlation Coefficient (MCC), considers all the 

ases of success and error in the formula: 

CC = 

T P × T N − F P × F N √ 

(T P + F P )(T P + F N)(T N + F P )(T N + F N) 
.

nalogously to the correlation coefficient, its possible values lie in 

 −1 1] , having an easy interpretation. A MMC = 1 means a perfect 

lassifier, and MMC = −1 , an always-wrong one. A graphical illus- 

ration of this process in depicted in Fig. 1 right. 

. Material and methods

.1. Experimental stage: data collecting 

This section is illustrated by the left part of Fig. 1 . Electrophys- 

ological data were acquired while rats were exploring an open 

eld. The open field consists of an open arena, 1 meter in di- 

meter with surrounding walls (30 cm tall). On a particular day, 



Fig. 2. Classification - The histograms of the metrics computed to assess the performance along the 10 folds are shown, for both rats A and B, as indicated in the left-right

panels, respectively. The legend entries indicate, both mean and standard deviation for the α vs. β , the α vs. α′ , and the α vs. α tasks comparison respectively. The y -label, 

in all the histograms, shows the counts, to indicate the number of occurrences in each bin.
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nimals were exposed to the open field twice, separated by four 

ours. In the first visit to the open field six external cues were 

isible (context α). After four hours, in the second visit, the ani- 

al could be exposed to exactly the same context (the same open 

eld with the same 6 clues, context α′ ) or to the same open field

ithout any external cues, (context β). Each visit to the open field 

asted 15 min. For this study, data was collected from 2 animals. 

xperiments were carried out on Long Evans rats implanted with 

5 tetrodes (4 12-μm tungsten wires twisted together) in the hip- 

ocampal CA1 brain region. For further analysis, only one chan- 

el per tetrode was selected, such that there were no information 

edundancy. The signal was acquired at 20 kHz sample rate (Am- 

lipex LTD, Hungary). For the application of the algorithms, the 

ignal was down-sampled to 1.25 kHz allowing faster computation 

nd a reduced dataset storage. 

.2. Data analysis 

The method chosen to obtain the dynamical models was 

ODMD. This method was applied to sequential time windows 

or each set of signals, according to the following criterion: the 

ime length of 240 ms ( m = 300 data points @ 1.25 kHz) man-

ges to cover approximately two cycles of the dominant θ rhythm 

resent in the signals, being short enough to consider that the un- 

erlying system remains time-invariant along each window. From 

his trade-off, the LFPs time series were modeled with successive 

inear Time-Invariant (LTI) state-space representations in a linear 

iece-wise manner. Within the several ways to compute the state 

atrix A , the Moore–Penrose pseudo-inverse was chosen, for two 

ain reasons. First, according to the proposed hypothesis of con- 

ext characterization based on the exhibited dynamics, this method 

etains as much detail as possible on the outputs of the system 

see [12] for further details). At this point, if an order reduction 

ould have been applied, it could have removed the characteris- 

ic modes in which the difference between contexts emerge. This 

s because, those modes could be very significant from the biolog- 

cal process standpoint, but they may not contribute in the same 

ay to the output energy, falling below some truncation thresh- 

ld in a reduction approach. Although there is no direct biologi- 

al interpretation of the obtained modes, the association between 

hem and the neural processes will be further studied by the au- 

hors, since it could constitute a useful tool for analysis. Secondly, 
he models obtained via pseudo-inverse are tractable, both in com- 

utation time as in analysis and visualization. The DMD method 

as first developed to study complex flow fields where millions of 

easurements can be used, and thus, a dimensionality reduction 

s often necessary. Instead, in neurological applications the num- 

er of available electrodes, or recording locations, range from tens 

o hundreds, while the number of acquired data points could scale 

p to thousands depending on the application. 

A spectral analysis of the matrices obtained in each context 

as performed, in which, the distribution of its lightly-damped 

igenvalues did not establish any clear difference between them. 

urthermore, preliminary approaches such as Support Vector Ma- 

hines (SVM), decision trees and nearest neighbors were used in 

rder to separate these sets without success. This proved to be a 

on-trivial classification problem which led to implement a more 

ophisticated technique, as summarized in Section 2.2 . 

. Results

With the objective of proving separability using the identified 

ynamic matrices as predictors, a series of tests were designed. For 

ach test, unseen data was used, i.e., data not used previously in 

he classifier training stage. 

The first test, consisted in the comparison between the α and 

he β contexts. Data collected in day 2 was used in both cases. In 

his setting, the maximum separation was expected, since this con- 

exts represent the unfamiliar/familiar environments, respectively. 

sing the k -folds method, with k = 10 and 25 samples for each 

ontext, an almost complete separation was achieved. 

To quantify the performance of the classification along the 10 

olds, histograms of the statistic metrics, sensitivity, specificity, and 

CC were computed, as indicated in Fig. 2 , where a striped pattern 

as added to the bars to bring out any superposition. The mean 

alue of both sensitivity and specificity are very close to 1, which 

eans, on the one hand that the test is very precise and also, that 

he classification is balanced since both values are comparable. The 

eviation σ is very small in both cases. The MCC is very close to 

nity, which implies that the classification scheme approaches the 

ptimal performance. 

A test that explores the effect of time variability on the recog- 

ition was also performed. In this case, the contexts were spatially 

he same, but the tasks were conducted at different times, i.e. with 
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[

 separation of four hours. From this distinction, the definition o
he class α′ arose. 1 In order to assess the classifiers, samples from 
ontext α and context α′ were used. Although similar results are 
bserved in comparison to the classification from α vs. β context, 

n Fig. 2 the classification from different contexts is better than for 

he same context at different times. This suggests that the sepa- 

ation due to context difference is dominant, as compared to the 

eparation due to the time gap between exploration tasks. 

Also, an α vs. α context verification was made. For this test, 

ata coming from the same recording session was used, in order 

o verify that, the separation in the proposed terms, were mini- 

al. Indeed, the obtained separation, using the same scheme of 

0 folds and 25 samples per context, chosen from session subsets 

pproximately 4 min apart, was very small. The values tending to- 

ard 0.5 for both sensibility and specificity, are equivalent to a 0.5 

etection probability, which in the discrete binary case, represents 

he worst possible performance. This is consistent with the average 

CC being near zero, indicating that the classifiers are incapable of 

istinguishing between classes, which was the expected outcome. 

. Conclusion

A new classification approach, applied to a biological problem, 

s provided in this study. Three main contributions can be high- 

ighted. Firstly, the classification approach, which results as a com- 

ination of a DMD-based methodology with a binary matrix classi- 

er, based on SSMM [13] , is highlighted. Secondly, the application 

f the classification method to known/unknown contexts, is worth 

entioning. Finally, the manuscript provides evidence of the con- 

ext codification in LFP signals, which still is an open and key ques- 

ion in the area of neuroscience [20] . 

It is worth mentioning that, although the classification method- 

logy is validated here in the context of a biological problem, it can 

e applied to a broad range of different fields, even beyond the bi- 

logical scope, as mentioned in Section 3 . Also, the proposed ap- 

roach is based on well-known linear algebra and dynamical sys- 

ems theory, and it has prove to be an efficient tool to tackle prob-

ems which are not tractable with standard identification-based 

ethodologies, due to the intrinsic dynamical complexity of the 

nderlying systems. 

To validate the proposed methodology, a biological problem is 

ddressed. In particular, considering that the context interpretation 

rom LFP signals is still an open question in neuroscience (with 

mpirical evidence [20] ), the case study, presented in Section 3 , is 

arried out using real LFPs measured in the hippocampus, in rats 

erforming exploration tasks in an open arena with different cues. 

Therefore, we have presented a proof-of-concept that it is pos- 

ible to classify the context explored by an animal by analyzing 

he global dynamics of the CA1 hippocampal LFP. Thus, in this case 

tudy, the ability of the classification approach to distinguish when 

he animal visits a new context, is tested. Similar results were ob- 

ained when the animal explores the same context but at a dif- 

erent time. In that case, the algorithm classified them as differ- 

nt [19] , although not as efficiently as in the context classification 

ituation. Since the representation of a context not only involves 

patial information but a more rich variety of variables it is not 

urprising that the dynamics of the LFP as an emergent of local 

omputation are not the same in two situations. Thus, it is possible 

o consider these as two different experiences in the same context. 

n the other hand, the lesser separation achieved by the classifier 

n the same-context comparison, indicates that DMD derived LFP 

odels detect spatial representation of the context encoded in the 
1 This phenomena was included in the fiction literature as a brain anomaly that

istinguishes the same element but at two different times, as separate objects [19] .
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ippocampus more efficiently. The results show the high precision 

f the method and, although this is a particular biological exper- 

ment, it can be extended and adapted to a number of different 

pplications, for example, to characterize REM and non-REM sleep 

ycles [21] . 

In addition, the results show evidence that there is a correla- 

ion between the information contained in the LFPs and the corre- 

ponding explored context. The latter will be the subject of future 

esearch by the authors. Also as a subject of future work, a statisti- 

al improvement of the results will be carried out once the circum- 

tances of the COVID-19 pandemic, and the consequent lockdowns 

nd restrictions globally implemented, allow the experimental lab- 

ratory work to be resumed. 
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