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1. Summary 

This thesis presents the design and implementation of a 3-axis reaction wheel balanced 

cube capable of balancing on any of its 12 edges. Figure 1 shows a picture of the cube 

balancing on its edge. The first 3 sections present reaction wheel systems background, project 

motivation and objectives. This is followed by system electromechanical model and simula-

tion description, which is used through the project. 

Before embarking in the project, it was uncertain whether it was feasible to achieve wheel 

torque control within cost and time budgets. The high level design and feasibility addresses 

this question. This is followed by system definition and detailed design. Implementation , 

calibration and hardware problems encountered are described. 

System identification was performed on the built system and the edge balancing control 

system was tuned using these results. 

Vertex balancing and jumping from flat to edge functions were considered. However, 

these functions were left for future projects due to time constraints. To achieve vertex bal-

ancing with the build hardware, only the control algorithm is necessary. To achieve the 

jump up maneuver, a mechanical redesign to include a braking mechanism and higher inertia 

wheel is needed.  
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Figure 1 – Cube: Balancing on its edge (left). Flat on surface (right). 
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2. Introduction 

2.1. Use of Flywheels 

Flywheels are used to provide torques to a system without interacting with external 

objects. This is useful when external objects or the environment is unable to provide the 

torques required for the application. 

Torque generation with flywheels can be divided into two main groups: 

 Reaction Wheel (RW): Torque by changing the rotational speed of the flywheel. 

Generally used when refined torque control is needed. 

 Control Moment Gyroscope (CMG): Torque by tilting the spin axis without neces-

sarily changing the spin speed. Generally used when coarse (high force, low accuracy) 

torque control is needed. 

Spacecraft Attitude Control Systems are a clear example of the use of flywheels. In these 

systems, flywheels are used as reaction wheels or as control moment gyros, depending on the 

requirements of each application. Figure 2 shows two examples of reaction wheels used in 

these systems. Figure 3 (right) shows an example of control moment gyros used in a large 

spacecraft. 

 

 

Figure 2 – Reaction Wheel Examples. CubeSat Reaction Wheel Attitude Control Sys-

tem. Single wheel (left). 4 RW assembly (right). 
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Another application example of flywheels are Boat or Ship Anti-rolling systems. In these 

applications, flywheels are generally used as control moment gyros given the capability of 

efficiently generate high torques. Figure 3 (left) shows a diagram of this system. 

 

Figure 3 – Control Moment Gyro Examples. Ship Anti-rolling System (left). Interna-

tional Space Station Attitude Control System (right). 

2.2. Motivation 

This project was inspired by the Cubli project from ETH Zurich [1] (Figure 4). The main 

motivation for this project is to create a platform to allow mechatronics students at ITBA 

to develop reaction wheel attitude control systems, concepts that are applicable to the aer-

ospace industry and mobile robotics in general. This project is the first iteration of a series 

of theses that will continue the work adding functionality. 
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Figure 4 - Cubli (ETH Zurich). 
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3. Objectives 

The objective of this project is to design, simulate and implement a 3-axis reaction wheel 

balanced cube with the following functions: 

1. Edge Balancing: Ability to balance at any of the 12 cube edges if manually placed 

close to stable position. 

2. Self-powered. 

3. Simple User Interface. 

These 3 high level requirements are flown down in Section 6. 

The cube is also designed to perform the following functions, but the software and sim-

ulation to perform them is left for future work: 

4. Vertex Balancing: Ability to balance at any of the 8 cube vertex if manually placed 

close to stable position. 

5. Wireless Parameter Tunning & Control. 

6. Wireless Data Transmission 

The following two functions were considered and Section 5 describes a feasibility analysis 

of the first one, however it was decided not to add them to the final design due to time 

constraints and left for future work: 

7. Jump from face flat to edge balancing position. 

8. Jump from edge balancing position to vertex balancing position. 
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4. Models & Simulations 

4.1. Edge Balancing 

This section presents the dynamic model of a cube system during edge balancing. Models 

are physically derived, and Simulink simulation blocks are created. 

The models are presented without value assignment to the parameters. Other sections 

show how these parameters are estimated or measured and they present the simulations 

results. 

4.1.1. Dynamic Non-Linear Model 

Figure 5 shows a schematic of the model for the edge balancing case. 

 

Figure 5 – Cube Model Schematic. 

The system is modelled as two rigid bodies, reaction wheel and cube body, coupled by 

an electric motor, with the cube body rotating around the edge. 
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The cube body is characterized by a total inertia around the edge, a total mass, and a 

distance from that center of mass to the edge.  

The reaction wheel is characterized by an inertia around its center of rotation. 

The motor is modeled as a torque that generates an equal and opposite torque on these 

two bodies as shown in Figure 6. The motor mass and inertia are modelled by splitting it 

into its stator and rotor and attaching them to the cube body and reaction wheel, respec-

tively. 

 

Figure 6 - Motor Torque Direction Definition. Torque action and reaction. 

The system model is given by the following system of equations: 

 
𝐼 ∙ �̈� = 𝑘 ∙ sin 𝜃 − 𝜏  (1) 

 
𝐼 ∙ �̇� = 𝜏  (2) 

 
𝜔 = 𝜔 − �̇� (3) 

Equation (1) is the equation of motion of the cube body, where 𝐼  is the system inertia 

with respect to the edge 𝑒 derived in Equation (4), 𝑘  is the gravity torque constant 

defined in equation (5), 𝜃 is the system center of mass angle with respect to the vertical, 𝜏  

is the torque produced by the motor. 
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Equation (2) is the equation of motion of the reaction wheel, where 𝐼  is the RW inertia 

around the axis of rotation and �̇�  is the inertial angular velocity. 

Equation (3) is the relationship between the RW’s inertial and relative angular velocities 

considering the cube angular velocity �̇�. 

 
𝐼 = 𝐼 + 𝐼 = 𝐼 + 𝑀 ∙ 𝑑 + 𝑀 ∙ 𝑑  (4) 

 
𝑘 = 𝑀 ∙ 𝑑 ∙ 𝑔 (5) 

Table 2 shows the characteristic parameters of the system, the rest of the parameters are 

derived from these. 

Item Parameter Name Sym Unit 

Cube Body 

Mass 𝑀  𝑘𝑔 

Rotational inertia with respect to its center of mass 𝐼  𝑘𝑔 𝑚  

Center of mass distance to edge 𝑑  𝑚 

Reaction Wheel 

Mass 𝑀  𝑘𝑔 

Rotational inertia with respect to its center of mass 𝐼  𝑘𝑔 𝑚  

Center of mass distance to edge 𝑑  𝑚 

Motor 
Torque Constant 𝑘  𝑁𝑚

𝐴
 

Resistance R Ω 

Table 2 – Characteristic Parameters. 

Table 3 shows the derived parameters calculated from the values in Table 2. 

Item Parameter Name Sym Unit 

Cube Total rotational inertia with respect to edge 𝐼  𝑘𝑔 𝑚  

Reaction Wheel Center of mass rotational inertia with respect to edge 𝐼  𝑘𝑔 𝑚  

System 

Total rotational inertia with respect to edge 𝐼  𝑘𝑔 𝑚  

Total mass 𝑀  𝑘𝑔 

Center of mass distance to edge 𝑑  𝑚 

Table 3 – Derived Parameters. 
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Table 4 shows the system variables. 

Variable Unit Name 

𝜃 𝑟𝑎𝑑 System center of mass angle with respect to vertical 

𝜔  𝑟𝑎𝑑

𝑠
 Reaction wheel inertial angular velocity 

𝜔  𝑟𝑎𝑑

𝑠
 Reaction wheel angular velocity relative to cube 

𝜏  𝑁𝑚 Motor Torque 

Table 4 – Variables. 

Figure 8 and Figure 9 show the Simulink models of equations (1) and (2) respectively. 

 

Figure 7 - Cube + Reaction Wheel. Simulink Model. Models Equations (1), (2) and (3). 

 

Figure 8 – Cube (non-linear model). Simulink Model. Models Equation (1). 
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Figure 9 – Reaction Wheel. Simulink Model. Models Equation (2). 

4.1.2. Linearized System 

The system described in equations (1), (2) and (3) is linearized around the steady state 

point shown in equation (6). 

 𝜃∗ = 0
𝜔∗ = 0

 (6) 

The only nonlinear term in these equations is the sin(𝜃) present in Equation (1). The 

linear term of the Taylor expansion of sin(𝜃) around 𝜃∗ = 0 is 𝜃. Therefore, Equation (1) is 

linearized by replacing sin(𝜃) with 𝜃. 

Within the control loop, the required motor torque will be generated by commanding 

current using a motor controller. Equation (7) shows this relation. 

 
𝜏 = 𝑘  𝑖 (7) 

Equations (8) is the system of equations of the linearized system, including the motor. 

 𝐼 ∙ �̈� = 𝑘 ∙ 𝜃 − 𝑘  𝑖

𝐼 ∙ �̇� = 𝑘  𝑖

𝜔 = 𝜔 − �̇�

 
(8a) 
(8b) 
(8c) 

4.1.3. State Space Representation 

The system of equations that model the system presented in Equation (8) can be repre-

sented in state-space by defining the following states: 

 
𝑥 = 𝜃

𝑥 = �̇�
𝑥 = 𝜔

 (9) 
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These three turn out be related to the three energy storage mechanisms present in the 

system: potential energy with 𝜃, cube angular kinetic energy with �̇�, reaction wheel angular 

kinetic energy with 𝜔 . 

The general state-space representation of linear systems is given by [2]: 

 
�̇�(𝑡) = 𝐴 𝑿(𝑡) + 𝐵 𝑢(𝑡)

𝒀(𝑡) = 𝐶 𝑿(𝑡) + 𝐷 𝑢(𝑡)
 (10) 

where: 

𝑿(𝑡) is the state vector: 

 

𝑿(𝑡) =

𝑥 (𝑡)
𝑥 (𝑡)
𝑥 (𝑡)

 (11) 

The output vector 𝒀(𝑡) includes the three states, given that they can be measured or 

estimated. 𝜔  is measured by the encoder on the wheel, �̇� is measured by the gyroscope and 

𝜃 is estimated by a complementary filter with measurements from the accelerometer and 

gyroscope; This algorithm is explained in Section 10.1.  

 

𝒀(𝑡) =

𝑥 (𝑡)
𝑥 (𝑡)
𝑥 (𝑡)

 (12) 

𝑢(𝑡) is the input vector: 

 
𝑢(𝑡) = 𝑖 (13) 

State space matrices 𝐴, 𝐵, 𝐶, 𝐷 are found by expressing the system of equations in (8) in 

terms of the state variables defined in (9) and their first order derivatives. 

�̇�  is found trivially by: 

 
�̇� = �̇� = 𝑥  (14) 

�̇�  is found by isolating �̈� from Equation (8a): 

 
�̇� = �̈� =

𝑘

𝐼
𝑥 −

𝑘

𝐼
𝑖 (15) 
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�̇�  is found by substituting (8c) with �̇�  from Equation (8b) and �̈� from Equation (8a): 

 
�̇� = �̇� = �̇� − �̈� =

𝑘

𝐼
𝑖 −

𝑘

𝐼
𝑥 +

𝑘

𝐼
𝑖 (16) 

 
�̇� = −

𝑘

𝐼
𝑥 +

𝐼 + 𝐼

𝐼 ∙ 𝐼
𝑘  𝑖 (17) 

Therefore, the state spaces matrices are the following: 

 

𝐴 =

⎣
⎢
⎢
⎢
⎡

0 1 0
𝑘

𝐼
0 0

−
𝑘

𝐼
0 0

⎦
⎥
⎥
⎥
⎤

 (18) 

 

𝐵 =

⎣
⎢
⎢
⎢
⎡

0

−
𝑘

𝐼
𝐼 + 𝐼

𝐼 ∙ 𝐼
𝑘

⎦
⎥
⎥
⎥
⎤

 (19) 

 

𝐶 =
1 0 0
0 1 0
0 0 1

 (20) 

 
𝐷 = [0] (21) 

4.1.4. Motor Driver and Motor Model 

As it will be described in Section 5.1, the drive system selected consists of a PMSM 

motor (Permanent Magnet Synchronous Motor) driven by a three-phase field oriented con-

trol driver. 

4.1.4.1. Field Oriented Control 

The working principle of this method is to set the magnetic flux direction generated by 

the current at the coils to be perpendicular to the magnetic field generated by the permanent 

magnets. Figure 10 shows this condition. This makes it possible to generate a constant 

torque with a PMSM motor. 
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Setting the flux perpendicular to the magnet axis generates a constant torque at the 

motor shaft that is proportional to the total current in the windings, as shown in equation 

(22a). 

 

Figure 10 – PMSM schematic showing total current generated by the coils 𝑖 being per-

pendicular to the magnet axis d (parallel to q). 

This technique is achieved by a closed loop control as shown in Figure 11 where the 

permanent magnet position is measured by an encoder and flux by measuring the coil cur-

rents. The Clarke Transformation transforms the measured current at the three coils from 

the coil direction to alpha-beta cartesian directions. The Park Transformation rotates the 

current vector at the rotor speed measured by the encoder, in this frame, they shall be 

stationary and has two components, 𝑖  aligned to the magnet and 𝑖  perpendicular to the 

magnet. To achieve constant torque at the rotor, 𝑖   shall be kept at 0 given that it does 

not generate torque, and 𝑖  =  set by the desired torque. 
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Figure 11 – PMSM field-oriented control block diagram. 

For this project, it is assumed that the FOC controller will perform as described and the 

current commands sent to the module will generate such current perpendicular to the motor 

axis. 

Therefore, the motor is modelled by [1]: 

 𝜏 = 𝑘 ∙ 𝑖
𝑖 = (𝑢 − 𝑘 ∙ 𝜔 )/𝑅

 (22a) 
(22b) 

Where, 𝜏  is the torque output, 𝑘  is the motor torque constant, 𝑘  is the motor voltage 

constant., 𝑖 is the 3-phase current magnitude at the motor windings, 𝜔  is the motor angular 

velocity, 𝑢 is the input 3-phase voltage magnitude at the motor windings. 

The FOC driver is modelled by: 

 

⎩
⎪
⎨

⎪
⎧

𝑖 = 𝑖  𝑖𝑓  𝑖 > 𝑖
𝑖 = −𝑖  𝑖𝑓  𝑖 < −𝑖

 
𝑢 = (𝑖 + 𝑘 ∙ 𝜔 )/𝑅
𝑢 = 𝑢  𝑖𝑓  𝑖 + 𝑘 ∙ 𝜔 > 𝑢
𝑢 = −𝑢  𝑖𝑓  𝑖 + 𝑘 ∙ 𝜔 < −𝑢

 (23) 

where 𝑖  is the reference control current, 𝑖 is the real motor current, 𝑖 , 𝑖 , 𝑢 , 𝑢  

are the maximum and minimum currents and voltages that the driver can generate. 

Finally, the motor is modelled in Simulink as shown in Figure 12. 
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Figure 12 –Motor Driver and Motor. Simulink Model. Models Equations (22) and (23). 

4.1.5. Control System 

The system is controlled by a discrete time control system implemented in a microcon-

troller. This control system measures the system states (𝜃, �̇�, 𝜔 ) and calculates the control 

signal 𝜏  to be sent to the motor controller. 

To achieve this, the linear continuous state space model of the system is discretized with 

a sampling time 𝑇 using a zero-order hold. Equation (24) shows the discrete state space 

model. 𝐺 and 𝐻 matrices are found by discretizing the 𝐴 and 𝐵 matrices using a zero-order 

hold sampling with period 𝑇, equations (25) and (26) show the discretization equations. 

 
�̅�[𝑘 + 1] = 𝐺 �̅�[𝑘] + 𝐻 𝑢[𝑘] (24) 

 
𝐺 = 𝑒  (25) 

 
𝐻 = 𝑒 𝑑𝜎 𝐵  (26) 

Using the discretized system model, a Linear Quadratic Regulator (LQR) feedback con-

troller is designed. Equations (27) and (28) show the form of this controller: 

 
𝑢[𝑘] = −�̇� ∙ �̅�[𝑘] (27) 

 
𝑢[𝑘] = 𝐾 𝜃[𝑘] + 𝐾 �̇�[𝑘] + 𝐾 𝜔 [𝑘] (28) 

Where 𝐾  is the feedback gain vector [𝐾 , 𝐾 , 𝐾 ] , �̅�[𝑘] is the state vector 𝜃[𝑘], �̇�[𝑘],

𝜔 [𝑘] , and 𝑢[𝑘] is the controller output, which is equal to the controller output torque 𝜏 . 
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The feedback gain vector 𝐾 is found by the Optimal Linear Quadratic Regulator method, 

which minimizes the cost function (29) given the constraints from equations (24) and (27). 

 

𝐽 = 𝑥 [𝑘]𝑄𝑥[𝑘] + 𝑢 [𝑘]𝑅𝑢[𝑘]   (29) 

Where: 

 𝑄 is a positive semi-definite self-adjoint matrix which assigns weights to the states. 

 𝑅 is a positive definite self-adjoint matrix which assigns weight to the controller 

output. 

 MATLAB is used to compute the following: 𝐺 and 𝐻 matrices using the c2d() func-

tion, Optimal feedback gain 𝐾 is with the dlqr() function. 

 Finally, the control algorithm is modelled in Simulink as shown in Figure 13. 

 

Figure 13 – Digital LQR Controller. Simulink Model. Models Equations (28). 

4.1.6. Full System Model 

Finally, Figure 14 shows the Simulink model of the edge balancing case, putting together 

all the models for the individual components presented previously in this section. 
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Figure 14 - Cube Edge Balancing Non-linear Model. Simulink Model. 

In the next sections, this model will be used: firstly, to perform a feasibility analysis of 

the project and secondly, to model the implemented system. 
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5. High Level Design & Feasibility 

Analysis 

Before embarking on the detailed design, component selection and implementation of the 

project, a feasibility analysis was performed to evaluate whether this project is feasible within 

the budget and time constraints available. To perform this feasibility analysis, a high level 

design with key component selection and considerations was done. 

The functional requirements considered in this feasibility analyses are: 

 Balancing on an edge. 

 Jumping up from a flat on the table position to vertical on an edge, as shown in 

Figure 15. 

 

Figure 15 – Jump Up descriptive diagram. 

The following parts are designed for this high-level design: 

 Motor Driver Board Selection 

o The key enabler technology for the edge balancing functionality is a con-

troller board capable of controlling the torque at any cube speed, that is 

also within the project budget. 

 BLDC Motor Selection 
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o In combination with the battery selection, this component is designed for 

the jump up functionality, to achieve the required maximum velocity to 

generate enough reaction wheel momentum to lift the cube. 

 Battery Selection 

o Designed in combination with BLDC motor selection to set maximum 

speed for the jump up maneuver. 

 General Mechanical Design 

o Designed for both edge balancing and jump up functionality. 

 Wheel Holder & Braking Mechanism 

o Designed for jump up functionality to provide the required braking torque 

in a simple mechanical design. 

 Reaction Wheel 

o Designed in combination with BLDC motor and battery to provide 

enough momentum for the jump up function. This is because it can be 

assumed that a wheel that can lift the cube, is also capable of balancing, 

but not vice versa. 

5.1. High Level Design 

5.1.1. Motor Driver Board Selection 

This section discusses the way in which the key enabler for the edge balancing function-

ality is to procure a low-cost driver board that implements Field Oriented Control on the 

PMSM motor. 

5.1.1.1. Field Oriented Control is Required for Torque Control 

Field Oriented Control is the required motor driving method for this application given 

that it can precisely control the torque generated by the Permanent Magnet Synchronous 

Motors (PMSM) that shall be used given that they are the most convenient type of motor 

for this application. 

To balance the cube, the electric motor shall be able to generate the torque commanded 

by balancing control loop, this is not a trivial task to achieve with PMSM motors, and it is 
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harder to achieve at lower speeds, which is the desired speed of the motor when the cube is 

balanced. To achieve PMSM torque control, a specialized motor driver needs to be used that 

performs an algorithm known as Field Oriented Control (FOC), also known as vector con-

trol. 

FOC is described in detailed in Section 4.1.4.1. The key characteristics of this method 

are  that it can: 

 Keep the windings magnetic field perpendicular to the permanent magnet field. This 

maximizes the efficiency of the motor. 

 Control the magnitude of the windings magnetic field by controlling the current 

magnitude. 

These two conditions together generate the torque desired at any speed. This is achieved by 

a closed loop control that measures the relative angle between the windings and the perma-

nent magnet with a high-resolution encoder, and the current at the windings. 

Conventional electronic speed controllers used in multirotor brushless dc motor control 

are not suitable for this application given that they do not actively control the winding 

magnetic field to set it perpendicular to the magnet’s and therefore generating a smooth 

torque. Instead, these drivers use six-step commutation, which consists in dividing a full 

revolution in 6 60° sectors and applying a constant voltage while the magnet poles are at 

each sector. The location of the magnet pole is achieved either by hall effect sensors (only 

indicates the sector), or by measuring the back EMF at the coils. Controlling PMSM with 

this method will produce a rippling torque when the controller is set to generate a ‘constant’ 

torque, given that the winding and magnet fields misalignment will go from -30° to 30° when 

traversing each sector. Figure 16 shows the six-step commutation method [3] [4]. 
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Figure 16 – Six-step commutation method. (right) voltage applied at each sector. (left) 

diagram showing sector locations relative to phases and magnet. 

To conclude, procuring a motor driver board that implements Field Oriented Control is 

the key enabler for the feasibility of this project. 

5.1.1.2. Field Oriented Control Driver Board Selection 

Given the scope of this project, a ready to use, simple interface FOC driver board shall 

be procured rather than developed. Also, given the budget constraints, the driver board shall 

also have a low cost. Table 5 shows the comparison of the driver boards considered. 

ODrive is selected for this project as it is the cheapest option when considering driving 

the 3 motors, each board is cheaper than the other options and given that each board can 

control two motors, only two boards are required. ODrive also provides the highest peak 

current of the considered options, which make the cube able to take bigger disturbances 

while balancing as shown in the simulations. Lastly, ODrive has an active online forum 

where implementation issues are discussed and can prove useful when implementing the 

system. 
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Supplier Model FOC 

Price to 

drive 3 

motors 

Peak 

Current 

Driver 

Complexity 
Projects used 

Maxon 
EPOS4 

24/1.5 
Y 

274x3 

= 822 
1.5A Simple Cubli 

ODrive 
ODrive 

V3.6 
Y 

120x2* 

= 240 
120A Simple Stanford Doggo 

Nanotec 
CL3-E-

2-0F 
Y 

147x3 

= 441 
6A Complex  

Trinamic 
TMCM

-1640 
Y 

156x3 

= 468 
5A Complex  

Table 5 – Motor Driver Board Options Comparison (*each board drives 2 motors). 

5.1.2. BLDC Motor Selection 

The main characteristics of BLDC motors and their selection criteria are as follows: 

 Motor Speed Constant: Vendors specify the KV value which corresponds to the 

RPM generated per volt applied. We symbolize it as 𝑘
/

 and the conversion 

from KV to 𝑘  is shown in Equations (31) and (32). 

o Selection Criteria: Together with the battery voltage, they specify the max-

imum reaction wheel speed the system can use to jump up. The lower this 

parameter, higher wheel speed and greater momentum to transfer to the cube 

to reach the top position. 

 Motor Torque Constant: Symbolized as 𝑘  is the relation between the cur-

rent at the windings and the torque produced. Without motor friction and other non-

idealities, it is theoretically identical to 𝑘  with a change in units from 𝑉 𝑠 to  

shown in Equation (30). 

o Selection Criteria: The motor torque constant together with the maximum 

designed current (commented below) specify the torque the control system 

will be able to produce. The higher this parameter, higher torque which leads 
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to a control system capable of stabilizing after bigger disturbances. The torque 

at zero speed (stall torque) is considered when evaluating this constant. 

 Electrical Inductance: does not influence the motor selection given that the effect 

produced by these motor inductances is negligible. 

 Electrical Resistance: Determines the current generated per volt applied, and 

given that current then determines the torque, together with the motor torque con-

stant, we get the relationship between the battery voltage and the torque applied. 

o Selection Criteria: It will determine whether the stall torque of the motor 

is current limited by the driver or voltage limited by the battery voltage. 

 Mass: Lower mass leads to greater margin in both jump up and edge balancing. 

 Price: A significant consideration given the project tight budget. 

 
𝑉 𝑠 =

𝑊

𝐴
 𝑠 =

𝐽

𝑠 𝐴
𝑠 =

𝐽

𝐴
=

𝑁𝑚

𝐴
 (30) 

 
𝑅𝑃𝑀

𝑉
=

2𝜋 𝑟𝑎𝑑
60 𝑠

𝑉
= 0.1047

𝑟𝑎𝑑

𝑠 𝑉
 (31) 

 
𝑘 [𝑉𝑠] =

1

𝐾𝑉 
𝑅𝑃𝑀

𝑉

=
1

𝐾𝑉 ∙ 0.1047

𝑠𝑉

𝑟𝑎𝑑
 (32) 

To summarize, regarding the cube jump up and edge balancing functions, the criteria is: 

 Jump Up: Requires high reaction wheel velocity, therefore low motor speed con-

stant. 

 Edge Balancing: Requires high stall torque, therefore high motor torque constant, 

low resistance. 

Table 6 shows survey of the BLDCs found in the market at the time. The maximum 

RPM and Stall torque are calculated for each motor assuming a 15𝑉 battery and a maxi-

mum allowable current of 50𝐴, which is half the rated current of both the motor driver and 

battery. 

Power dissipation was also considered and is shown in the table. The case considered is 

applying 15V and holding the wheel for 100𝑚𝑠 and the figure of merit is the change in 

temperature this would induce on the motor. The motor is thermally modelled as a lump of 
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copper with half the motor mass, absorbing all the electrical thermal power generated. Equa-

tion (34) represents the thermal model of the motor. 

 
Δ𝑇 =

𝑃 𝑡

𝑐  𝑚
  (33) 

Where 𝑃 = 15𝑉 ∗ 𝑖  is the electrical power dissipated, 𝑚 is the lump of copper mass 

which is considered to be half the motor mass, 𝑐 = 385
 °

 is the copper specific heat, and 

𝑡 = 100𝑚𝑠 is the time considered. From the table all options considered present a Δ𝑇 of less 

than 3.7°, which is a manageable amount. 

Finally, the selected part was the T-Motor MT4008 KV380, mainly due to its low cost 

and in Section 5.2, it is shown that the maximum RPM and stall torque it provides are 

enough to achieve jump up and balancing. During assembly, one of the 3 purchased motors 

was damaged, and a replacement part was not available, therefore a SunnySky V4008 KV380 

was also purchased, which has the same KV value and very similar resistance and generates 

the same stall torque and maximum RPM as the T-Motor. 
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Brand Model KV R W Kv Kt 
I 

stall 

T 

Stall 

RPM 

Max 
P 𝚫𝑻 Price 

  RPM/V Ohm g mVs mNm/A A mNm RPM W °C USD 

T-Motor 
MT4008 

KV380 
380 0.15 113 25 25 50 1257 5700 375 0.9 38 

SunnySky 
V4008 

KV380 
380 0.131 105 25 25 50 1257 5700 328 0.8 59 

SunnySky 
V4008 

KV600 
600 0.075 104 16 16 50 796 9000 188 0.5 59 

SunnySky 
V4004 

KV300 
300 0.448 51 32 32 33 1066 4500 502 2.6 55 

SunnySky 
V4004 

KV400 
400 0.288 51 24 24 50 1194 6000 720 3.7 55 

SunnySky 
V4006 

KV320 
320 0.23 66 30 30 50 1492 4800 575 2.3 55 

SunnySky 
V4006 

KV380 
380 0.17 66 25 25 50 1257 5700 425 1.7 55 

SunnySky 
V4006 

KV740 
740 0.047 68 13 13 50 645 11100 118 0.4 55 

SunnySky 
V5208 

KV340 
340 0.078 175 28 28 50 1405 5100 195 0.3 78 

Maxon 
EC 45 

flat 30W 
187 4.83 75 51 51 3 159 2805 46.6 0.2 80 

Maxon 
EC 45 

flat 50W 
201 2.83 110 48 48 5 252 3015 79.5 0.2 118 

Maxon 
EC 32 

flat 15W 
397 3.51 57 24 24 4 103 5955 64.1 0.3 79 

Maxon 
EC 32 

flat 15W 
195 13.8 57 49 49 1 53 2925 16.3 0.1 79 

Maxon 
EC 45 

flat 50W 
285 1.03 110 34 34 15 488 4275 218 0.5 118 

Maxon 
EC 45 

flat 30W 
374 1.2 75 26 26 13 319 5610 188 0.6 80 

Maxon 
EC 45 

flat 50W 
380 0.464 110 25 25 32 813 5700 485 1.1 118 

Table 6 – Brushless Motor Selection Table. 
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5.1.3. Battery Selection 

Lithium Polymer (Li-Po) is the most widely used battery technology in the Radio-Con-

trolled hobby market and it is the battery technology selected for this project for the follow-

ing advantages it provides: 

 Wide range of low-cost battery options 

 Wide range of low-cost battery charger options 

 High current output 

Li-Po batteries have the following characteristics of interest: 

 S: this number represents the number of cells in series connected internally in the 

battery package. Given that each cell provides an average of 3.7V and connecting 

cells in series sums their voltage, this parameter specifies the nominal voltage of the 

battery. Increasing the number of cells also increases the size and weight of the 

battery, which negatively impacts performance. Finally, higher cell count come at a 

higher cost. 

 Capacity (C): this is the amount of current that the battery can deliver, and it is 

specified in milliamp-hours [mAh]. Higher capacity batteries are heavier. 

 Peak Output Current: is a dimensionless number that specifies the output current 

as a multiple of the battery capacity. To calculate the output current in Amperes, 

take the battery capacity C, divide by 1-hour and multiply by the specified dimen-

sionless value. 

A market survey was performed and is summarized in Table 7.  
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# S  V  
Capacity Mass Discharge Price Size 

Seller Link 
mAh g C USD mm mm mm 

1 3 11.1 450 41   28 56 30 12 Sypom Link 

2 4 14.8 430 51   30 49 30 17 MaxAmps Link 

3 4 14.8 800 76   42 68 24 25 MaxAmps Link 

4 4 14.8 450 54 75 15 45 27 24 Amazon Link 

5 4 14.8 450 76 150 16 56 31 25 HobbyKing Link  

6 4 14.8 1300 126 100 17 69 32 29 Amazon Link 

7 5 18.5 1050 175   64 68 35 35 MaxAmps Link 

8 6 22.2 1050 210   76 68 35 42 MaxAmps Link 

9 6 22.2 1000 212   27 75 35 43 HobbyKing Link 

10 6 22.2 1000 182   24 74 5 39 HobbyKing Link 

11 6 22.2 1000 172 100 24 76 36 35 Amazon Link 

12 6 22.2 550 109 80 20 31 31 61 Grayson Link 

Table 7 – Li-Po Battery Survey (Selected part marked in green). 

Cell count S has the following impact on design: Increasing this number increases the 

maximum wheel speed (adds margin to cube jump) and the peak torque generated (adds 

margin to controller output saturation). On the other hand, it adds weight (decreases jump-

ing and balancing margins). 

The battery charger was also considered when selecting the battery. One parameter of 

these chargers is the number of cells it is capable of charging, which conditions the S number 

during battery selection. Another parameter is the charging current; it is recommended to 

charge Li-Po batteries at a 1C rate, this means that the charger provides a current equal to 

the capacity of the battery divided by 1 hour, which in turns ends up charging the battery 

in about 1 hour. During selection, the cheapest charger found was the Enegitech e430, which 

charges up to 4 cells and has a minimum charging current of 1A, therefore restricting the 

list from Table 7 to only 4S and capacity greater than 1000mAh (lower capacities will lead 

to charging at >1C which would lead to battery damage). 

Capacity C is designed by performing an estimation on the amount of energy required 

to operate the cube. The figure of merit considered is the number of wheel accelerations from 

0 to maximum speed that the battery can power. The energy required to accelerate the 
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wheel once is estimated by the simulation shown in Figure 17, which simulates the wheel 

acceleration and integrates the electrical and mechanical power used from 0 to maximum 

velocity. The parameters such as the wheel inertia and motor constant are described through 

this section, Table 9 summarizes these values. Figure 18 shows the result of this simulation. 

 

Figure 17 – Wheel Acceleration Simulation. Simulink Model. 

 

Figure 18 -Wheel Acceleration Energy. Simulation Result. 

The simulation indicates that the energy required to accelerate the wheel to its maximum 

velocity is 165 𝐽. After iterating with different battery options from Table 7, option #6 was 

selected (Figure 19). This battery has 14.8V and 1300mAh, storing 69𝑘𝐽. We can estimate 

the number of individual wheel accelerations this battery can achieve considering by roughly 

considering 50% energy transfer efficiency from the battery to the wheel, therefore  

 
∙

50% = 209 wheel accelerations. 

To conclude, 209 accelerations might be a large number for this application, and lighter 

batteries with less capacity as in options #4 or 5, however, this battery was selected mainly 

because of the charger availability. 
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Figure 19 – Selected Battery. Option #6. Ovonic 14.8V 1300mAh 100C 4S LiPo. 

5.1.4. General Mechanical Design 

This mechanical preliminary design is performed to get an estimate of the mass and 

inertia of the system and to assess the feasibility of a wheel braking mechanism. After geo-

metrical iteration a side length of 150 mm was reached to fit the parts inside. 

The design considers the following aspects: 

 Cube structural panels are designed for 3D printing due to ease in manufacturability, 

light weight and allows to easily achieve a more complex geometry than cutting sheet 

metal would provide. 

 Reaction wheels are made of steel, this follows from the jump up and balancing 

analysis which conclude that higher material density leads to better performance. 

 The wheel holder ‘Arm’, which holds the motor, servo and braking mechanism is 

designed for 3D printing given its complex geometry. 

Figure 20 shows an assembly view of the preliminary mechanical design. 
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Figure 20 - Cube Preliminary Mechanical Design - Assembly View. 

During mechanical design, it was decided that the braking system will not be included 

in the final design, therefore the progress of this version was stopped at Figure 20, not 

including the battery and electronic boards. However, the mass of the electronics and battery 

was considered for the jump up and balancing analysis. 

5.1.5. Wheel Holder & Braking Mechanism 

Figure 21 and Figure 23 show this assembly. The part called Arm holds the motor with 

4 screws and the braking mechanism. 

The braking mechanism consists of two bicycle brake pads placed in opposite sides of 

the wheel. One of the pads is held up by a spring and it is pushed down by a servo actuated 

cam-follower mechanism. 
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Figure 21 – Braking Mechanism Preliminary Design – Front View. 

 

Figure 22 – Shimano M70t2 BR-M40 Cantilever brake pad (left). Shimano G02a brake 

Pad (right). 

 

Figure 23 – Braking Mechanism Preliminary Design. 
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Cam-follower mechanism: the follower is the cylindrical end of the cantilever brake. For 

the cam, the challenging aspect is manufacturing an adapter to the 25-tooth spline that the 

servo actuator provides as drive shaft; this was solved by finding a part that already has the 

servo 25-tooth spline adapter and has enough extra material to machine the cam geometry. 

Figure 24 shows the servo actuator and the 25-tooth spline hub with enough material to 

machine the cam. 

 

Figure 24 - MG946R Servo (left). Servo Hub 25 Tooth Spline (right). 

The Servo Hub selected allowed to machine a 16mm diameter 1mm center offset circular 

cam, as shown in Figure 25. 

 

Figure 25 - Servo Hub Cam Machining. 
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This 1 mm offset generates the requirement that the sum of the upper and lower gaps 

shown in Figure 26 must be less than 1 mm such that when the servo is actuated, both pads 

touch the wheel. This constraint might be hard to achieve considering the arm and panel 

will be 3D printed, and any angle that the wheel has when mounted can also contribute to 

a displacement at the brake pads. A disadvantage of this design is that for the wheel to 

reach the stationary pad, the structure will have to deform the whole lower gap distance. 

 

Figure 26 – Braking mechanism gaps. 

5.2. Physical Feasibility Analysis 

5.2.1. Mass and Inertia Estimation 

For this estimation, only the most heavy parts were considered. These are the wheels, 

motors, braking mechanism and servo, battery, motor driver boards, microcontroller board 

and the structure. 

Table 8 shows the items considered, the approximation performed and the result. The 

approximation considered is described by the following steps: 

1. Perform mechanical design including motors, reaction wheels, braking mecha-

nism, and structural panels. 

2. Calculate mass and radius of gyration. 
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3. Add motor driver boards, battery, microcontroller masses to total mass. 

4. Perform an estimation of the inertia including these items by assuming same 

radius of gyration but using the total mass calculated. 

The formula used to calculate inertia 𝐼  from mass 𝑀 and radius of gyration 𝑟   is the 

following: 

 
𝐼 = 𝑀 ∙ 𝑟  (34) 

Parameter Value 
Eng 

Units 
Comment 

Mass    

Motors+Wheels+Panels+Braking Mech-

anism+Structure 
1.91 kg From Catia Preliminary Mechanical Design 

Driver Boards 30 g Specification 

Battery 125 g Specification 

Microcontroller 20 g Specification 

Total Mass 2.09 kg  

Inertia      

Radius of Gyration 113 mm From Catia Preliminary Mechanical Design 

Total Inertia at Edge Axis 266234 g cm2  

Table 8 – Mass and Inertia Estimation Table. 

5.2.2. Braking Torque Modeling 

Figure 27 shows the position of minimum force transmitted from the cam torque to the 

follower, the braking torque estimation is performed at this position and will give a lower 

bound estimation, meaning that if this position provides enough braking torque, the other 

position will do so too. 
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Figure 27 – Cam-lever free body diagram. 

The servo generates a torque on the cam of the cam-follower mechanism. The rated 

torque for the MG946R servo is 𝜏 = 13 𝑘𝑔 ∙ 𝑐𝑚. At the position shown in Figure 27, the 

lever arm corresponds to the designed 𝐿 = 1𝑚𝑚  shown in 5.1.5. Therefore, the force on the 

follower, considering a 50% margin (rough estimate), is: 

 
𝐹 =

𝜏

𝐿
∙ 50% = 650𝑁 (35) 

The lower and upper braking pads will generate the same tangential force equal to: 

 
𝐹 = 𝜇 ∙ 𝐹  = 325𝑁 (36) 

Where 𝜇 = 0.5 [5]. 

To calculate the total braking force on the wheel rim, the tangential force generated by 

both braking pads surfaces must be considered, therefore: 

 
𝐹 = 2 𝐹  = 600𝑁 (37) 

The geometric center of the braking surface is estimated to be at 𝑅 = 55𝑚𝑚,  there-

fore the braking torque is: 

 
𝜏 = 𝐹  𝑅  = 35.75𝑁𝑚 (38) 
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5.2.3. Jump Up Feasibility Assessment 

This section will show an analytic approach to assess the feasibility of the jump up 

maneuver, next section will do so by Simulink simulation. 

The jump up maneuver starts with the cube lying flat on the table and spinning the 

wheel at maximum speed, then the braking mechanism is actuated, and the braking torque 

generated while the wheel is slowing down serves to push the cube to the upright position. 

When the cube is near the equilibrium point, the edge balancing control system is engaged, 

and the cube will stay balancing at that equilibrium point. 

This analytic approach divides the jump into 3 states with 2 processes as shown in Figure 

28. The process starts by spinning the wheel, when the wheel reaches maximum velocity, 

braking starts. 

 

Figure 28 – Jump up maneuver decomposition. 

During braking, the cube is modelled as a rigid body rotating with inertia around an 

edge with two torques being applied, braking torque and gravity torque. The braking torque 

shall be in opposite direction to the gravity torque. 

 
𝐼 ∙ �̈� = −𝜏 + 𝜏  (39) 

 

 

Where 𝐼  is the cube inertia around the edge, presented in Table 8. 
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To calculate the gravity torque 𝜏 , the diagram shown in Figure 29 is considered. This 

diagram shows the weight force 𝐹  generating a torque with radius 𝑅 = = =

75𝑚𝑚. 

 

Figure 29 – Gravity torque on the cube diagram. 

Considering the total cube mass 𝑀  shown in Table 8, the gravity torque is: 

 
𝜏 = 𝐹 ∙ 𝑅 = 𝑀 ∙ 𝑔 ∙ 𝑅 = 1.53𝑁𝑚 (40) 

This is lower than the 𝜏  = 35.75𝑁𝑚 calculated in Equation (38), and therefore the 

cube will start moving upwards. 

In the real case, the gravity torque will start decreasing as the cube starts moving up-

wards due to the weight lever arm 𝑅  decreasing. For this analysis, we consider that the 

gravity torque will remain constant while the wheel is being slowed down, this is easier to 

calculate and it provides an upper bound model to the maneuver, therefore we consider the 

cube will accelerate following Equation (39) until the wheel reaches the current velocity of 

the cube, at that point, there will be no relative velocity between the wheel and cube and 

the braking torque will disappear. 

To estimate the cube velocity and speed at the instant braking stops, the braking time 

shall be calculated. Considering the equation of motion of the wheel: 

 
𝐼 ∙ �̇� = −𝜏  (41) 

Where  𝐼  is the wheel inertia. The wheel was iteratively designed until this analysis 

concluded that the cube would jump up and reach the top. This is the wheel shown in Figure 

20 and Figure 23. 
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𝐼 = 4988 𝑔 𝑐𝑚  (42) 

Integrating the previous equation with initial condition 𝜔  and finding we get: 

 
𝜔 (𝑡) = 𝜔 −

𝜏

𝐼
 𝑡 (43) 

 
�̇�(𝑡 ) = 𝜔 −

𝜏

𝐼
 𝑡  (44) 

 

𝑡 =
𝜔 − �̇�(𝑡 )

𝜏 /𝐼
 (45) 

Integrating Equation (39) we get: 

 
�̇�(𝑡) =

−𝜏 + 𝜏

𝐼
𝑡 (46) 

From battery selection Section 5.1.3 and motor selection Section 5.1.2, the initial wheel 

velocity is equal to: 

 
𝜔 =

𝑉

𝑘
=

15 𝑉

0.025 𝑉
𝑠

𝑟𝑎𝑑

= 600
𝑟𝑎𝑑

𝑠
= 5732𝑅𝑃𝑀 (47) 

With equation (45) and (46) we get a braking time of: 

 
𝑡 = 8.2 𝑚𝑠 (48) 

We can estimate how far the cube travelled this time by integrating Equation (46): 

 
𝜃(𝑡) =

𝜏 − 𝜏

𝐼
 
𝑡

2
 (49) 

 
𝜃(𝑡 ) = 2.46° (50) 

And at what speed the cube is when braking finishes with Equation (46): 

 
�̇�(𝑡 ) = 10.5 𝑟𝑎𝑑/𝑠 (51) 
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Now with the cube angular velocity �̇�, we can conclude if the cube can reach the top by 

comparing the angular kinetic energy at this stage to the gravitational potential energy at 

the top. The cube total angular kinetic energy is given by: 

 
𝐸 =

1

2
 𝐼  �̇� = 1.47 𝐽 (52) 

To calculate the potential energy, we estimate the height left to travel from the 2.46° 

already traveled to the top, as shown in Figure 30. 

 

Figure 30 – Center of mass angle with respect to vertical. 

 
𝐸 = 𝑀  𝑔 𝑅 1 − cos 45° − 𝜃(𝑡 ) = 0.57 𝐽  (53) 

It can be concluded that the cube will reach the top given that the kinetic energy at the 

end of the wheel braking is 2.57  (1.47 𝐽 vs 0.57 𝐽) times greater than the potential energy 

required to reach the top. 

Braking using the wheel motor was also considered. The motor should provide more 

torque than the torque generated by gravity which is 𝜏 = 1.53 as shown in equation (40). 

Considering the torque constant of the selected motor 𝑘 = 25 𝑚𝑁𝑚/𝐴, the current required 

to start lifting the cube is 𝐼 = 𝜏 /𝑘 = 61.2 𝐴, which is half of the maximum allowable cur-

rent of the motor driver (120A) and what the battery can provide (130A). This shows the 

motor can start lifting the cube, however a simulation is needed to evaluate if it can make 

it reach the top. 
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5.2.4. Jump Up & Edge Balancing Simulation 

This simulation is performed using the Simulink Models for each component presented 

in Section 4.1. A small change is made to add the braking function to the system model, as 

shown in Figure 31, the braking is modeled by switching the input torque to the wheel from 

a constant braking torque to the control system torque. 

 

Figure 31 – Cube Jump Up and Edge Balance Non-linear model. Simulink. 

This section presents two simulations:  

1. Jump up without turning on the control system 

2. Jump up and turning on the control system. 

The parameters used for these simulations are the ones presented through this Section 5 

and are summarized in Table 9. 
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Item Parameter Name Sym Unit 

Cube 

Body 

Mass 𝑀  2.09 𝑘𝑔 

Center of mass inertia 𝐼  0.0267 𝑘𝑔 𝑚  

Center of mass 

distance to edge 
𝑑  0.106 𝑚 

Reaction 

Wheel 

Mass 𝑀  0.219 𝑘𝑔 

Center of mass inertia 𝐼  5.25 ∙ 10  𝑘𝑔 𝑚  

Center of mass 

distance to edge 
𝑑  0.106 𝑚 

Motor 
Torque Constant 𝑘  0.025 

𝑁𝑚

𝐴
 

Resistance R 0.15 Ω 

Braking 

Initial Wheel Velocity 𝜔   600 𝑟𝑎𝑑/𝑠 

Initial Angle 𝜃  −45° 

Braking Torque 𝜏  10 𝑁𝑚 

Battery Voltage 𝑉  15 𝑉 

Motor 

Driver 
Maximum Current 𝑖  50 𝐴 

Table 9 – Jump up and Balancing Model Parameters. 
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Figure 32 – Jump Up without turning on control system. Simulation Results. 

Figure 32 shows the jump up without turning on control system simulation results. The 

simulation time is 0.5 seconds. The first plot shows a Boolean variable indicating if the 

braking is enabled. The third plot shows the reaction wheel relative speed starting at 600  

and being slowed down by the brake until it reaches zero. The second plot shows the angle 

of the cube, it starts at −45° and begins to increase as the braking torque accelerates the 

cube upwards; the key point to note is that this angle crosses zero, which corresponds to the 

vertical position, indicating the jump up maneuver was successful. 

Figure 33 shows the jump up and turning on balancing control system simulation results. 

The simulation time is 0.5 seconds. The first two plots show Boolean values indicating if the 

brake or control system are one. As in the previous simulation, the fourth plot shows the 

reaction wheel starting at maximum speed and being slowed down by the brake until it 

reaches zero. The third plot shows the cube angle starting at −45° and asymptotically reach-

ing zero as the control system stabilizes the cube at that position. Plots 6 and 7 show the 

current and voltage on the motor respectively, it can be seen the moment the control system 

is turned on and these variables start actuating and stabilizing the cube. 
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Figure 33 – Jump Up and turning on balancing control system. Simulation Results. 

Section 4.1.5 shows the model for the LQR control system used. The plant poles are 

[0 𝐻𝑧, 1.07 𝐻𝑧, −1.07 𝐻𝑧], considering this, the selected controller frequency is 50 𝐻𝑧. 

For the LQR, after iteration, the following 𝑄 and 𝑅 matrices were used: 

 

𝑄 =
1 0 0
0 1 0
0 0 1

 (54) 

 
𝑅 = 10000 (55) 
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Finally, Figure 34 shows the jump up maneuver using only the electric motor by spinning it 

at maximum velocity followed by accelerating the wheel in the opposite direction at the 

maximum allowable current of 120A and maximum voltage of 15V. 

 

Figure 34 - Jump Up using electric motor. Simulation Results. 

It can be seen that the cube is able to jump up and stabilize using the electric motor as 

brake. However, this method was not chosen given that a steel reaction wheel is required 

(as seen in Figure 35), and it was unfeasible to manufacture such a wheel for this project. 

Another reason for not using this method is that it requires to stress the board up to its 

highest rated current, which risks ruining hardware. 
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Figure 35 – Jump up using motor and plastic reaction wheel. Does not reach the top. 

5.3. Economic Feasibility 

Table 10 presents a preliminary part list with their corresponding quantity and cost. 

Some of the selected items were specified in the former sections. The cost of other parts was 

approximated. 
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  Item Part Number Provider 
Unit 
Price Q 

Total 
Cost 

M
ot

or
 P

an
el

 1
,2

,3
 

Actuator 
Motor T-Motor MT4008 KV380 Amazon 38 3 114 

Servo MG946R 
Todo Mi-
cro 

10 3 30 

Electronics 
Encoder AS5047P Digikey 17 3 50 
IMU MPU6050 AliExpress 3 4 10 

Mechanical 

Panel PLA Plastic 3D Printed 0 3 0 

Reaction Wheel Steel Round Bar 
Aceros 
Cas 

6 3 17 

Arm PLA Plastic 3D Printed 0 3 0 
Servo Holder 1801-0040-0001 gobilda 3 3 9 
Servo Cam 1906-0025-0032 gobilda 3 3 9 

Cantilever Brake Shimano M70t2 Br-m40 
Mercado 
Libre 7 3 20 

Spring Do 8.5, Di 7.1, L 18 
Ferr/ Bul-
mars 2 3 6 

Retaining Ring   GATA 1 3 3 

Brake Pad   
Mercado 
Libre 4 3 11 

El
ec

tr
on

ic
s 

Pa
ne

l 4
,5

,6
 

Electronics 
Microcontroller STM32 Mouser 10 1 10 
Motor Driver ODrive V3.6 ODrive 138 2 276 
Communications HM-10 Amazon 10 1 10 

Power 
Supply Sys-

tem 

Battery 
14.8V 1300mAh 100C 4S 
LiPo Amazon 17 1 17 

Charger Lipo Battery Charger Amazon 30 1 30 
Electronics Step 
Down Dc-Dc Lm2596 Amazon 3 1 3 

Servo Step Down Dc-Dc Lm2596 Amazon 3 3 9 
Mechanical Panel PLA Plastic 3D Printed 0 3 0 

Cube Mechanical Fasteners Estimate   GATA 15 1 15 
   Shipping Estimate for all purchases 40 1 40 

     Total 
USD 688 

Table 10 – Preliminary Part List and Cost Estimation. 

The total estimated cost is within the available budget. 

5.4. Conclusion and Transition to Final Design 

This chapter presented the preliminary design of a 3-axis balanced cube and it was shown 

by simulation that this design can jump up and balance on its edge. 
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When transitioning to the final design, it was decided to reduce the scope in functionality 

given that it would require more hours of work than intended for the project. It would help 

reduce the already stretched budget. Section 6 presents the full requirement specification for 

the final design. 

The eliminated function is the jump up maneuver given that it would save a significant 

amount of time due to the following reasons: 

 Requires steel reaction wheel which is expensive to manufacture. 

 Braking mechanism tolerances. Might require iteration on the mechanical fab-

rication. 

 High braking forces. Might damage parts, requiring iteration. 

 Braking mechanism takes significant space inside the structure, might require 

iteration when integrating all parts. 

 More electrical design and integration. 

 More software developing and testing. 

 More system testing. 

The selected motor, motor driver board and battery presented in this section are pre-

served for the final design presented in the following section. 
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6. System Definition 

Section 3 defined the high-level functional requirements for the cube. This section will 

flow down each high-level requirement to lower level requirements and design decision. 

Figure 36 shows the building blocks used in the requirement flow-downs shown in this 

section. 

Legend

Function Actuator Mechanical 
Part

Software Electronic 
Part Power

 

Figure 36 - Diagrams Legend. 

6.1. Edge Balancing 

This requirement specifies the ability to balance the cube at any of its 12 edges. Figure 

37 shows the requirement flow down starting with the high level requirement of edge bal-

ancing and ending at the sensors, actuators, electronics boards, power systems and software 

required to achieve the high level function. 

To achieve edge balancing we need three main sub functions: 

 Torque Generation 

 Attitude Sensing 

 Control System 

Torque generation is performed by a reaction wheel attached to a torque controlled elec-

tric motor. Torque control drive is a key function required for this application and the 

feasibility of such a system is discussed in Section 5.1.1 . A torque controlled motor requires 

a motor controller board and an encoder attached to the motor’s axis. The requirement to 

balance the cube in any of its 12 edges derives in requiring 3 torque controlled reaction 

wheels in the 3 cube orthogonal axis, each wheel will be able to balance the cube in the 4 

edges parallel to the wheel’s axis. 
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Attitude sensing is performed by Inertial Measurement Units (IMUs), which consist of 

an accelerometer and a gyroscope integrated into the same chip, sharing the same mechanical 

axis and spatial position. Attitude estimation from acceleration and angular velocity can be 

done with the following algorithms: 

 Assuming acceleration measurement is equal to the gravity vector. 

 Acceleration and Gyroscope sensor fusion. 

o Weighted average 

o Kalman filtering 

It is advantageous to place the IMUs close to the balancing edge, given that this reduces 

the radial distance from the edge to the sensor and therefore reducing the centrifugal and 

tangential accelerations induced at the sensor, which will introduce interference in the meas-

urement of the gravity acceleration direction. If one IMU is placed close to a cube vertex, 

this will be the IMU of choice when balancing around the 3 edges that form the vertex, 

considering this, 4 IMUs placed in a tetrahedral configuration in 4 of the 8 vertices is enough 

to always provide an IMU with minimum distance to any edge. 
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Figure 37 - Balancing Function System Design. 
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6.2. Self-Powered 

Figure 38 shows the requirement flow down for this function. A rechargeable battery is 

used to self-power the system. The charging system is external to the cube to reduce weight 

given that the cube will not be operated during charging. To simplify the design, system 

operation and in order to reduce part number, one battery to power the whole system is 

used. This requires direct battery connection to the motor drivers and a step down regulator 

for the low voltage electronics. 

Low voltage battery protection is performed by software with two methods: 

Shut down motor drivers. 

 Turn on a buzzer to signal operator to turn off the device. 

 

Self Powered

Actuator 
Power

Digital 
Power

BatteryCharger

Step Down 
Voltage Regulator

Charging
(Electrical Interface)

Electrical Interface

Electrical Interface

Microcontroller

Buzzer Speaker

Voltage Measurement

Low Voltage Signaling

 

Figure 38 - Self Power Function System Design. 
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6.3. Simple User Interface 

Figure 39 shows the three components of the simple user interface: Power button, Digital 

Button, Microcontroller Serial Interface. 

 Power button connects and disconnects the battery from the device. 

 Digital button provides an interface to the device software. 

 Microcontroller serial interface is used for software debugging, data output and com-

plex commands. 

During operation, the user interface is given by the Power Button and the Digital Button. 

The next section describes the states of the system and how they relate to this interface. 

Simple User 
Interface

Power Button

User

Digital Button

COMPUTER

Microcontroller

Serial Connection

Serial Interface

 

Figure 39 - Simple User Interface. 

6.4. System States 

As mentioned in the previous section, the user will interface with the system via two 

buttons: 

 Power Button: this is a toggle switch with ON and OFF states. 
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 Digital Button: this is a push button that generates a ‘pressed’ event when pressed. 

Figure 40 shows a finite state machine describing the relation between the inputs and 

states. 

 

Figure 40 – System Finite State Machine. 

The system states are the following: 

 Power Off: when Power button is set to off, any previous state will transition to this 

one. 

 Uncalibrated Standby: this is the state entered when the cube is powered on. The 

name refers to the encoder being uncalibrated. 

 Calibrating Encoders: during this state, the wheels are slowly rotated to find the zero 

position of the encoders. This process lasts for 10 seconds and then transitions to the 

next state. 

 Standby: the cube is ready to get activated for edge balancing 



  
6. SYSTEM DEFINITION 69 

 

 Edge Balancing: during this state, if the cube is manually placed within 10 degrees 

of the stable position over any of the 12 edges, the control system will activate, and 

it will stabilize the cube around that edge. 
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7. Detailed Design 

7.1. Microcontroller Board Selection 

To select a microcontroller board, several characteristics need to be taken into account. 

Considering the stage of the design, these features and characteristics were divided in two: 

Requirements (Known and/or quantifiable) and Desirable Characteristics (Preliminary 

and/or hard to quantify). 

7.1.1. Requirements 

These features or characteristics are already known and/or are numerically quantifiable 

at this stage. These are: 

 Requirement Rationale/Comment 

1 
The MCU shall fit within geometrical con-

straints 
Smaller than 150mm x 150mm 

2 
The MCU shall satisfy the Interface & Periph-

eral Requirements specified in Table 14. 
 

Table 11 – Microcontroller Board Requirements. 

7.1.2. Desirable Characteristics 
 Characteristic Rationale/Comment 

1 High Flash Memory Final software size currently unknown. 

2 High Clock Speed 
Software processing power requirement 

currently unknown. 

3 Has Floating Point Unit (FPU) 
Desirable to avoid working with fixed 

point numbers. 

4 
Easy to use development software backed 

with video tutorials 
 

5 Low Price Given the budget constraints. 

Table 12 – Microcontroller Board Desirable Characteristics. 
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7.1.3. Interface and Peripheral Requirement Identification 

Table 13 shows the interface and peripheral requirement identification based on the sys-

tem architecture. 

Device Quantity Interface 

Motor Driver 2 UART 

IMU 3 SPI 

Communications Module 1 SPI 

Battery Voltage 1 ADC 

Status LED 3 GPIO 

Table 13 – Microcontroller Interface & Peripheral Requirements Identification. 

Peripheral/Interface Quantity 

UART 2 

SPI 4 

ADC 1 

GPIO 3 

Table 14 – Microcontroller Interface & Peripheral Type and Quantity Requirements. 

7.1.4. Selection 

The final selection is broken down in two: selection of embedded board family and then 

selection of board within that family. 

Table 15 shows the two families considered. The table was completed after browsing 

board options. Considering this table, the STM32 Nucleo family was selected. 



  
7. DETAILED DESIGN 72 

 

Embedded 

Board Fam-

ily 

Development Envi-

ronment 
Peripherals FPU Memory Clock 

Arduino Arduino Low Count no low slow 

STM32 NU-

CLEO 

Arduino 

Mbed 

STM32Cube 

MATLAB/Simulink 

High Count Yes high Fast 

STM32 Blue 

Pill 
Arduino High Count No medium medium 

Table 15 – Microcontroller Family Options Comparison. 

Now within the STM32 family, a list of options was compiled in Table 16. 

# P/N Pins Core FPU 
Clock 

[MHz] 

Flash 

[KB] 

SRAM 

[KB] 
UART SPI CAN ADC $ 

1 

NU-

CLEO-

F446RE 

64 M4 Y 180 512 128 6 4 2 3 14 

2 

NU-

CLEO-

F411RE 

64 M4 Y 100 512 128 3 5 0 1 14 

3 

NU-

CLEO-

L476RG 

64 M4 N 80 1024 128 5 3 1 3 14 

4 

NU-

CLEO-

L432KC 

32 M4 N 80 256 64 2 2 - 1 10 

5 

STM32 

Blue 

Pill 

44 M3 N 72 64 20 3 2 1 2 6 

Table 16 – STM32 NUCLEO Boards Options Comparison. 
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From these options, 1 and 2 are desirable with the following rationale: 

 Satisfies Peripheral Requirements 

 Has FPU 

 High Clock speed 

 Fits within geometrical constraints and has mounting holes 

 High Flash and SRAM Memory 

 No considerable price differences. 

At purchase time, 1 was unavailable therefore 2 was chosen. Figure 41 shows the board. 

 

Figure 41 – STM32 NUCLEO-F411RE Board. 

7.2.  Inertial Measurement Unit (IMU) Selection 

The MP6050 was selected due to its low cost and wide availability in the Arduino envi-

ronment. 

It can be read at 40Hz, which is 40 times greater than the estimated plant poles frequency 

in Section 5.2.4. 



  
7. DETAILED DESIGN 74 

 

 

Figure 42 – MPU6050 Inertial Measurement Unit. 

 

 

7.3. Power and Charging System Design 

To design this system, the following requirements were considered: 

 The system shall have only one battery. 

 The battery shall be charged by an external charger. 

 The external charger shall connect to the cube through chassis connectors. 

 A toggle switch shall control charging or internal power state. 

As presented in Section 5.1.3: the cube is powered by an Ovonic 14.8V 1300mAh 100C 

4S LiPo Battery. The battery is charged by a Enegitech e430 Charger 4S LiPo. 

The charging interface consists of a T-Plug connector for charging and a JST-XH 4-pin 

connector for cell balancing. 

The cube electrical system requires three voltage levels: 

 Vbat (16.8 V to 12 V): To power the ODrive motor driver boards. 

 5V: To power the microcontroller’s Low-dropout Regulator at the Nucleo board. 

 3.3V: To power IMU, Display, Bluetooth Module. Note: Encoders are powered 

by the motor driver board’s own 3.3V source. 

To simplify the design, all digital voltages are derived from the single LiPo battery in 

the system. Figure 43 shows the power and charging system diagram and how these voltages 

are generated. The power switch connects the positive lead of the battery either to the 

internal circuit or to the charging interface. 
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Figure 44 shows a picture of the charging interface showing the charging connectors, 

balancing connectors, and power switch. 

Figure 45 shows a picture of the cube being charged using mains power. 
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Figure 43 – Power and Charging System Electrical Schematic. 
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Figure 44 – Picture of charging interface. 
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Figure 45 – Picture of cube being charged. 

The current load on the STM32 Nucleo LDO is evaluated. Table 17 shows a budget of 

the current required by all the connected modules, which results in an estimated current of 

190 mA. The low-dropout regulator included in this board is a LD39050PU33R with 3.3V 

and 500mA output and therefore can handle the load. 
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Part Description 
Voltage 

[V] 

Current 

[mA] 
Q 

Total 

Current 

[mA] 
MPU6050 IMU 3.3 3.9 4 15.6 

HM-10 Bluetooth 3.3 50 1 50 
SSD1306 Display 3.3 15 1 15 
NUCLEO-

446RE 
Microcontroller 5 110 1 110 

   Total USD 190.6 

Table 17 – LDO Current Load Budget. 

7.4. Electrical Design 

This section presents the electrical schematics of all components of the system except 

the battery system which was presented in the previous section. 

Figure 46  shows the reaction wheel system, which consists of the STM32 NUCLEO 

board, two ODrive boards and three BLDC motors with their corresponding encoders. The 

STM32 interfaces with the ODrive boards through UART. Each ODrive board interfaces 

with each motor though the U V W three-phase driving signals, and via an ABI1 interface 

with the encoders. The encoders are powered from the ODrive board given that it provides 

this possibility. The encoders interface with the STM32 microcontroller through SPI, alt-

hough this latter interface was not used, and the encoder speed is measured from the ODrive. 

Figure 47 shows the IMU’s connections. The MPU6050 provides two selectable I2C ad-

dresses by setting the AD0 to high or low, therefore two I2C peripherals were used to inter-

face with the four IMUs by alternating the AD0 pin. 

 

1 ABI is also known as the incremental encoder interface. It consists of three wires, A B and I. As the encoder spins, the A and 
B are square waves with 90° phase difference that cycle a specific number of times per revolution. The I signal is a pulse for each 
whole revolution. 
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Figure 46 – Reaction Wheel System Electrical Schematic. 
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Figure 47 – Inertial Measurement Unit Array Electrical Schematic. 
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Figure 48 – Microcontroller Power Electrical Schematic. 

Figure 48 shows the STM32 Nucleo board being powered by the 5V step down from the 

power supply system. Figure 50 shows the interface to the 612-SV7F23SS-6G1 pushbutton 
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with LEDs. The pushbutton is connected to the PC8 interrupt enabled PIN from the Nucleo 

board. The LEDs are connected to GPIO outputs PA6 and PA7. The microcontroller is 

rated to output or sink up to ±20mA, therefore a 220 Ω resistor was connected in series to 

limit the current. 

 

Figure 49 - 612-SV7F23SS-6G1 Schematic. 

220Ω

STM32
NUCLEO

GPIO

Push Button

GreenRed

Digital Button

 

Figure 50 – Digital Button Electrical Schematic. 

 

Figure 51 – Digital Button LED States. From left to right: OFF, Green, Red. 

Figure 52 shows the Bluetooth module connected through UART to the STM32 micro-

controller. This module is included for future projects in case remote control is required. 
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Figure 52 – Bluetooth Electrical Schematic. 

7.4.1. ODrive Electrical Integration 

All information used to interface the ODrive boards to the system can be found here or 

at 07 - Software\3 - Components Datasheets\ODrive. 

7.5. Microcontroller Pin Assignment 

This section shows all the interfaces to the STM32 Nucleo board. Figure 53 and Figure 

54 show the microcontroller interfaces at the CN7 and CN10 headers respectively. The port 

name is shown in the “Name” column and the mode it will operate in, in in the “Config” 

column. The connected peripheral is represented in grey, showing the pin function, periph-

eral port name,  peripheral name and peripheral identification number. 

Figure 55 shows a summary of all the microcontroller peripherals with their correspond-

ing modules. 

Figure 56 shows a screenshot of the configuration tool used to manage the pins in the 

IDE (integrated development environment) software. This tool is called STM32cubeMX and 

is included in the STM32Cube IDE. It allows pins to be configured graphically and then 

auto-generates the initialization code for all peripherals configured. 
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Figure 53 – Microcontroller Pin Assignment. CN7 Port. 

 

Figure 54 – Microcontroller Pin Assignment. CN10 Port. 
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Figure 55 – STM32 Microcontroller Interface Summary. 

 

Figure 56 - STM32cubeMX configuration tool. Microcontroller Pinout Assignment. 

7.6. Mechanical Design 

This section describes the mechanical design of the system. Figure 57 the cube can be 

seen from all vertices. 
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Figure 57 – Cube Mechanical Design. Views from all vertices. 

7.6.1. Vertex Design 

Figure 58 shows the 8 vertices of the cube, the pictures are arranged in the same manner 

as in Figure 57. The panels were design such that the exterior envelope of the system as-

sembly is a cube. 

Next section describes how panels outer contour was designed to generate these vertices. 
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Figure 58 – 8 cube vertices. 

7.6.2. Cube Panel Assembly Design 

Figure 59 shows the 6 cube panels are named: 1A, 2A, 3A, 1B, 2B, 3B. The numbers 

correspond to the panel outer shape type and the letter indicates the instance. These panels 

were designed to be 3D printed. All 8 vertices of the cube are generated by the 1 panel type. 

Give that each 1 panel has 4 vertex, panels 1A and 1B sum the 8 vertices of the cube. Figure 

60 shows the screw cubes used to screw the panels together. Given that the panels are 3D 

printed, it is easy to generate the cubes as part of the panel. 
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Figure 59 – Cube Panels. Outer face view. 
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Figure 60 – Cube panel assembly screw cubes. 

7.6.3. Panel Assemblies 

This section presents a detailed description of each panel assembly. These assemblies are 

built before assembling all of them together to form the cube. 

7.6.3.1. 1A 

This panel holds: 

 Motor 0 

 Encoder 0 

 IMU 3 

 Arm 0 
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Figure 61 – Panel 1A. 

7.6.3.2. 2A 

This panel holds: 

 Motor 1 

 Encoder 1 

 Arm 1 

 

Figure 62 – Panel 2A. 
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7.6.3.3. 3A 

This panel holds: 

 Motor 2 

 Encoder 2 

 Arm 2 

 

Figure 63 – Panel 3A. 

7.6.3.4. 1B 

This panel holds: 

 ODrive 1 

 IMU 2 
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Figure 64 – Panel 1B. 

7.6.3.5. 2B 

This panel holds: 

 Battery 

 IMU 1 

 Bluetooth Module 

 Battery Charger T-Plug Connector 

 Battery Balancer JST-XH male connector 

 Power Switch 

3D printing this part allows for the complex geometry. A key part of this panel is the 

battery mount. The battery positioning was optimized to move the center of mass of the 

battery as close as possible to the center of mass of the cube without interfering with the 

rest of the parts inside the cube. Another key part with complex geometry is the power 

button slot, as shown in Figure 66. 



  
7. DETAILED DESIGN 92 

 

 

Figure 65 – Panel 2B. 

 

Figure 66 – Power Switch Slot Design. 

7.6.3.6. 3B 

This panel holds: 
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 STM32 NUCLEO-F411RE 

 IMU 0 

 Digital Button 

 OLED Display 

 

Figure 67 – Panel 3B. 

7.6.4. External Interfaces 

Figure 68 shows the Micro USB interface to the two ODrive boards. 

Figure 69 shows the Mini USB interface to the STM32 Nucleo-F411RE 

Figure 70 shows the battery charging interface. 

 

Figure 68 – (Left) ODrive 1 interface. (Right) ODrive 2 interface. 
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Figure 69 – STM32 NUCLEO-F411RE interface. 

 

Figure 70 – from left to right: battery balancer connector, battery charging connector, 

power switch. 
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8. Implementation 

8.1. Manufacturing 

All parts were manufactured by 3D printing Polylactic acid (PLA), including the reaction 

wheels. 3D printers work by executing a G-Code file; the software used to transform .stl files 

to G-Code is called the slicing software. Ultimaker Cura 4.6 was used to slice the 3D models. 

For support material, it was found that the tree method gave the best results. 

Figure 71 shows the result of 3D printing the Motor Arm, including the tree support 

material. 

 

Figure 71 – 3D printing Motor Arm. 

No balancing of the reaction wheels was required given that the 3D print quality was 

good enough, this was verified by mounting the reaction wheels on the motor and not de-

tecting considerable vibration when spinning at maximum velocity. 

8.2. Electrical 

Figure 72 shows a picture of all components of the system wired as described in Sections 

7.3, 7.4 and 7.4.1. The following were the assembly criteria for the wiring, mostly oriented 

to save development time: 
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 Almost cables were soldered in place, instead of using connectors. This will 

make disassembly more time consuming, but it makes assembly faster. 

 Cable’s length was chosen to be the minimum length to connect the compo-

nents in the flat configuration shown in Figure 72. 

 Cables were left mostly loose inside the cube and held with tape when needed 

during assembly, instead of running the cables through the structure in a 

planned layout. This could produce interference between signals and it could 

be a possible reason for the I2C bus problem encountered, described later. 

 

Figure 72 – All Panels Assembled. All components Connected. 
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Figure 73 – Cube assembling process, two pannels left. 

8.3. Software 

8.3.1. Development Environment 

For the STM32 Nucleo-F411RE embedded software, the STM32CubeIDE environment 

was used. This environment provides easy project creation and live debugging functionality. 

It also includes the STM32CubeMX, which is a graphical pin configuration tool that auto-

matically generates all code needed to configure the peripherals as needed. The code gener-

ated is written in a Hardware Abstraction Layer (HAL) which allows for more intuitive 

interaction with peripherals, avoiding the need to read the microcontroller datasheet and 

understand all registers. 

Figure 74 shows a screenshot of the development environment in the pin configuration 

tab. As an example, it shows the configuration interface of the I2C1 peripheral. 
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Figure 74 - STM32CubeIDE screenshot showing the STM32CubeMX pin configuration 

tool. 

To successfully use these tools, the following learning resources were used: 

 Video tutorials from ST 

o MOOC - STM32CubeIDE basics  

o MOOC - STM32CubeMX and STM32Cube HAL basics  

 Video tutorials from Digikey  

o Getting Started with STM32 and Nucleo 

 User Manuals from ST: 

o UM1725: Description of STM32F4 HAL and low-layer drivers. 

o UM1724: STM32 Nucleo-64 boards (MB1136) 

o STM32F446RE Datasheet 

8.3.2. Software Description 

8.3.2.1. Main Function 

This function initializes all peripheral and variables used thought the program. After 

this, it enters a while loop that reacts to three flags: digital button pressed, digital button 

released and new UART command from PC. 
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When the digital button is pressed for the first time, it triggers ODrive calibration. If 

pressed again during calibration, nothing is done. If pressed after calibration, edge balancing 

control loop starts. 

When new UART command flag is risen, the received character is retransmitted and 

switched through several possible values which will trigger an action. The next subsection 

presents the command list and the functions executed for each command. The PC UART 

peripheral is configured at a baud rate of 921600. 

8.3.2.2. Command List 

Sending the ‘h’ command will show this command list. 

v : ODrive_GetVoltage 

 Returns current battery voltage. 

c : Configure and Calibrate all Axes 

 Configures and calibrates both axes. The cube beeps and spins wheels in both 

directions. 

l : EdgeBalancingControlLoop() 

 Starts edge balancing control loop. Requires ‘c’ command to be executed before. 

Cube will balance over any edge if manually placed near any edge. 

L : EdgeBalancingControlLoopTest() 

 Same as ‘l’ but used to test variations in the control loop code. 

1 : Select ODrive_Ax[0], ODrive 0 M0 

 Select this axis to respond to the ODrive control commands. 

2 : Select ODrive_Ax[1], ODrive 0 M1 

 Select this axis to respond to the ODrive control commands. 

3 : Select ODrive_Ax[2], ODrive 1 M0 

 Select this axis to respond to the ODrive control commands. 

r : Start Torque Control on Selected ODrive Axis 
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 Starts torque control with 0A as reference on selected axis. 

i : Stop Torque Control on Selected ODrive Axis 

 Stops torque control 

q : Set Current to 1A 

 Sets current control reference current. 

w : Set Current to -1A 

 Sets current control reference current. 

Q :Set Current to 10A 

 Sets current control reference current. 

W : Set Current to -10A 

 Sets current control reference current. 

space : WheelAccelerationTest()  

 Performs wheel acceleration test described in Section 9.2. Data is recorded and 

then sent to the terminal as comma separated values with the following columns: 

iterationNumber, motorCurrent[A], omegaWheel[counts/s], voltage[V] 

m : HangingTest() 

 Performs Cube inertia estimation test as described in Section 9.3. Data is recorded 

and then sent to the terminal as comma separated values with the following col-

umns: Cube angular velocity [deg/s], wheel speed [counts/s], x acceleration [mG], 

y acceleration [mG]. 

o : ODrive_isCalibrationOk 

 Prints a first line indicating if encoder is ready and a second line indicating if 

motor is calibrated. 

f : ODrive_getFeedback 

 Prints position and velocity feedback in [counts] and [counts/s] respectively. 

S : ODrive_SaveConfiguration 
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 Saves current configuration in selected ODrive nonvolatile memory. 

k : ODrive_Reboot 

 Reboots selected ODrive. 

a : IMU_ReadingLoop()  

 Continuously reads and prints all 4 IMUs measurements. The print format is in 

4 columns, one per IMU, separated by ‘|||’. Each column prints the XYZ Accel-

erometer values [mG], ‘|’ separator and the XYZ Gyroscope values [deg/s]. 

8.3.2.3. Digital Button 

The goal of this function is to raise a flag when the button is pressed or raise another 

flag when the button is released. These flags will be used by any loop to take an action. This 

function is implemented in the main.c file. 

The algorithm is presented in Figure 75 and is as follows: 

1. Generate an interruption when with either a rising or falling edge is detected on 

the pin. 

2. Wait 50ms. 

3. Read button state and record as new button state. 

4. If previous button state is released and new state is pressed, raise ‘Button Pressed’ 

flag. 

5. If previous button state is pressed and new state is released, raise ‘Button Re-

leased’ flag. 

6. If previous and new button states are equal, do nothing. 
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Figure 75 - Digital Button Debouncing Algorithm. 

The pin used for this button is PC8, configured as pull up. For edge detection, the pin 

is configured as EXTI and shall generate an interrupt with either falling or rising edges. 

For the waiting stage, a custom DigitalButton_DecreaseCounter() function was sub-

scribed to the SysTick_Handler() function, which is called periodically at 1ms. 

8.3.2.4. ODrive Motor Controller 

The ODrive boards are commanded via a UART interface at 115200 baud rate. The 

peripheral used is specified in the microcontroller interface diagram. All commands are 

ASCII characters, and the documentation can be found here. All this documentation is 

downloaded to this project directory, the ASCII protocol is located at ODrive-fw-

v0.4.11\docs\ascii-protocol.md . 

The driver for this board was developed as part of this project following the provided 

ODrive documentation. 

All functions in this library receive an ODrive Axis instance. Each ODrive board has two 

axes: 0 and 1. Each instance has the following parameters: UART handler for the board of 

that axis, axis number and encoder counts. Each instance is created in the main.c function. 

Read and write functions where implemented which send and receive ascii arrays from the 

UART interface, all messages are also relayed to the PC UART interface for debugging. 
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Each axis must be configured with several parameters before calibration, this is done 

with the ODrive_ConfigureParameters function. 

Each axis needs to be calibrated before use; this is done by the ODrive_FullCalibra-

tionSequence function. After calibration, the axes can be set to several states with the 

ODrive_RequestState function. All possible states are described in ODrive-fw-v0.4.11\Ar-

duino\ODriveArduino\ODriveArduino.h . The two states of interest for this project are 

AXIS_STATE_FULL_CALIBRATION_SEQUENCE which is used by the ODrive_Full-

CalibrationSequence  function, and AXIS_STATE_CLOSED_LOOP_CONTROL which 

starts the current field oriented control used in the edge balancing control loop. 

During the edge balancing control loop, the wheel speed feedback is read with 

ODrive_getFeedback and the current reference is updated by ODrive_UpdateCurrent. 

Finally, some utility functions are ODrive_GetVoltage which reads voltage and relays to 

PC interface, ODrive_isCalibrationOk checks if the axis is already calibrated to avoid re-

calibration, ODrive_Reboot is for rebooting the board and ODrive_SaveConfiguration is for 

saving the last configuration in the board nonvolatile memory. 

Note: the two ODrive boards present in the cube have a slightly different firmware ver-

sion. ODrive labeled as 0 has version 0.4.11, its documentation can be found here or at 

ODrive-fw-v0.4.11. ODrive labeled as 1 has version 0.4.12, its documentation can be found 

here or at ODrive-fw-v0.4.12. No difference in functionality was observed between these two 

versions and the boards are controlled with the same driver. 

8.3.2.5. MPU6050 Accelerometer and Gyroscope Library 

Each IMU is defined as a configuration structure. This structure captures the I2C handler 

used to communicate with it, the I2C address (either 0x68 or 0x69, configured by setting 

pin AD0 to 0 or 1 respectively), peripheral configuration such as accelerometer and gyro 

dynamic range, and clocks. Three other parameters are defined for this project. These are 

the calibration offset for each axis for the accelerometer and gyro measurements, the rotation 

matrix such that the outputs when reading the accelerometers are aligned to the reference 

frame of the cube, and the XYZ position in the cube frame of reference. Section 8.5 shows 

how all these values are obtained. 
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All IMUs and their corresponding parameters are defined during code initialization. The 

main functions of these library are: MPU6050_Config(MPU_ConfigTypeDef *MPU_ID) which 

configures each IMU with most of the configuration parameters, MPU6050_Set_rotMatrix 

which writes the rotation matrix, and MPU6050_Get_InertialData which reads XYZ accel-

erometer and gyro values for a particular IMU and outputs it using the IMU data structure 

also defined in this library. 

8.3.2.6. Edge Balancing Control Loop 

This function gets called by the main loop with the ‘l’ command or by pressing the digital 

button after calibration is done. This is the only function that turns the digital button LED 

green, therefore indicating when the loop is on. 

This function requires to execute a control algorithm every 30ms. This is achieved by 

raising a flag at this period using TIMER 6 while the control loop is polling such flag. This 

timer is connected to the APB1 clock bus at 90MHz, therefore by setting a prescaler of 8999, 

a counter period of 299 and enabling interruptions, we get a call to HAL_TIM_Peri-

odElapsedCallback(TIM_HandleTypeDef *htim) every 30ms, where the flag is raised and can 

be read by the control loop. 

The detailed description of the control algorithm is presented in Section 10. 

8.4. IMU I2C Bus Crashing 

As it can be seen in Figure 47, the 4 IMUs are connected to 2 I2C buses. IMUs 0 and 1 

are connected to I2C1 bus while IMUs 2 and 3 are connected to I2C2 bus. IMUs that share 

the same I2C bus are set to a different I2C addresses by setting AD0 pin to 3.3V (sets address 

to 0x68) or 0V (sets address to 0x69). 

This bug was seen as follows: while reading all IMUs values, if any ODrive motor torque 

control loop was turned on, suddenly the two IMUs that share the same I2C bus started 

sending the same constant value. 

Figure 76 shows the moment the I2C1 bus crashes highlighted in red, this figure shows 

a console output of all 4 IMUs 3 accelerometer and 3 gyro values, they are ordered as follows: 

AX1, AY1, AZ1 - GX1, GY1, GZ1 # AX2, AY2, AZ2 - GX2, GY2, GZ2 # AX3, AY3, AZ3 
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- GX3, GY3, GZ3. Figure 77 shows the moment the I2C2 bus crashes too, while the ODrive 

control loop is running. 

 

Figure 76 – I2C1 bus crash, seen as the two IMUs reading a constant value. 

 

Figure 77 - I2C2 bus crash, seen as the two IMUs reading a constant value. 

The cause of this error is shown in Figure 78, where the SDA pin is stuck low during 

communication. This was caused by one of the IMUs holding this pin low without releasing 

it, this can happen because the I2C any device can pull the SDA pin down, but no device 

can pull it back up as shown in Figure 79. 

 

Figure 78 – I2C Logic Analyzer plot. Bus crash and fix. 

The logic analyzer debugging was performed using a HiLetgo USB Logic Analyzer using 

PulseView software. 

The solution was found in Section 3.1.16 – Bus Clear from UM10204 I2C-bus specifica-

tion and user manual. This section mentions that “If the data line (SDA) is stuck LOW, the 
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master should send nine clock pulses. The device that held the bus LOW should release it 

sometime within those nine clocks.”. This solution can be seen in Figure 78. 

The software implementation of this solution is as follows: 

1. Try sending I2C address. If error callback is called, retry this line. 

2. Try receiving I2C data. If error callback is called. Retry starting from previous line. 

The error callback performs the following steps to unblock the I2C bus: 

1. De-initialize the I2C bus. 

2. Initialize SCL pin to GPIO. 

3. Manually clock the pin 9 times. 

4. De-initialize SCL pin from GPIO. 

5. Initialize the I2C bus. 

 

Figure 79 – I2C Bus Topology. 

Given that this bus crash occurs while the ODrive control loop is running, the source of 

this error is probably interference generated by the ODrive, either at the power lines or 

signal lines. Possible hardware solutions for this problem include: 

 Selecting an IMU with a more robust interface such as SPI. 

 Twisting signal lines with ground. 

 Signal cable shielding. 

 Fix ground loops. 

 Signal isolation with capacitive couplers. 
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8.5. IMU Calibration 

The MPU6050 presents a constant bias in the acceleration and angular velocity meas-

urements. These biases are present in each measurement axis and are a constant value added 

to the measurement signal. 

Sensor calibration is performed at a stationary condition. In this condition, gravity is 

present in the accelerometer measurement while zero values are expected for the angular 

velocity measurement. This leads to two different approaches to calibrate each measurement 

type, shown in the following two sections. 

8.5.1. Accelerometer Calibration Method 

To calibrate each axis, two measurements with different gravity direction are used. One 

with gravity in the positive direction of the axis and the other in the negative. 

The following equations show the example for the X axis. Each value in Table 18 corre-

sponds to the average of 1000 measurements with the sensor stationary. 

Variable Value Unit 

𝑨𝒙 𝑼𝒏𝒄𝒂𝒍(𝒈 ) 964 mG 

𝑨𝒙 𝑼𝒏𝒄𝒂𝒍(𝒈 ) 1052 mG 

Table 18 - Uncalibrated Measurements X Axis. 

Equation (56) shows method for calculating bias value. 

 
𝐴𝑐𝑐𝐵𝑖𝑎𝑠 =

𝑨𝒙 𝒖𝒏𝒄𝒂𝒍(𝒈 ) + 𝑨𝒙 𝒖𝒏𝒄𝒂𝒍(𝒈 )

2
 (56) 

Variable Value Unit 

𝑨𝒄𝒄𝑩𝒊𝒂𝒔𝒙 -44 mG 

Table 19 – Calibration Offset. 

Equation (57) shows the method used to subtract the bias value. 

 𝐴  = 𝐴  − 𝐴𝑐𝑐𝐵𝑖𝑎𝑠  (57) 
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8.5.2. Gyroscope Calibration Method 

Given that the nominal output of the sensor in stationary condition is zero, calibration 

of this measurement consists of averaging 1000 measurements with the sensor stationary. 

 𝐺𝑦𝑟𝑜𝐵𝑖𝑎𝑠 = 𝜔𝒙 (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦) (58) 

Equation (59) shows the method used to subtract the bias value. 

 𝜔  = 𝜔  − 𝐺𝑦𝑟𝑜𝐵𝑖𝑎𝑠  (59) 

8.5.3. All IMUs Accelerometer and Gyroscope Simultaneous 

Calibration Method 

The cube’s 4 IMUs were calibrated simultaneously mounted in the assembled cube. 

 Measurements taken: 

o 6 measurements, each measurement with a different cube face laying on a flat 

surface as shown in Table 20. The raw data files are then named X+, X-, Y+, 

Y-, Z+, Z-. 

 Data recorded in each measurement: 

o All IMU outputs of the 4 IMUs (XYZ acceleration and angular velocity) 

o Number of samples: 1000. 

Data processing code found in Appendix A, this code arranges the data in a 4 dimensional 

matrix with ID, value measured, test gravity coordinate, test gravity direction. With this, 

the calculations shown in 8.5.1 and 8.5.2 are performed to obtain calibrations of the accel-

erometer and gyro respectively. Finally, it generates a calibration C code that is ready to 

paste into the source code and will load the corresponding calibration values to the IMUs 

following the library format. 
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 X Y Z 

+ 

 

- 

Table 20 - Cube IMU Calibration Measurement Positions. 

8.5.4. IMU Rotation Matrices 

The IMU rotation matrices were found by first configuring all rotations matrices to the 

identity matrix, setting the cube to a known orientation, record the measured gravity direc-

tion and then adjust the matrix coefficients such that the output matches the expected 

direction. This process was done for all axes. 

8.5.5. IMU Coordinates and Numbering 

The IMU coordinates are defined in the cube reference frame as defined in the CATIA 

model, the numbering is defined as shown in Figure 80. Table 21 shows the coordinates 

obtained from the CATIA model. Appendix B shows the MATLAB code that generates the 

calibration C code from this excel table. 
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Figure 80 – Cube Coordinate System and IMU Numbering. 

ID X [mm] Y [mm] Z [mm] 
0 148.1 112.94 19.2 
1 27.84 148.1 122.8 
2 125.95 13.95 148.1 
3 26.06 15.2 6.9 

Table 21 – IMU Coordinates. 
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9. System Model Identification 

The goal of this system identification procedure is to find the state space matrices of the 

linear model of the system presented in Section 4.1.3. The state space model is given by: 

 
�̇�(𝑡) = 𝐴 𝑿(𝑡) + 𝐵 𝑢(𝑡)

𝒀(𝑡) = 𝐶 𝑿(𝑡) + 𝐷 𝑢(𝑡)
 (60) 

Where the input, output and state vectors are: 

 

𝑿(𝑡) = 𝒀(𝑡) =
𝜃
�̇�

𝜔
, 𝑢(𝑡) = 𝑖 (61) 

And state space matrices: 

 

𝐴 =

⎣
⎢
⎢
⎢
⎡

0 1 0
𝑘

𝐼
0 0

−
𝑘

𝐼
0 0

⎦
⎥
⎥
⎥
⎤

, 𝐵 =

⎣
⎢
⎢
⎢
⎡

0

−
𝑘

𝐼
𝐼 + 𝐼

𝐼 ∙ 𝐼
𝑘

⎦
⎥
⎥
⎥
⎤

, 𝐶 =
1 0 0
0 1 0
0 0 1

,

𝐷 = [0] 

(62) 

The following sections obtain values for the state space matrices. 

 Section 9.1: 𝑘  

 Section 9.2: 𝐼  

 Section 9.3: 𝐼 , 𝑘  

9.1. Motor Characterization 

The motor characteristic parameters are its resistance 𝑅 and motor constants 𝑘 . The 

resistance is measured by the ODrive motor driver to be 𝑅 = 0.1 Ω. To measure the motor 

constant 𝑘 , a simultaneous measurement of the voltage amplitude generated at a given 

speed shall be performed while the motor is freely spinning. 

 
𝑘 =

𝑉

𝜔
 (63) 
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The simultaneous measurement of 𝑉 and 𝜔 is performed by measuring the voltage across 

any two motor leads with an oscilloscope with the following procedure: 

1. Set motor driver to maximum speed 

2. Turn off motor driver and set outputs to high impedance 

3. Capture the instant the driver is turned off and the first freely spinning electrical 

oscillation. 

Figure 81 shows the result of this experiment, the oscillation voltage amplitude is 𝑉 =

11.9𝑉 and the period is 𝑇 = 1.2𝑚𝑠. 

𝜔  is calculated by considering that the motor has 12 pole pairs, therefore one me-

chanical period generates 12 electrical periods at the motor terminals, therefore: 

 
𝜔 =

2 𝜋

𝑇 ∙ 12
= 436

𝑟𝑎𝑑

𝑠
 (64) 

The motor speed constant 𝑘 [𝑉𝑠] and motor torque constant 𝑘  are theoretically 

equal given that 𝑉 𝑠 =  𝑠 =
 

𝑠 = = . Therefore 𝑘  and 𝑘  are: 

 
𝑘 =

11.9 𝑉

436
𝑟𝑎𝑑

𝑠

= 0.027 [𝑉𝑠], 𝑘 = 0.027 
𝑁𝑚

𝐴
 (65) 
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Figure 81 – Motor Constant Measurement. 

9.2. Reaction Wheel Inertia Measurement 

The reaction wheel inertia is measured by accelerating the wheel using the motor at a 

constant current and measuring the acceleration produced. The equation of motion of  this 

experiment is: 

 
𝐼 �̇� = 𝑘  𝑖 (66) 

Where 𝐼  is the wheel inertia, �̇�  wheel acceleration, 𝑘  motor torque constant and 𝑖 is 

the motor current. The measurable parameters are the wheel acceleration �̇�  and the motor 

current 𝑖. Both variables are read by the ODrive motor driver. With this measurement, the 

motor constant to wheel inertia quotient is calculated as follows: 

 �̇�

𝑖
=

𝑘

𝐼
 (67) 
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9.2.1. Method 

The wheel acceleration was measured for a series of currents as shown in Table 22. At 1 

second, the current is set to 1A to take the wheel to maximum velocity and start the char-

acterization measurement currents. 

The current setpoints are alternating between negative and positive to take the wheel 

from negative maximum velocity to positive maximum velocity (or vice versa) to measure 

the wheel acceleration for a given current both during wheel deceleration and wheel acceler-

ation. 

Time [s] Current Setpoint [A] 

0 0 

1 1 

5 -0.3 

25 0.5 

35 -0.7 

45 1 

50 -2 

53 3 

56 -5 

58 10 

60 0 

Table 22 – Wheel acceleration experiment current setpoints. 

Figure 82 shows the unprocessed data acquired in the experiment, wheel speed and motor 

current. After applying each setpoint, enough time is given for the wheel to fully decelerate, 

fully accelerate and stabilize at maximum velocity. The slope of the curve changes noticeably 

while going from deceleration to acceleration (zero velocity crossing) for each current set-

point. 

Figure 83 shows wheel acceleration and motor current. The acceleration difference be-

tween acceleration and deceleration is also visible. 
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Figure 82 – Wheel Speed and Motor current vs time. 

 

Figure 83 – Wheel Acceleration and Motor current vs time. 



  
9. SYSTEM MODEL IDENTIFICATION 116 

 

 

Figure 84 – Wheel acceleration to motor current quotient vs time. 

Figure 84 shows the wheel acceleration to motor current quotient calculated for every 

point in time. The calculated quotient is valid while the wheel is accelerating or decelerating. 

When the motor reaches maximum velocity, this quotient is zero and it is not valid for this 

characterization. This quotient is larger during deceleration and smaller during acceleration. 

For larger currents, the deceleration quotient decreases, and the acceleration quotient in-

creases, decreasing the difference between them. The values appear to converge to a value 

shown with a red line, and for 10A, there is no measurable difference between both cases. 

Therefore, the parameter is estimated to converge at: 

 �̇�

𝑖
=

𝑘

𝐼
= 270

1

𝐴 𝑠
 (68) 

Finally, the reaction wheel inertia is estimated as: 

 

𝐼 = 𝑘
𝑖

�̇�
=

0.027
𝑁𝑚

𝐴

270
1

𝐴 𝑠

= 1.01 × 10  𝑘𝑔 𝑚  (69) 

To check if this measurement is within an expected value, the inertia of the reaction 

wheel alone is calculated in CATIA, considering PLA density, we get an inertia of 
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 7.59 × 10 𝑘𝑔 𝑚 , which is lower than measured. This can be explained considering the 

measurement also includes the inertia of the motor rotor. 

 

Table 23 – CATIA Reaction wheel inertia estimation. 

Other methods of measuring inertia can also be used such as using a torsional pendulum. 

9.3. Cube Inertia Estimation 

The goal of this test is to estimate the cube inertia around an edge of interest with 3 

measurements: 

1. Hang the cube and measure oscillation frequency 

2. Mass 

3. Center of mas distance to edge 

9.3.1. Model 

The equation of motion of the cube hanging is described by Equation (29), which is the 

same equation of motion of the inverted cube with a sign flip to the gravity toque term. 

 
𝐼 ∙ �̈� = −𝑀  𝑔 𝑑 ∙ 𝜃 (70) 

Where 𝐼  is the cube inertia, 𝜃 cube angle, 𝑀  cube mass, 𝑑  cube center of mass dis-

tance to edge and 𝑔 gravitational acceleration. The solution to this equation is given by: 
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𝜃(𝑡) = 𝐴 sin(2𝜋𝑓 𝑡) (71) 

where 𝐴 is the amplitude, 𝑓 is the oscillation frequency and 𝑡 time. 

Substituting this solution into Equation (70) and solving for 𝐼  we get: 

 
𝐼 =

𝑀  𝑔 𝑑

(2𝜋𝑓)
 (72) 

9.3.2. Method 

9.3.2.1. Oscillation Frequency 

The cube is hung by a hook to a V profile beam which acts as a pivot between to support 

positions, as shown in Figure 85. 

 

Figure 85 – Cube Hanging Test Method. 

The cube is manually set to an inclined position and let go. The angular velocity over 

time during oscillation is recorded. The oscillation frequency is estimated from this meas-

urement. 

Figure 86 shows the recorded angular velocity of the cube over the duration of the ex-

periment. 
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Figure 86 – Hanging Cube Test Recorded Data. 

Figure 87 shows the amplitude spectrum of the recorded data. The peak of this plot is 

used to measure the oscillation frequency. 

 

Figure 87 – Hanging Test Amplitude Spectrum. 

An oscillation frequency of 1.32 𝐻𝑧 was measured, giving an estimation of this parameter 

as shown in Equation (73). 

 𝑘

𝐼
= (2𝜋 1.32 𝐻𝑧) = 68.8

1

𝑠
 (73) 
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9.3.2.2. Mass 

The cube is weighed in a digital scale, showing a mass of 1.337 𝑘𝑔. 

 

Figure 88 - Cube Weight. 

9.3.2.3. Center of Mass Distance to Edge 

This distance is measured by measuring dx and dy as shown in Figure 89. These distances 

are measuring by manually finding the balancing position of the cube around a line. 

 

Figure 89 – Center of Mass Location Estimation. 

The estimated dx and dy where 79.4𝑚𝑚 and 75.4𝑚𝑚 respectively, giving an estimation 

for 𝑑  of 109.5𝑚𝑚. 
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9.3.3. Result 

From the three measurements and Equation (72), the inertia is estimated as: 

 
𝐼 = 0.02086 𝑘𝑔 𝑚  (74) 

The gravity torque constant is estimated as: 

 
𝑘 = 1.434 𝑁𝑚 (75) 
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10. Edge Balancing Control System 

Implementation & Tunning 

10.1. Single Edge Balancing 

This section describes the controller algorithm to balance the cube on a single edge and 

the methods used to measure the required feedback variables. 

As described in Section 4.1.5, the balancing control system is a discrete time linear quad-

ratic regulator. During the first tests, Equation (28) was implemented and it was observed 

that the cube stabilized with a steady state constant wheel speed, when a zero speed is 

desirable. As shown in [1], this is because of a constant offset present in the 𝜃 measurement. 

To account for this, the term 𝜃[𝑘] in the feedback equation was changed to 𝜃 [𝑘] − 𝜃 [𝑘] 

to estimate and subtract this offset, where 𝜃  is the estimated angle. 

 
𝑢[𝑘] = 𝐾 (𝜃 [𝑘] − 𝜃 [𝑘]) + 𝐾 �̇�[𝑘] + 𝐾 𝜔 [𝑘]  (76) 

This variable has the following dynamics: 

 
𝜃 [𝑘] = (1 − 𝛼 )𝜃 [𝑘 − 1] + 𝛼  𝜃 [𝑘] (77) 

After iteration with the real system, 𝛼 = 0.001 was selected, giving a stable system. 

It can be shown that 𝜃  converges to the constant offset in the steady state. Consider 

the measured 𝜃 consisting of a real 𝜃  and a constant offset 𝑑 as shown here: 

 
𝜃 = 𝜃 + 𝑑 (78) 

The steady state equations are: 

 
�̅� = 𝐺 �̅� − 𝐻 𝐾 �̅� − 𝐻 𝐾 (𝑑 − 𝜃  ) (79) 

 
𝜃  = (1 − 𝛼 )𝜃  + 𝛼  (𝜃 + 𝑑) (80) 

Solving for �̅�  and 𝜃   we get: 
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�̅� = −(𝐼 − 𝐺 + 𝐻𝐾) 𝐻𝐾 (𝑑 − 𝜃  ) 

𝜃

�̇�  
𝜔  

=
0
0
ℎ

(𝑑 − 𝜃  ) (81) 

 
𝜃  = 𝜃 + 𝑑 (82) 

Where ℎ ≠ 0. Therefore, we get that: 

 
𝜃

�̇�  
𝜔  

=
0
0
0

, 𝜃  = 𝑑 (83) 

The discrete control period is set to 𝑇 = 29.55𝑚𝑠 and is verified by measuring the com-

munication signals using a logic analyzer as shown in Figure 90. 

The controller feedback constants are obtained by first discretizing the continuous state 

space model and obtaining the discrete state space matrices using the c2c() MATLAB func-

tion and the zero order hold method. 

 
�̅�[𝑘 + 1] = 𝐺 �̅�[𝑘] + 𝐻 𝑢[𝑘] (84) 

 

𝐺 =
1.0302 0.0298 0
2.0528 1.0302 0

−2.0528 −0.0302 1
, 𝐻 =

−0.0006
−0.0386
7.9381

 (85) 

Finally, the controller feedback constants are obtained by using the dlqr() MATLAB 

function with the discrete system space model and the following weight matrices: 

 

𝑄 =
1 0 0
0 1 0
0 0 1

, 𝑅 = 10000 (86) 

 

𝐾 =
𝐾
𝐾
𝐾

=

−120.6415 A/rad
−14.5543 A/(rad/s)

−0.0075231 A/(rad/s)
 

(87) 
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Figure 90 – Digital Control Loop Period Measurement using logic analyzer on commu-

nication signals. 

The wheel speed state 𝜔  is measured by the ODrive board and is read by the microcon-

troller using the UART interface. The STM32 microcontroller sends the request feedback 

command f %d\n, where %d is the axis used either 0 or 1, and receives two floating point 

numbers corresponding to the wheel position and speed respectively. The units received are 

in encoder counts and are converted to 𝑟𝑎𝑑/𝑠 by dividing by the encoder resolution and 

multiplying by 2𝜋. 

The cube angular velocity state  �̇� is measured by the MPU6050 and read by the micro-

controller using the I2C interface. The received value is a digital number corresponding to 

the angular velocity multiplied by a scaling factor configured during peripheral initialization. 

With this scaling factor, the digital number is converted to 𝑟𝑎𝑑/𝑠. 

The cube angle state 𝜃 is estimated by the combining the acceleration and gyroscope 

measurements from the MPU6050 using the following complementary filter: 

 
𝜃 [𝑘] = 𝛼 𝜃 [𝑘] + (1 − 𝛼) 𝜃 [𝑘] (88) 
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Where 𝜃  is the estimated angle used by the feedback loop, 𝜃  is the estimated angle 

using accelerometer measurements, 𝜃  is the estimated angle using gyro measurements 

and 𝛼 ∈ (0, 1) is the term weight parameter. 

The sensor fusion algorithm is used to compensate the following undesirable effects on 

the measurement of the gravity vector: inherent sensor noise, vibrations from reaction wheel 

spinning and induced accelerations due to motion of the cube. Estimating the angle by 

integrating gyroscope measurements is immune to these problems at the cost of integrating 

the sensor bias, which will result in accumulating error over time. Therefore, the sensor 

fusion algorithm consists in combining the accelerometer and gyroscope estimations of angle, 

keeping the low frequencies of the accelerometer and the high frequencies of the gyroscope. 

𝜃  is calculated by numerically integrating the last measured angular velocity �̇� start-

ing from the last estimation of the cube angle 𝜃  using the controller period 𝑇, as follows: 

 
𝜃 [𝑘] = 𝜃 [𝑘 − 1] + �̇�[𝑘] ∙ 𝑇 (89) 

Figure 92 shows how 𝜃  is calculated by calculating the gravity direction in IMU coor-

dinates  𝜃 , and then subtracting that angle from the gravity direction in the stable posi-

tion 𝜃 , shown as follows: 

 
𝜃 [𝑘] = 𝑎𝑡𝑎𝑛2 𝑔 [𝑘], 𝑔 [𝑘]  (90) 

 
𝜃 [𝑘] =   𝜃 − 𝜃 [𝑘] (91) 

Figure 91 shows the comparison of these methods. The high noise of the accelerometer 

measurements and the bias integration of the gyro can be seen. The sensor fusion accounts 

for these two problems to generate a better approximation of the cube angle. 

The filter constant 𝛼 is selected such that the filter will converge to 95% of the acceler-

ation value for 0 gyroscope input after 1 second. The equation for this case is: 

 
𝜃 [𝑘] = 𝛼 𝜃 [𝑘] + (1 − 𝛼) 𝜃 [𝑘 − 1] (92) 

Considering an initial value for 𝜃 [0] = 1 and 𝜃 [𝑘] = 0, ∀ 𝑘, the 𝑘th value for 𝜃  is: 

 
𝜃 [𝑘] = (1 − 𝛼)  (93) 
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1 second at 𝑇 = 29.55𝑚𝑠 takes 34 samples, therefore 𝜃 [34] = 0.05, we then get: 

 
(1 − 𝛼) = 0.05 = 0.9782, 𝛼 = 0.0218 (94) 

 

Figure 91 – Angle Estimation Method Comparison. 

 

Figure 92 – Coordinate system and vector definitions for IMU 𝜃  estimation. 
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Finally, the calculated controller current output 𝑢[𝑘] is sent to the ODrive current con-

trol loop as a reference value using the UART interface. The microcontroller sends update 

current command c %d %.3f\n, where %d is the axis used either 0 or 1 and %.3f is the new 

current value sent as a floating point value. 

10.2. Any Edge Balancing 

This section presents the steps required to balance the cube on any edge. A high level 

description of the steps is presented first, followed by a detailed description of each. The 

steps are: 

1. Identify to which edge is gravity closest. 

2. Identify the axis corresponding to that edge. 

3. Select the IMU closest to that edge as the source of acceleration and gyro measure-

ments. This is to reduce rotational accelerations induced on the accelerometer meas-

urement. 

4. 𝜃 Measurement: Calculate theta on the plane perpendicular to that axis and sub-

tract from the stable direction corresponding to that edge. 

5. �̇� Measurement: Get this value from the selected IMU and the corresponding axis. 

6. 𝜔 Measurement: Select the ODrive Axis corresponding to that axis. 

7. Current Command: Select the ODrive Axis corresponding to that axis. 

10.2.1. Identify Edge Closest to Gravity and Corresponding 

Axis 

Each of the 12 edges is uniquely characterized by the two following properties: 

1. X,Y,Z: Axis to which they are parallel. 

2. 0,1,2,3: Quadrant (on plane perpendicular to the parallel axis) in which they are 

located. 

Also, for each edge, there is a gravity acceleration direction in which the cube center of 

mass will be above the edge. These directions are called stable gravity acceleration directions 

(SD), and point in the opposite direction to the location of the edge. 
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 Figure 93 shows the edge naming for the 4 edges parallel to the cube Z axis. The figure 

also shows the stable gravity acceleration directions (SD) for each edge, and the IMU loca-

tions as seen from this axis. 

 

Figure 93 – Edge Nomenclature Example for Z direction. 

Figure 94 shows the unique identification of all the cube edges following this rule. 

 

Figure 94 - Edge Identification. 

Therefore, in each control loop iteration, the edge closest to the balancing position is 

found by measuring the angle between the gravity direction at that instant and the 12 stable 

directions for each edge. When an angle of less than 10° is measured, that edge is selected 

with its corresponding axis. If no stable direction is within this range, the controller outputs 

0A as current reference. Appendix C shows the C code implementation of this algorithm. 
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The matrix axis_quadrant_to_stableDirectionVector is generated with the MATLAB code 

presented in Appendix D. 

10.2.2. Select IMU for corresponding edge 

As shown in the C code in Appendix C, the IMU is selected from the axis_quad-

rant_to_IMU_ID matrix. This matrix is generated by the MATLAB code in Appendix E. 

This code takes as input the coordinates of each IMU and assigns it to the closest edge. 

Figure 95 shows a graphical representation of the algorithm in Appendix E. Each IMU 

is connected to the 3 edges to which they correspond with a line of two sections, one section 

of the line is the radial distance perpendicular to the axis and the other section is the longi-

tudinal distance parallel to the axis. 

 

Figure 95 – IMU Selection for each corresponding edge. 
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11. Edge Balancing Test Results 

The edge balancing was tested under two conditions: Steady state balancing and impulse 

disturbances. These tests are described in the following sections. 

11.1. Steady State Balancing 

Figure 96 shows the recording of the states of the system during this test, where the cube 

is balancing over its edge in steady state with no external torques being applied for 11 

minutes. 

 

Figure 96 – Steady State Edge Balancing. States Recording over time. 
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This test is performed as follows: with the control system turned off, manually take the 

cube as close as possible to the vertical position, then turn on the control system and let the 

cube go, record the cube states. 

The cube successfully balanced for 11 minutes. In the theta offset plot from Figure 96, 

it can be seen how the filter starts at 0 and converges to the offset value after about 90 

seconds. 

The angle of the cube 𝜃 moves randomly around the offset position. The standard devi-

ation of this motion is measured at 0.25°. This motion is mainly attributed to the static 

friction and torque ripple from the motor.  

11.2. Impulse Disturbance 

This test is performed as follows: with the control system turned off, manually take the 

cube as close as possible to the vertical position, then turn on the control system and let the 

cube go. Wait for theta offset to stabilize, hit the cube to create a torque impulse, wait for 

the cube to recover and hit again. Repeat 7 times. 

Figure 97 shows the results of this test. Each hit is marked with a red arrow. The test 

shows the cube can stabilize after small hits. Larger hits will tip the cube away from the 

stable condition. It can also be seen that the theta offset reacts to the hits and follows theta 

as it is stabilized. 

The third hit, marked by the third arrow from the left, is compared to the response of 

the linear system in Figure 98. The comparison starts at the start time of the impulse in the 

test data. The states of the cube at this instant in time are fed as initial state conditions for 

the linear system and then the simulation is ran. The linear system follows closely the real 

system for the first 250ms and then they start to deviate. This deviation is mainly attributed 

to the motor static friction and torque ripple. This effect can be seen in Figure 84 from 

Section 9.2, where the motor and wheel equation 𝐼  �̇� = 𝑘  𝑖 does not hold and varies de-

pending on the wheel speed and direction. 
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Figure 97 – Edge balancing with external impulse torques applied. 
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Figure 98 – Impulse Response Comparison, Test data vs Linear System Simulation. 
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Starting with the battery fully charged, the cube was able to stabilize on its edge for 5 

hours 10 minutes before battery went below 14V threshold, considered as discharged. Con-

sidering a battery capacity of 1300 mAh, the average current drawn was 252 mA, and con-
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12. Final Product Part List 

Table 24 lists all the parts present in the final cube assembly. 

 Name Q Part Number Provider U/P Total 

Motor 

Drive 

System 

Motor 0,1 2 T-MOTOR MT4008 KV380 Amazon 37.99 75.98 

Motor 2 1 SunnySky V4008 KV380 SunnySky 59 59 

Encoder 0,1 2 AS5047P Digikey 16.76 33.52 

Encoder 2 1 AS5147P Mouser 15.75 15.75 

Motor Driver 

Board 

2 ODrive V3.6 ODrive 137.9 275.8 

Inertial 

Sensing 

IMU 4 MPU6050 AliExpress 2.6 10.4 

Digital 

System 

Microcontroller 1 STM32 NUCLEO-F446RE Mouser 15 15 

Breadboard 

Wires 

1 Breadboard Jumper Wires Ribbon Cables Amazon 8 8 

Pushbutton LED  1 612-SV7F23SS-6G1 Mouser 13.74 13.74 

Battery 

System 

Battery 1 Ovonic 14.8V 1300mAh 100C 4S LiPo Battery Amazon 18 18 

Battery Straps 1 iFlight 5pcs RC LiPo Battery Straps 10x100mm Amazon 7 7 

Battery Charger 1 Enegitech Battery Charger for 14.8V 4S LiPo Amazon 25.99 25.99 

Step Down 1 Buck Converter 6-24V to 5V 1.5A Step-Down Amazon 10 10 

Connectors 1 4pcs XT60 Plug Male Female Connector Amazon 9 9 

Connectors 1 5 Pairs T Plug Connector Female and Male Amazon 10 10 

Connectors 1 Vanka JST-XH 4S Connector Adapter Amazon 10 10 

Rocker Switch 

SPDT 

1 611-CM101J12S205QA Mouser 1.05 1.05 

Mechanical 

Assembly 

Panels 6 3D Printed    

Reaction Wheel 3 3D Printed    

Arm 3 3D Printed    

Screw 30 Countersunk M3X20    

Screw 8 Countersunk M3X10    

Screw 12 Cap M3X20    

Screw 12 Cap M3X8    

Screw 24 Cap M2.5X8    

Nut 27 M3 Steel    

Nut 23 M3 Nylon    

Total: 598.23 

Table 24 – Final Product Part List. 
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13. User Manual 

13.1. Operation 

Always keep fingers away from wheels. 

1. Turn on battery switch. (See Figure 99). 

2. Check if digital switch red LED is on (see Figure 100). 

a. If red LED does not turn on, the cube needs battery charging. 

3. CALIBRATE: Press and release the digital button once, this will start encoder 

calibration procedure. Digital switch LED will stay red. 

4. Wait for completion of the automatic calibration procedure, the cube will automat-

ically: 

a. Perform a beep sound. 

b. Slowly spin wheels in one direction for about one revolution. 

c. Slowly spin wheels in the other direction for about one revolution. 

d. Wheels stop. Calibration procedure finished. 

5. TURN ON BALANCING CONTROL SYSTEM: Press and release the digital but-

ton. The LED should change to green, if LED stays red, turn off battery switch 

and start again. 

6. Cube is now ready to balance on any edge. 

7. Place any edge on the table and manually position the cube close to the vertical 

balancing position 

8. When the cube is close to the stable position, the control system will turn on and 

start balancing. 

9. If the cube is far away from any stable position, the control system is turned on 

and all wheels spin down to zero. 

10. Turn off cube after usage by turning the battery switch off. 
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Figure 99 – Battery Switch. 

 

Figure 100 - Digital Switch – LED Modes. 

13.2. Battery Charging 

1. Set Energitech e430 battery charger to LiPo and 1A. (see Figure 101) 

2. Connect the female-female JST-XH 5-pin cable to the Energitech e430 and the cube 

male ports. 

3. Connect the dual-banana to T-plug cable to the Energitech e430 and the cube. 

4. Figure 103 shows how these two cables should be connected. 

5. Connect the Energitech e430 to mains voltage. (110V-240V) 

6. Charge Status LED should turn solid red, this indicates battery is charging. 

7. Wait for full charge. Charge Status LED turns green when charging complete. 

8. Disconnect Energitech e430 from mains voltage. 

9. Disconnect all cables from cube. 

10. Cube is fully charged and ready to use. 
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Figure 101 - Energitech e430. Charging (left). Charged (right). 

 

Figure 102 - Dual-Banana to T-plug (top). Female-Female JST-XH 5-pin (bottom). 

 

Figure 103 – Cube Charging Cable Connection. 

Appendix A. – IMU Calibration MATLAB Code 
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%% Load Calibration Data 
coordLetter = ['x' 'y' 'z']; 
sign = ['+' '-']; 
A = cell(3,2); % coord, sign 
for i = 1:length(coordLetter) 
    for j = 1:length(sign) 
        disp(['A{' num2str(i) '}{' num2str(j) '} = load(''' coordLetter(i) sign(j) '.log'');' ]) 
        eval(['A{' num2str(i) '}{' num2str(j) '} = load(''' coordLetter(i) sign(j) '.log'');' ]) 
    end 
end 
%% Parse Data 
IMU = cell(4,6,3,2); % ID, value, coord, sign 
for coord = 1:3 
    for sgn = 1:2 
        data = A{coord}{sgn}; 
        for ID = 1:4 
            for value = 1:6 
                idx = (ID-1)*6+value; 
                IMU{ID}{value}{coord}{sgn} = data(:,idx); 
            end 
        end 
    end 
end 
%% Accelerometer Calibration 
Cal = cell(4,6); 
for ID = 1:4 
    for value = 1:3 
        pos = mean(IMU{ID}{value}{value}{1}); 
        neg = mean(IMU{ID}{value}{value}{2}); 
        Cal{ID}{value} = (pos+neg)/2; 
    end 
end 
%% Gyroscope Calibration 
gyroOffset = zeros(3,2); 
for ID = 1:4 
    for value = 4:6 
        for coord = 1:3 
            for sgn = 1:2 
                gyroOffset(coord,sgn) = mean(IMU{ID}{value}{coord}{sgn}); 
            end 
        end 
        Cal{ID}{value} = mean(mean(gyroOffset)); 
    end 
end 
%% Print Calibration C code 
disp('Calibration C Code:') 
for ID = 1:4 
    for value = 1:3 
        disp(['IMU[' num2str(ID-1) '].Cal.A[' num2str(value-1) '] = ' num2str(Cal{ID}{value}) 
';']) 
    end 
    for value = 4:6 
        disp(['IMU[' num2str(ID-1) '].Cal.W[' num2str(value-4) '] = ' num2str(Cal{ID}{value}) 
';']) 
    end 
    disp(' ') 
end 
 

 

 

Appendix B.  – IMU Coordinates C Code Generation 
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% Load Table 
IMU_Coordinates = readtable('IMU_Coord.xlsx') 
IMU = table2cell(IMU_Coordinates); 
% Generate C Code 
for ID = 1:4 
    for coord = 1:3 
        disp(['IMU[' num2str(ID-1) '].r[' num2str(coord-1) '] = ' num2str(IMU{ID,coord+1}) ';']); 
    end 
end  

Appendix C.  – Stable Edge Selection C Code. 
// Set control mode to zero, check if any axis is within control range, if so, set 
control mode to 1 and save that edge 
control_mode = 0; 
// for every axis 
for(int axis_i=0;axis_i<3;axis_i++){ 
 // for quadrant of the axis 
 for(int quadrant_i=0;quadrant_i<4;quadrant_i++){ 
  // measure the angle with gravity of each stable direction 
  Vector_angle_between(axis_quadrant_to_stableDirectionVec-
tor[axis_i][quadrant_i],g3,&angleWithGravity); 
  // if angle within range 
  if((angleWithGravity>0)&&(angleWithGravity<ControlAngleRange)){ 
   // set control mode 
   control_mode = 1; 
 
   // Save edge number 
   quadrant = quadrant_i; 
   axis = axis_i; 
 
   // Select IMU ID 
   IMU_ID = axis_quadrant_to_IMU_ID[axis][quadrant]; 
 
   // Force Loops Exit 
   quadrant_i=4; 
   axis_i=3; 
  } 
 } 
} 

 

 

 

 

 

Appendix D. – Stable Directions C Code Generation 
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%% Load IMU Location Table 
IMU_Coor = readtable('IMU_Coord.xlsx'); 
  
%% Edges Names and Stable Directions 
l = 155;%mm 
edges_centered = zeros(12,3); 
edgeID = cell(12,1); 
  
axisName = ['Z' 'X' 'Y']; 
  
plane_versors = [ 
    1,2; 
    2,3; 
    3,1]; 
  
quadrant_directions = [ 
    1,1; 
    -1,1; 
    -1,-1; 
    1,-1]; 
  
for axis_i = 1:3 
    versors = plane_versors(axis_i,:); 
    for quad = 1:4 
        edge = quad+4*(axis_i-1); 
        % Name Edge 
        edgeID{edge} = [axisName(axis_i) num2str(quad-1)]; 
        % Edge Stable Directions 
        edges_centered(edge,versors) = quadrant_directions(quad,:); 
    end 
end 
  
% Shift zero centered coordinates to CATIA model coordinates 
edges = (edges_centered+ones(size(edges_centered)))*l/2; 
  
%% Stable Edges Directions 
count = 1; 
for axis_i = 1:3 
    for quad = 1:4 
        for coord = 1:3 
            disp(['axis_quadrant_to_stableDirectionVector[' num2str(axis_i-1) '][' num2str(quad-
1) '][' num2str(coord-1) '] = ' num2str(edges_centered(count,coord)) ';']) 
        end 
        count = count + 1; 
    end 
end 
disp(' ');disp(' ')  

 

 

 

 

Appendix E. – IMU Selection C Code Generation 
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%% IMU Select 
d_vec = zeros(4,2); 
d = zeros(4,1); 
selectedIMU = zeros(12,6); %plane, quadrant, IMU, x,y,z 
selectedIMUrot = zeros(12,5); %plane, quadrant, IMU, x,y 
  
for axis_i = 1:3 
    idx = plane_versors(axis_i,:); 
    for quad = 1:4 
        edge = quad+4*(axis_i-1); 
        for ID = 1:4 
            d_vec(ID,:)=IMU_Coor{ID,idx+1}-edges(edge,idx); 
        end 
        [d,min_idx] = min(sqrt(sum(d_vec.^2,2))); 
        d3_vec = zeros(1,3); 
        d3_vec(1,idx) = d_vec(min_idx,:); 
        selectedIMU(edge,:) = [axis_i-1 quad-1 min_idx-1 d3_vec]; 
        selectedIMUrot(edge,1:3) = [axis_i-1 quad-1 min_idx-1]; 
        switch lower(axis_i) 
            case 1 
                temp = rotz(180-90*(quad-1))*d3_vec'; 
            case 2 
                temp = rotx(180-90*(quad-1))*d3_vec'; 
            case 3 
                temp = roty(180-90*(quad-1))*d3_vec'; 
        end 
        selectedIMUrot(edge,4:5) = temp(idx); 
    end 
end 
  
%% Edge IMU Select - C Code 
M = selectedIMUrot; 
for i=1:length(selectedIMUrot) 
    disp(['axis_quadrant_to_IMU_ID[' num2str(M(i,1)) '][' num2str(M(i,2)) '].ID = ' 
num2str(M(i,3)) ';']) 
end 
  
for i=1:length(selectedIMUrot) 
    disp(['axis_quadrant_to_IMU_ID[' num2str(M(i,1)) '][' num2str(M(i,2)) '].r[0] = ' 
num2str(M(i,4)) ';']) 
    disp(['axis_quadrant_to_IMU_ID[' num2str(M(i,1)) '][' num2str(M(i,2)) '].r[1] = ' 
num2str(M(i,5)) ';']) 
end  
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