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Abstract. Temporal property graph databases track the evolution over
time of nodes, properties, and edges in graphs. Computing temporal
paths in these graphs is hard. In this paper we focus on indexing Con-
tinuous Paths, defined as paths that exist continuously during a certain
time interval. We propose an index structure called TGIndex where index
nodes are defined as nodes in the graph database. Two different indexing
strategies are studied. We show how the index is used for querying and
also present different search strategies, that are compared and analyzed
using a large synthetic graph.
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1 Introduction

Property graphs [1], whose nodes and edges are annotated with properties, are 
used in most graph databases in the marketplace. In practice, these graphs are 
typically static, i.e., they do not change over time. However, in most real-world 
applications, edges, nodes, and properties can be added, deleted, and updated 
as needed. This is addressed in [2], where a model (TGraph) for temporal graph 
databases is proposed. First-class citizens in this model are temporal paths of 
three types: Continuous, Pairwise Continuous and Consecutive paths. Contin-
uous Paths (CPs) are paths valid during a certain time interval. In Pairwise 
Continuous Paths, every pair of adjacent edges has an overlapping time inter-
val. In Consecutive Paths, for every pair of adjacent edges, the time validity of 
one edge ends before the validity time interval of its consecutive one starts. The 
model comes equipped with a high-level SQL-like query language called T-GQL, 
which includes functions to compute the three kinds of paths above. In this work 
we propose to index CPs to improve their computation.

Indexing paths in temporal and non-temporal graphs has been studied to a 
limited extend. Pokorny et al. [7] index graph patterns in Neo4j, using a structure 
stored in the same database as the graph (an approach we follow in this work). 
Huo and Tsotras [5] study the problem of efficiently computing shortest-paths on 
evolving social graphs. The authors use an extension of Dijkstra’s algorithm 
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to achieve this for a time-point or a time-interval. To improve performance of
queries in temporal databases, Elmasri et al. [4] proposed a basic indexing tech-
nique for temporal data that can be combined with conventional attribute index-
ing schemes to process temporal selections and temporal join operations. In [6]
an index structure for temporal attributes is proposed.

In this work we present two index structures for Continuous Paths, one that
indexes all the paths and another one that indexes all paths of length two. In the
latter case, computing the paths of length higher than two requires additional
processing. We show how queries are evaluated using these indices. We also
consider reducing the search space by limiting the time window to consider the
one in which queries will most likely fit. As far as we are aware of, this is the
first proposal for indexing temporal paths on graphs.

Section 2 briefly presents the concepts and definitions in which the present
paper is based. Section 3 presents two index structures and in Sect. 4, we show
how they are used to process T-GQL queries and updates over the temporal
graph. In Sect. 5, we report experimental results. We conclude in Sect. 6.

2 Background

To make the paper self contained, we briefly present the TGraph model.

Definition 1 (Temporal property graph (TGraph) (cf. [2])). A temporal
property graph is a structure G(No, Na, Nv, E) where G is the name of the graph,
E is a set of edges, and No, Na, and Nv are disjoint sets of nodes, denoted
object nodes, attribute nodes, and value nodes, respectively. Every object and
attribute node and every edge are associated with a tuple (name, interval). The
name represents the content of the node or the type of the edge, and the interval
represents the period(s) when a node or edge is (was) valid. Analogously, value
nodes are associated with a (name, interval) pair. For any node n, the elements in
its associated pair are referred to as n.name, n.interval, and n.value. As usual in
temporal databases, a special value Now tells that the node is valid at the current
time. All nodes also have an identifier denoted id. ��

Nodes and edges in G satisfy a collection of temporal constraints. For the sake
of space, we refer the reader to [2]. Figure 1 shows a social network represented
using the model in Definition 1. There are three kinds of object nodes: Person,
City, and Brand. There are also three types of edges: LivedIn, Friend, and Fan. The
first one is labeled with the periods when someone lived somewhere, the second
one with the periods when two people were friends. An edge of type Fan tells
that Peggy Sue-Jones is a Samsung fan since 2005. The temporal attribute node
Name represents the name associated with a Person node. Finally, for clarity, if a
node is valid throughout the complete history, the temporal labels are omitted.

Definition 2 (Continuous Path). Given a temporal property graph G, a con-
tinuous path (CP) with interval T from node n1 to node nk, traversing a relation-
ship r, is a sequence (n1, . . . , nk, r, T ) of k nodes and an interval T such that there
is a sequence of consecutive edges of the form e1(n1, n2, r, T1), e2(n2, n3, r, T2),
. . . , ek(nk−1, nk, r, Tk), T =

⋂
i=1,k Ti. ��



Fig. 1. A temporal property graph.

Continuous paths capture queries like: “Compute the friends of the friends
of each person, and the period such that the relationship occurred through all
the path.” In Fig. 1, for example, Pauline (person node 18) was a friend of Cathy
(person node 28) between 2002 and 2017. Also, Peggy Sue (person node 1) was
a friend of Pauline between 2010 and 2018. Thus, the path (PeggySue

Friend−−−→
Pauline

Friend−−−→ Cathy, [2010, 2017]) will be in the answer.

3 An Index for Continuous Paths: TGIndex

Given a TGraph, the Temporal Out Degree ( tod) of an Object Node n ∈ No, with
relationship r is the number of intervals associated with r coming out from n. The
tod of a node is always equal or greater than its out degree. Given an Object node
n and a length L, the upper bound on the number of CPs is O(todmax

L). If N is
the number of Object nodes then the TGraph may have a maximum number of
CP bounded by O(N ∗ todmax

L). Thus, computing the CPs in a temporal graph
is an expensive operation. To improve performance when computing CPs, we
consider indexing CPs. The idea proposed in this paper builds on [7] together
with typical methods for time indexing [3]. We may reduce the search space if
we knew in advance that queries ask for paths within a time window [t1, t2],
with t1 ≥ t0 (the minimum timestamp in the graph) and t2 ≤ Now. This way
we could index just those CPs. The CPs that exist outside the indexed time
interval could be retrieved combining the Index and the TGraph. We describe
next two indexing approaches denoted TGIndexL and TGIndex2.



Fig. 2. Left: Ix node; Right: TGIndex nodes Meta and Ix.

The TGIndexL Approach. We denote cPath∗
r the set of all the CPs in G with

relationship r. Let cPath∗
r(L, t1, t2) be a subset of cPath∗

r such that the CPs have
a maximum length L and are valid between t1 and t2. We call TGIndexL the
index IrL[t1, t2] containing those cPaths. Each IrL[t1, t2] has N index nodes, each
one corresponding to a cPathi

rL, denoted Ix (source, destination, length, from,
to, intermediate) where: (a) source contains the id of the starting Object node of
cPathi

rL; (b) destination contains the id of the ending Object node of cPathi
rL;

(c) length is the number of hops involved in cPathi
rL, where length ≤ L; (d)

from is the starting time of cPathi
rL; (e) to is the ending time of cPathi

r; (f)
intermediate is an ordered list of the of the id’s of the intermediate Object
nodes cPathi

rL. Each Ix node also has two outgoing edges labeled start and end
that connect it with the starting and ending Object nodes of its corresponding
cPathi

rL, respectively. The Ix nodes are ordered by their starting time from,
their length and by the source attribute. Following [4], Neo4j B-Tree indices on
those properties are created for this. Figure 2 shows a sketch of the proposed
index node. We can see that the TGIndex has two types of nodes: the Ix nodes
(leaves), and the nodes containing metadata (indicated by the META label).
When creating a IrL[t1, t2] we must indicate the time window [t1, t2] to calculate
only cPathr existing between t1 and t2. Figure 3 shows a TGIndex stored in the
same TGraph database (GDB). For clarity, the TGraph shown is an abstraction
of the actual graph, since each node of the graph is actually composed by the
Object, Attribute and Value nodes.

The TGIndex2 Approach. For very large graphs, our experiments showed
that it may take a long time to build TGIndexL, and the required storage space
may be large. Therefore, we propose a second approach, denoted TGIndex2,
that indexes only the CPs of length 2 and then answers the queries by rebuilding
the paths from there. This way, the storage space is reduced and the query time,
although higher than when indexing every possible CP, is lower than when we
compute the paths over the original TGraph. The correctness of the procedure is
based on two CPs properties: (a) Every CP of even length k can be decomposed



Fig. 3. Indexing paths in a temporal graph: GDB and TGIndexL.

in k/2 CPs of length l = 2; (b) Every CP of odd length k cPathr(n1, . . . , nk+1, I)
can be decomposed in a CP of (even) length k−1, cPath′

r(n1, . . . , nk, I
′) and the

last edge ek between nk and nk+l, ek{nk, nk+1}. Here, the intersection between
the intervals of the cPath′

r and the edge interval equals the interval of the
original cPath, ek.I ∩ I ′ = I. Every pair of consecutive edges can be seen as
k − 1 CPs of length 2 of the form cPath1

r(n1, n2, n3, I1), cPath2
r(n2, n3, n4, I2),

cPath3
r(n3, n4, n5, I2), . . . , cPathk−1

r (nk−1, nk, nk+1, Ik−1). Moreover, when k
is even, to rebuild the original path we only need cPath1

r, cPath3
r, ..., which

are the CPs whose destination matches the source of another one. If k were
odd, we can split the CP into two: the one from n1 to nk (of length k − 1),
cPath′

r(n1, . . . , nk, I) and the last edge of the CP, which goes from nk to nk+1.
Since cPath′

r has even length, it can be decomposed into several CPs of length
2. The edge to complete the original path is obtained from the last CP of the
decomposition cPathk−1

r .
Figure 4 illustrates the above. There is an index node for every CP of length

2 valid in a certain time window. Retrieving a CP of length 2 from the index is
straightforward: the index nodes themselves are the answer. To retrieve a path
of even length k, k ≥ 4 we obtain the k/2 index nodes Ix where Ixi .destination =
Ix i+1.source. To improve the performance of queries asking for paths of length
greater than 2, the indexed paths of length 2 are connected to each other by
edges of type :concat, as Fig. 4 shows. An edge between two index nodes Ix 1

and Ix 2 exists if there is a CP of length 4 in G starting at Ix 1.source, ending at
Ix 2.destination, with {Ix 1.destination, Ix 2.source} being the intermediate nodes
of the path, and a validity interval I. This interval, which can be obtained by
the intersection of [Ix1.from, Ix 1.to] and [Ix 2.from, Ix 2.to], is a property of the
:concat edge. The structure of the index node Ix is the same as in TGIndexL
except for the length property, which is no longer required.

To estimate the number of index nodes we must calculate the number of CPs
of length 2. Let M = todmax and N = |No| be the number of Objects nodes in



Fig. 4. Indexing paths in a temporal graph: GDB and TGIndex2

G, then the maximum number of paths of length 2 from a node x is O(M2).
Then, there could be a maximum number of O(N ∗ M2) of index nodes.

4 Using the Index

We explain now how a T-GQL query is executed using the two indexing
approaches in the previous section. We start with TGIndexL and the T-GQL
query:

SELECT paths
MATCH (p1:Person),(p2:Person),
paths = cPath((p1)-[:Friend*4]-> (p2),'2010','2020')
WHERE p1.Name = "Mary"

The query processor first checks if there is an index for the relationship Friend
whose indexing interval includes the query interval. In the example, the query
window time is completely included in the indexed window time. The query is
translated into Cypher as:

MATCH (v1:Value)<--()<--(o1:Object)
WHERE v1.value = "Mary"
CALL graphindex.retrievePaths(o1,null,4,4,'2010','2020',
{EdgeLabel:'Friend', direction:'outgoing'}) YIELD path,interval
RETURN path, interval;

The function graphindex.retrievePaths is added to the Neo4j library, so it
can be included in a Cypher expression.

Using the TGIndex2 approach for the same query, yields the translation:



MATCH (v1:Value)<--()<--(o1:Object)
WHERE v1.value = "Mary"
CALL graphindex.retrievePathsConcat( o1,null,4,4,'2010','2020',
{EdgeLabel:'Friend', direction:'outgoing'} ) YIELD path,interval
RETURN path, interval;

Two index nodes are needed to build a CP of length 4. The validity time of
such path can be obtained directly from the interval in the relationship :concat
(Fig. 4). For queries asking for CPs of length greater than 5, the validity time
of the path can be obtained as the intersection of the intervals of the edges
labelled :concat between the index nodes. If the query asks for a path of odd
length, the procedure is similar but the last edge is obtained from the graph
itself. The function retrievePathsConcat concatenates the connected index
nodes and keeps only those paths whose intersection exist all the way. The time
for retrieving CPs using this index depends not only on the number of indexed
nodes but also on the execution times of the Neo4j pattern matching strategies.
However, navigation through the :concat edges of the index can also be done
in Breadth First Search (BFS) fashion. The BFS strategy starts from all the
index nodes whose source matches the required id. We developed an algorithm
for this second strategy to retrieve paths, denoted retrievePathsBFSConcat,
not shown here for the sake of space.

Strategies for Querying a TGraph using TGIndices. Consider a TGraph G and
a TGIndex over a relationship r with interval Ix = [t1, t2], in any of its imple-
mentations. Given the query QcPathr(source = x, dest = y, Lmin = l1,
Lmax = l2, Iq), there are three possible scenarios: (a) Iq ⊆ Ix: Iq during Ix;
(b) Iq ∩ Ix = ∅: Iq before Ix or Ix before Iq; (c) Iq ∩ Ix �= ∅: Iq overlaps Ix or
Ix during Iq. In the first case, as explained before, the result set R will be fully
provided by the index. In the second, the index could not answer the query at
all and the standard procedure consecutive.continuous described in [2] must
be used. In the last case, the result can be obtained combining the use of the
index and G itself. Depending on whether or not Ix is fully included in the query
interval, it will be necessary to divide Iq into two or, at most, three separate time
intervals. If Ix ⊂ Iq there will be three sub-intervals: the interval before Ix, Ix
itself, and the interval after Ix. Otherwise there will be two sub-intervals.

5 Experimental Evaluation

We compare the performance of the cPath function built-in T-GQL against both
TGindex2 strategies which we called IndexConcat (the one that uses Neo4j’s
pattern matching) and IndexBFSConcat (our BFS algorithm), using two kind
of queries: (a) SO: Source-only CP queries, which obtain all the CPs of a certain
length starting from a given node; (b) P2P: Point-to-Point CP queries, which,
given a source and a destination node, obtain all the CPs between them. We
discarded the TGIndexL strategy since the index sizes and building times were
very high for our graph. We created a synthetic TGraph representing a social



Table 1. TGraph: tod & #CPs starting from selected Object Nodes.

id 172 307 19 13 448 409 65779

tod 1396 55 57 50 37 29 28

#cPaths by length 2 151 136 108 64 61 6 1

3 1747 701 1209 703 722 10 23

4 4212 3375 2683 1509 1436 19 59

5 19464 15835 12419 0 6590 71 317

6 89037 73353 57067 0 30775 291 1499

7 409741 337693 261294 0 142791 1294 6560

8 1880151 1558243 1201237 0 660440 5916 30502

Fig. 5. Left: CPs growth vs. length in SN TGraph; Right: Social network TGraph:
Number of cPaths between two nodes classified as Class 1 and Class 2

network (SN) with 38,500 Object nodes of type Person and the same number
of Attribute and Value nodes, resulting in 115,500 nodes in total. The Object
nodes are connected through a relationship Friend. The graph has two connected
components C1 and C2. In C1, for the relationship Friend, the minimum out
degree of the Object nodes is 25; there is a Follower Object node whose out-
degree is 1,394 and its tod is 1396. There is also an Influencer Object node whose
in-degree is 15,000. In C2 nodes are less connected than in C1 but there is also a
large number of CPs. For this graph, a TGIndex2 is created with a time window
of 3 months obtaining 178,436 Index Nodes representing CPs of length 2. We
selected representative Object nodes from C1 to run the SO tests based on their
tod, the degree and the number of indexed CPs of length 2 that start from them
during the indexed period. We denote the nodes by their Object id. Table 1 shows
those nodes, their tod, and the number of CPs from length 2 to length 8.

The selected time window impacts on the number and length of the CPs.
Based on this, we classify the nodes as Big (172, 307 and 19), Medium (13 and
448) and Low (409 and 65779). We run the tests five times for each node and
then average the resulting time. To run the P2P queries we chose eight pair of
nodes from C1 and C2 and observed the number of CPs from length 2 to length



6. On the right-hand side of Fig. 5 we classify the paths as “Class 1” when the
resulting number of CPs is low and “Class 2” when that number is high.

Figure 6 shows the execution times of SO queries (results are expressed in
milliseconds and the scale is logarithmic). We can see that the BFS concat
strategy is always better than the other two ones. When the number of CPs
is high, both BFS strategies outperform IndexConcat. Also, the difference is
higher for paths of even length than for the ones of odd length. On the right-
down portion of the figure we show the averaged results of the three kinds of
nodes for CPs of even length. We can see that both index strategies are better
than the cPath strategy. Classifying the nodes according to the number of CPs
retrieved suggests that the BFS strategy should be considered when the source
nodes have a high tod and produce a high number of CPs of length 2, which in
turn will produce a high growth in the number of CPs as the length increases.

Fig. 6. Execution times vs. path length for SO tests.

Figure 7 compares the execution times of P2P queries. In this case, the index-
Concat strategy clearly outperforms the others when the number of CPs is low
(below 1000 approximately). This is because the Neo4j strategy over the index
nodes is fast when the search space is small. The number of CPs retrieved when
the query mentions a source and a destination node are less than when the source
is not mentioned. The BFSconcat strategy on the other hand, presents a better
performance as long as the number of CPs increases to a very high number of
paths, since it prunes the results and avoids evaluating non-useful paths. For
higher numbers, the three strategies perform similarly.



Fig. 7. P2P Test execution time vs. length. Left: Class 1; Right: Class 2.

6 Conclusion

We studied strategies for indexing CPs in temporal graph databases. These
indices are defined within the database and point to the start of the CPs being
indexed. Two kinds of indices were defined: one that indexes paths of any length
(called TGIndexL) and another one that indexes paths of length two (called
TGIndex2) and builds paths of any length from there. Since the latter proved
to be more effective, two query evaluation strategies are defined for it. One of
them takes advantage of the underlying graph database search strategies, and
the other one using a BFS strategy. We carried out tests over synthetic tempo-
ral graphs with good results since both strategies outperformed the non-indexed
evaluation algorithm. We believe that the ideas developed in this paper set the
basis for future work that includes developing new evaluation and implementa-
tion strategies and performing further experiments.
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