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In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped 
glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense 
light pulses in such media, by means of the nonlinear Schrödinger equation (NLSE), poses the problem in that 
straightforward inclusion of a frequency-dependent nonlinearity may lead to unphysical results, namely, neither 
the energy nor the photon number is conserved in general. Inspired by a simple quantum-mechanical argument, 
we derive an energy- and photon-conserving NLSE (pcNLSE). Unlike others, our approach relies only on the 
knowledge of the frequency-dependent nonlinearity profile and a generalization of Miller’s rule for nonlinear 
susceptibility, enabling the simulation of nonlinear profiles of arbitrary frequency dependence and sign. Moreover, 
the proposed pcNLSE can be efficiently solved by the same numerical techniques commonly used to deal with the 
NLSE. Relevant simulation results supporting our theoretical approach are presented.

[14,17]. Modeling of light propagation in these peculiar media
requires a modification of the NLSE taking into account the
frequency dependence of the nonlinear coefficient [17,21–26].
A simple approach consists of preserving the NLSE and adding a
wavelength dependence to the nonlinear coefficient. However,
it is a well-established fact that, in general, this approach does
not preserve either the energy or the photon number [25,27].

In this paper, we focus on the question of which conditions an
NLSE-like equation should meet in order to satisfy fundamental
physical constraints such as energy and photon-number con-
servation, even in the context of arbitrary frequency-dependent
nonlinearities. By looking at four-wave-mixing (FWM) proc-
esses from a quantum mechanical point of view, we arrive at
a modified equation that naturally conserves both quantities
in lossless waveguides. A further simplification is obtained by
assuming the validity of a generalized Miller’s rule for nonlinear
susceptibility [28]. This simplification enables the simulation
of light propagation relying on the usual nonlinear parameter
γ (ω) and avoiding more complex parameters that are difficult

1. INTRODUCTION

Propagation of light pulses in nonlinear Kerr media, such as 
nonlinear optical fibers and waveguides, is usually modeled by 
the well-known nonlinear Schrödinger equation (NLSE) [1], 
which provides a powerful approximation based on the Maxwell 
equations. The usefulness of the NLSE stems from the existence 
of efficient numerical algorithms to solve it [1,2] and the fact 
that it has been proven to be accurate in a wide variety of cases. 
However, the NLSE may well reach the limits of its validity in 
various scenarios, and therefore, many attempts to introduce 
modifications extending its applicability, for instance to shorter 
pulses, have been proposed [3–10].

In the past few years, researchers in the field o f nonlinear 
optics have shown an increased interest in new kinds of mate-
rials, such as nanoparticle-doped glasses [11–15] and other 
metamaterials [16–21]. The nonlinear refractive index of these 
media is strongly frequency dependent, giving rise to unusual 
phenomena such as solitons and modulation instability in the 
normal-dispersion regime, the existence of a zero-nonlinearity 
wavelength, and even a controllable self-steepening parameter
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to measure and scarcely found in the literature. It is worth men-
tioning that a generalization of the proposed approach may
provide a way to extend the modified equation to include the
Raman (delayed) response of the medium (see Ref. [29]).

We must note that there have been other approaches to the
problem of energy and photon conservation in the presence of
frequency-dependent nonlinearities. For instance, in Ref. [25],
a modified NLSE was presented in the context of the analysis of
mode profile dispersion. However, to the best of our knowledge,
a method that makes use only of the nonlinear profile γ (ω),
yielding physically sound results even when considering highly
frequency-dependent nonlinearities of arbitrary sign, has not
yet been presented elsewhere.

The remaining of the paper is organized as follows. In
Section 2, we briefly review limitations of the NLSE to accu-
rately model frequency-dependent nonlinearities. In Section 3,
we derive a new photon-conserving NLSE (pcNLSE) that
allows to model the propagation of light in waveguides with
arbitrary nonlinearities. Section 4 presents extensive simulation
results supporting the soundness of our approach. Finally, we
close the paper with some conclusions in Section 5.

2. ON THE LIMITS OF THE NONLINEAR
SCHRÖDINGER EQUATION

Let us recall that, in the frequency domain, the NLSE reads [1]

∂ Ãω
∂z
= iβ(ω) Ãω + iγ (ω)F(|A|2 A)

= iβ(ω) Ãω + i
∫∫

γ (ω)

(2π)2
Ã∗ω′ Ãω−µ Ãω′+µdω′dµ,

(1)

where z is the direction of propagation, A is the complex enve-
lope of the electric field normalized such that |A|2 is the optical
power, Ãω =F(A), and F stands for the Fourier transform.
Since we focus on the lossless case, the mode-propagation profile
β(ω) is assumed to be real valued. The nonlinear coefficient
γ (ω) is related to the third-order susceptibility χ (3) and the
effective area of the transverse mode. It is customary to assume
that

γ (ω)=
n2(ω)× (ω+ω0)

c Aeff(ω)
≈ γ0 + γ1 ·ω, (2)

where ω0 is the central frequency of the propagating pulse, c
is the speed of light, and n2(ω) and Aeff(ω) are the frequency-
dependant nonlinear refractive index and mode effective area,
respectively. In many cases, only the first-order approximation
on the right-hand side is used [3,30–32]. Usually γ1 is written as
γ0τshock, where [4,30,31]γ0 = γ (0), and

τshock =
1

ω0
+

d
dω

ln

(
n2(ω)

Aeff(ω)

)∣∣∣∣
ω=0

. (3)

However, as it was shown by Blow and Wood [30], the conser-
vation of the photon number requires that γ1 = γ0/ω0 in the
approximation. This observation raises the main question we
aim to answer in this paper: what are the requirements for an

arbitrary frequency-dependent nonlinear coefficient in order to
guarantee the conservation of energy and photon number?

It is instructive to analyze the conservation of these quan-
tities in Eq. (1) by means of a simple example and physical
considerations. The nonlinear term of Eq. (1) models a process
where two photons at frequencies ω1 and ω4 are annihilated,
and simultaneously, two photons at frequencies ω2 and ω3

are created. Let us consider such a FWM process by setting
A=

∑4
m=1 Am(z)e−iωm t , where the energy conservation

in the annihilation and creation of photons requires that
ω1 +ω4 =ω2 +ω3. By replacing A in Eq. (1), we can obtain
the evolution of the total energy E ∝

∑4
m=1 |Am |

2 and the
photon number N ∝

∑4
m=1 |Am |

2/(ω0 +ωm) along the z axis.
It can be shown that these quantities evolve according to

∂E
∂z
∝ (γ (ω1)− γ (ω2)− γ (ω3)+ γ (ω4)) 1 (4)

and

∂N
∂z
∝

(
γ (ω1)

ω0 +ω1
−

γ (ω2)

ω0 +ω2
−

γ (ω3)

ω0 +ω3
+

γ (ω4)

ω0 +ω4

)
1,

(5)

with 1= 4Im(A∗1 A2 A3 A∗4e i1kz), 1k = k1 + k4 − k2 − k3,

and km = β(ωm)+
∑4

n=1(2− δmn)γ (ωm)|An|
2. From these

expressions, we can deduce that energy conservation is satisfied
only if γ (ω)= γ0 + γ1ω, whereas the conservation of the num-
ber of photons requires γ (ω)= γa (ω0 +ω)+ γb(ω0 +ω)

2,
where γ0,1,a ,b are arbitrary constants. The simultaneous conser-
vation of both quantities is obtained only in the particular case of
γ (ω)= γ0 + (γ0/ω0)ω. In other words, in order to guarantee
the conservation of energy and photon number, the nonlinear
coefficient must be equal to (and not just approximated by) a
linear function of frequency with a single free parameter (γ0).
From Eq. (3), it it is clear that this linear relationship implies
that the ratio of the nonlinear refractive index to the mode
effective area (n2(ω)/Aeff(ω)) must be frequency independent,
a condition that has already been shown inadequate in many
situations [31].

This simple analysis shows that the NLSE cannot satisfacto-
rily deal with a frequency-dependent nonlinear refractive index
and mode effective area while conserving the energy and num-
ber of photons. For this reason, many researchers have looked
into variations of Eq. (1) starting from first principles [8,25,26].
In this paper, we propose an extended version of Eq. (1) that
allows for an arbitrary γ (ω), where both the effective area and
the nonlinear coefficient are frequency-dependent functions.
Most importantly, the resulting equation can be solved with the
very same efficient algorithms that are customarily used to solve
Eq. (1).

3. PHOTON-CONSERVING NONLINEAR
SCHRÖDINGER EQUATION

Since dispersion does not affect the conserved quantities, and
for the sake of simplicity, let us consider a dispersionless fiber
(β(ω)= 0). Following the quantum mechanical approach to
the NLSE proposed by Lai and Haus [33], we assume that this



equation can be derived as a mean-value evolution from the
Schrödinger propagation equation

∂

∂z
|ψ〉 = i Ĥ|ψ〉, (6)

where |ψ〉 is the quantum state of light, and

Ĥ =
∫∫∫

κ

2
â †
ω1

â †
ω2

âω1−µâω2+µdω1dω2dµ, (7)

where âω and â †
ω are the annihilation and creation operators,

and κ is the nonlinear interaction associated with the third-
order susceptibilityχ (3). In this way, we ensure the conservation
of the number of photons, since the derived equation includes
a combination of all possible FWM parametric processes.
Note, however, that we have neglected a term involving the
combination of operators â †â †â †â , related to third-harmonic
generation, as is customary in modelling propagation in fiber
optics [1]. We introduce the frequency dependence of the non-
linearity by assuming that κ depends on the four frequencies
involved. In order to ensure conservation of energy, we must
require only Ĥ to be hermitian. It can be easily shown that this
condition is satisfied only if κω1,ω2,ω3,ω4 = κ

∗
ω4,ω3,ω2,ω1

. The

mean value of the field-operator Âω ∝ âω
√
ω0 +ω [29] can be

calculated by the Heisenberg equations of motion and reads

∂〈 Âω〉
∂z
= i

∫∫
0ω,ω′,µ〈 Â

†
ω′

Âω−µ Âω′+µ〉dω′dµ, (8)

where

0ω,ω′,µ =
(κω,ω′,ω−µ,ω′+µ + κω′,ω,ω′+µ,ω−µ)

√
ω0 +ω

2
√
(ω0 +ω′)(ω0 +ω−µ)(ω0 +ω′ +µ)

. (9)

Equation (8) can be written classically as

∂ Ãω
∂z
= i

∫∫
0ω,ω′,µ Ã∗ω′ Ãω−µ Ãω′+µdω′dµ. (10)

A Hamiltonian-based approach has already been used by
Amiranashvili and colleagues [8,9]. However, since we resort
to a quantum-mechanically inspired derivation, the conser-
vation of energy and number of photons is straightforwardly
guaranteed by Eq. (10). Although this equation is similar to the
nonlinear term of the NLSE, there is a fundamental difference
that explains the failure of the latter to preserve those quantities:
the nonlinear coefficient 0 depends on the four frequencies
involved in the FWM interaction, while γ depends only on ω.
This fact suggests that γ (ω) does not provide enough infor-
mation to completely describe a frequency-dependent FWM
process, as the knowledge of the function 0ω,ω′,µ is required.
As a matter of fact, this is expected from semi-classical and
quantum-mechanical derivations ofχ (3) [28,34].

One problem with Eq. (10) is the lack of hard-to-conduct
measurements of the four-frequency dependence of 0. Indeed,
a full characterization of 0 would imply measurements of
FWM for all possible combinations of the four wavelengths
intervening in Eq. (10). On the contrary, it is easier to find mea-
surements of γ (ω). Consequently, we propose a reasonable way

Fig. 1. Self-steepening in a nonlinear frequency-dependent waveguide for three different values of the self-steepening parameter γ1: pulses
@0.75zshock (left) and evolution of the photon number (right). While the NLSE preserves the photon number only in the first case, the pcNLSE
preserves it in all cases.



to approximate 0 from a known γ (ω). We expect Eq. (10) and
the nonlinear term of Eq. (1) to be equivalent, at least in the case
of self-phase modulation (SPM), i.e., when the four frequencies
involved in FWM are the same. This requirement leads to the
simple relation

κω,ω,ω,ω =
γ (ω)× (ω0 +ω)

(2π)2
. (11)

Any κ that satisfies this relation and the hermiticity condition
guarantees the conservation of energy and photon number
and leads to an equation that is consistent with the expected
behavior of a light pulse propagating in a waveguide under the
sole effect of SPM. In order to choose a single κ satisfying both
requirements, we take as a guide the generalized Miller’s rule
[28,34], which has been shown to be accurate for a broad range
of media [35–38]. It states thatχ (3)ω1,ω2,ω3,ω4

∝ χ (1)ω1
χ (1)ω2

χ (1)ω3
χ (1)ω4

.
Analogously, we propose

κω1,ω2,ω3,ω4 ≡ Re(rω1rω2rω3rω4), (12)

where rω is a possibly complex function. It must be
remarked that hermiticity is automatically satisfied with
this choice. Substituting Eq. (12) into Eq. (11), we find that
rω = 4
√
γ (ω)× (ω0 +ω)/

√
2π . Using this expression for κ

in Eq. (8) and including the linear dispersion term, we obtain a
very simple pcNLSE:

∂ Ãω
∂z
= iβ(ω) Ãω + iγ (ω)F(C∗B2)+ iγ ∗(ω)F(B∗C 2),

(13)

where the variables are defined as B̃ω = 4
√
γ (ω)/(ω+ω0) Ãω

and C̃ω = (
4
√
γ (ω)/(ω+ω0))

∗ Ãω, and the effective nonlinear
coefficient isγ (ω)= 4

√
γ (ω)× (ω+ω0)

3/2.
It is worthy to note that Eq. (13) can be solved by the same

efficient numerical algorithms as the standard NLSE, such as
the split-step Fourier method. Furthermore, Eq. (13) is valid
for negative values of γ (ω) (such as those exhibited by some
metamaterials [16–21]) without compromising the imposed
photon-number conservation and SPM-consistency con-
straints. This constitutes a very important feature of the present
approach.

As a final remark, when considering a fiber with constant n2

and a frequency-dependent effective area Aeff, we can simplify
Eq. (13) to

∂ Ãω
∂z
= iβ(ω) Ãω + i

n2 × (ω0 +ω)

c 4
√

Aeff(ω)
F
(
|G|2G

)
, (14)

with G̃ω = Ãω/ 4
√

Aeff(ω). This equation is equivalent to an
approximation also in Ref. [25] that takes into account the
frequency-dependent nature of Aeff. Also, if we consider a fiber
with constant n2 and constant Aeff, the pcNLSE reduces to the
standard NLSE [Eq. (1)], as expected.

4. SIMULATION RESULTS

We now compare results from Eq. (13) to those obtained with
the NLSE. First, we focus on the self-steepening of short pulses

under arbitrary shock parameters (γ1), a relevant case in the
study of metamaterials where γ1 can be “engineered” to take
either positive or negative values [17]. Furthermore, a negative
γ1 is often used to model the nonlinear profile of many novel
materials, such as silver-nanoparticle-doped photonic crys-
tal fibers (SNPCFs) [13–15]. Both Eq. (1) and Eq. (13) were
numerically solved using the split-step Fourier method [1]. The
waveguide parameters are β(ω)= 0 and γ (ω)= γ0 + γ1ω,
where γ0 = 1.2× 10−3/Wm, and γ1 takes three different val-
ues: γ1 = γ0/ω0, γ1 = 2γ0/ω0, and γ1 =−γ0/ω0. The input
is a Gaussian pulse A(t)=

√
P0e−t2/2T2

0 , with P0 = 200 W,
T0 = 0.1 ps, and central frequencyω0 corresponding to a wave-
lengthλ0 = 1550 nm. The propagation distance is measured in
terms of the shock distance, defined as zshock = 0.39T0/(|γ1|P0)

[1]. Figure 1 shows simulation results for the three different val-
ues of γ1. As expected, when γ1 = γ0/ω0, the pcNLSE matches
completely the standard NLSE, and both equations preserve the
number of photons. For any other values of γ1, the NLSE fails
to preserve this quantity. The pcNLSE, however, does conserve
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Fig. 2. Pulse propagation in a waveguide with a quadratic nonlinear
profile as predicted by the NLSE and the pcNLSE: pulses @0.5zshock

(top) and evolution of the pulse energy (bottom). Pulse energy is
referred to as the input value. Unlike the pcNLSE, the NLSE predicts
an unphysical increase in energy.

Fig. 3. Nonlinear profile and corresponding MI gain.



Fig. 4. Power versus time at a 900 L D distance (a) and detail (b).

the photon number for any self-steepening parameter, as it is
expected for such a parametric process. Notably, in all cases, the
pcNLSE predicts a lagging pulse peak due to self-steepening.

In a more general case, with a nonlinear profile that is
not a linear function of frequency, the NLSE may lead to
unphysical results that do not preserve either the photon
number or the energy, whereas the pcNLSE preserves both.
This is shown in Fig. 2, where we add a quadratic term to
the nonlinearity, γ (ω)= γ0 + γ1(ω)+ γ2ω

2/2, repre-
senting a nonlinear profile used in the numerical analysis of
the propagation in metamaterial waveguides [17,18,20].
Figure 2 shows results for parameters γ0 = 1.2× 10−3/W m,
γ1 =−9.8× 10−7ps/W m, and γ2 = 3.2× 10−9ps2/W m.
Equation (1), unlike Eq. (13), predicts the energy of the output
pulse to be unphysically 3% higher than that of the input pulse.

Finally, to further illustrate how significantly different predic-
tions may arise by using the pcNLSE and the NLSE, we choose a
context where the frequency dependence and sign ofγ (ω)play a
central role: modulation instability (MI) in nonlinear metama-
terials [18,20]. Figure 3 presents a particularly interesting setting
in which there is a zero-nonlinearity wavelength (ZNW), and
a pump is applied in the negative nonlinearity region. Figure 3
also shows the MI gain spectrum predicted by a standard first-
order linear stability analysis based on the usual NLSE (see, e.g.,
Ref. [39]) for β(ω)= β2ω

2/2, β2 = 9.6× 10−3 ps2/m, and

Fig. 5. Power spectra averaged over 50 noise realizations at a 900 L D

propagated distance.

γ (ω)= −1.2[(W−km)−1
]

π/2 arctan(ω+ 3), a sigmoid function with
zero nonlinearity at'−0.5 THz. As it can be readily observed,
there is MI gain in the normal dispersion regime whenever γ (ω)
is negative. Figures 4–6 compare the results of the pcNLSE and
the NLSE when a 200 W CW pump is applied. Figure 4 presents
the results of a single noise realization in the time domain at
z= 900L D, where the dispersion length L D = β2/T2

0 is cal-
culated for the average T0 ' 0.4 ps as obtained from Fig. 4. We
used additive white Gaussian noise with a fixed number of pho-
tons per mode. It must be remarked that, although exactly the
same input (noise realization and pump) was used in both cases,
very different results are obtained. In particular, the pcNLSE
predicts some pulses of a much higher intensity than those
expected from the NLSE. Figure 5 shows the spectral density
predicted by both equations at the same distance, obtained
by averaging results from 50 noise realizations. Not only the
spectrum resulting from the NLSE falls off much faster than
that predicted by the pcNLSE, but there is also a significant dif-
ference in the position of the MI peak gain, which is correlated
to the difference in the beating frequency observed in the pulses
in Fig. 4. Both the higher intensity pulses and slower power
spectrum fall-off in the case of the pcNLSE with respect to the
NLSE can be related to the fact that the former conserves the
number of photons and the latter does not. Indeed, Fig. 6 shows
how the number of photons varies with distance. Almost 15% of

Fig. 6. Percentage of the total number of photons conserved as a
function of propagated distance.



photons disappear after 900L D when using the standard NLSE,
leading to clearly unphysical results.

5. CONCLUSION

We presented an approach that enables the simulation of light
propagation through media with peculiar nonlinearities. By
departing only from the knowledge of the medium nonlinear
profile (i.e., γ (ω)), we arrive at an equation (pcNLSE) that
circumvents the problem of photon-number conservation, an
artifact present in the commonly adopted approach of modify-
ing the NLSE by the addition of a frequency dependence to the
mode effective area. Moreover, our proposed approach, whose
results rely solely on the validity of a generalized Miller’s rule,
also allows for the study of nonlinear profiles of an arbitrary
sign. Finally, the introduced pcNLSE can be solved by the same
well-known and efficient numerical algorithms used for solving
the NLSE, thus readily putting forth a powerful tool to assess
nonlinear propagation in new and interesting media.
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