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Abstract. We report the existence of financial stylized facts in a sys-
tem of mechanical vehicles driven by vibration (VDV). The VDVs are
restricted to a closed geometry that is composed of two chambers con-
nected by an opening which allows a continuous flow of agents between
the two regions. We studied the temporal evolution of the density of
particles around the opening and made a statistical comparison with the
price evolution of bitcoin (BTC). We found remarkable similarities be-
tween these two systems enabling us to study financial systems from a
new perspective.
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1 Introduction

Financial stylized facts are the common statistical properties that can be found
in different studies of markets and instruments. Although they are qualitative
properties, stylized facts are difficult to find in synthetic stochastic processes
generated by artificial models [1]. Recently, it has be shown that the counterflow
through a door of simulated pedestrians, with decision-making capacity, presents
several of the stylized facts observed in financial markets [2]. This picture of
counterflows of particles through a narrow constriction can be interpreted as a
flow of two types of orders (buy and sell) that interact in a narrow price interval.
In this direction, several physical analogies were proposed to describe different
financial properties [3–6].

In this work, we present results of experiments carried out with vehicles
driven by vibration [7–9]. The system under study comprises two closed regions
linked by a narrow opening that yields a balanced flow with a bottleneck. We
studied the temporal evolution of the density of particles around the opening
and made a statistical comparison with the price evolution of the Bitcoin crypto-
currency price. Our findings show that the density fluctuations experimentally
reproduce the main stylized facts, which allow us to address the study of financial
systems from a new perspective.

2 Experiment

We built a closed arena comprised of two regions connected by a narrow opening
of length L = 40 mm using acetate tape as flexible walls and wooden blocks to fix
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the opening size. This particular design allows us to generate a continuous flow
of particles through a bottleneck. Figure 1(a) shows the experimental setup.
We used 13 vibration-driven vehicles (VDVs) named Hexbug Nano [10]. The
dimensions of these vehicles are 43 mm × 15 mm × 18 mm. As can be seen in
Fig. 1(a), we used a four-color label design for the tracking of the VDVs.
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Fig. 1. (a) Experimental setup. Two regions are connected by a narrow opening of size
L = 40 mm. (b) Estimated PDF of the positions of all agents. A linear color scaling
represents the probability of finding an agent in a certain position

Figure 1(b) shows the estimated probability density function (PDF) of the
positions of all agents during the entire experiment. The color scale shows that
VDVs tend to be on the edges of the arena. In particular, there is a high prob-
ability of finding agents around the opening.

We recorded the experiment using a GoPro camera in a zenith position with
a time resolution 1/30 s. The recording time was ≈ 60 min.

3 Results

We studied the evolution of the density of particles ρ around the opening. For
this, we measured the distance of the κ nearest-neighbor dκ and estimated the
density as

ρ ∝ κ− 1

d2κ
. (1)

Note that the missing proportinality constant will have no effect on the results
obtained. In this analysis, we used κ = 3. The analysis of the influence of κ
on the emerging stylized facts is beyond the scope of this work but, we found
results to be robustly present in the interval κ ∈ [2, 4]. Following the analogy
put forward by Parisi et al. [2], we calculated ’returns’ of the time series Y over
a window of size j as

RY (ti, j) = Y (ti+j)− Y (ti) , (2)
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where, for the VDV system, Y is the density of particles given by Eq. 1. Fig-
ure 2(a) shows the time evolution of the density of VDVs for 100 seconds. Data
reveal alternating periods of high and low density. The temporal evolution of Rρ
presents periods of high variability clustering in time as can be seen in Fig. 2(b).
Finally, the probability distribution funcion of Rρ reveals a peaky distribution
with fat tails.
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Fig. 2. Temporal evolution of (a) the density of particles and (b) the returns Rρ for
an arbitrary time window of 100 seconds. (c) Probability distribution function of Rρ

for the entire experiment.

Using the above definition of returns, we computed different statistical prop-
erties and compared them to the financial stylized facts. Specifically, we took
the time series of the Bitcoin crypto-currency expressed in US dollars (BTC)
ranging from 2012/12/31 to 2018/06/30 at a sampling rate of 1 hour [11]. In
this case, Y is the log-price of BTC.

We first analyzed the correlations of several functions of RY . The sample
correlation function is defined as

C(k) = corr(RY (ti+k), RY (ti)) , (3)

where k is the time lag. Figure 3(a) shows results for the VDV system revealing
the absence of linear autocorrelation for times larger than a few lags. The BTC
system presents the same behavior as can be seen in Fig. 3(b).

The volatility clustering of the returns observed in Fig. 2(b) was quantified
by the autocorrelation function of an arbitrary power of the absolute returns as

Cα(k) = corr(|RY (ti+k)|α, |RY (ti)|α) . (4)

In contrast to C(k), Fig. 3(a) shows that the autocorrelations of C1(k) and
C2(k) for the VDV system present long memory properties characterized by a
long correlation time in accordance with the BTC system (Fig. 3(b)) [12, 13].
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Fig. 3. (a) Autocorrelation functions for the variation of density Rρ, |Rρ| and |Rρ|2 of
the VDV system. (b) Same results for the BTC system

Distributions of financial returns are characterized by being non-Gaussian
and fat tailed [1, 14]. Figure 4(a) shows the complementary cumulative distri-
bution function (CCDF) of the standardized absolute returns |R∗Y |, defined as
|RY |
〈|R∗

Y
|〉 , in comparison to that of the nearest Gaussian CCDF. Note that, as j

increases, the CCDFs of returns converge to a Gaussian distribution. Figure 4(b)
shows that the BTC system presents the same behavior.
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Fig. 4. CCDF for normalized absolute returns series R∗
ρ (a) and R∗

BTC (b) for vari-
ous time windows j. Solid black lines stand for the CCDF of the nearest Gaussian
distribution

The properties of the central part of the distribution were also investigated.
For this, we estimated the probability of zero returns (P (RY = 0)) for different
steps j as shown in Fig.5(a) and (b) for the VDV and BTC systems, respectively.
We found that P (RY = 0) decays as a power law function j−δ in accordance
with results obtained for the S&P500 index [15].

Finally, we studied the long-range dependence of the time series of absolute
returns by means of the detrended function analysis (DFA) [16, 17]. Figure 6
shows the root-mean-square deviation from the trend F (n) as a function of n.



Elongated self-propelled particles present financial stylized facts 5

101

102

 

j
100 101 102

 BTC
δ = 0.59

(b)

P(
R Y

= 
0)

105

106

 

j
100 101 102

 VDV
δ = 0.81

(a)

Fig. 5. Estimated probability of zero return as a function of the time step j for the
VDV (a) and BTC. Red solid lines stand for power law fits

Both, the VDV (a) and BTC (b) systems, present a linear relationship in log-log
scale. We fit power law functions and estimated Hurst exponents H = 0.82 and
H = 0.81 for the VDV and BTC systems, respectively. Again, both systems are
in accordance showing that periods of positive trends are followed by periods
with the same trends.
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Fig. 6. Detrended function analysis for the VDV (a) and BTC (b) systems. Solid lines
stand for power law fits

4 Conclusions

We studied the temporal evolution of the density of particles around the opening
and make a statistical comparison with the price evolution of bitcoin. In this
work, we report several analogies between these systems by measuring various
statistical properties of the return of the market price and its correspondence of
the mechanical system. Interestingly, for the chosen experimental conditions, we
found that the time series of density shares several of the stylized facts found
in the Bitcoin crypto-currency price. Although the reasons for these similarities
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remain unknown, this simple mechanical toy-model can be used to get insights
into more complex financial systems.

Acknowledgements

The authors acknowledge financial support via project PID2015-003 (Agen-
cia Nacional de Promoción Cient́ıfica y Tecnológica, Argentina; Instituto Tec-
nológico de Buenos Aires; Urbix Technologies S.A.) and from ITBACyT-2018-
42 (Instituto Tecnológico de Buenos Aires).

References

1. R. Cont, Quantitative Finance 1(2), 223 (2001). DOI 10.1080/713665670
2. D.R. Parisi, D. Sornette, D. Helbing, Phys. Rev. E 87, 012804 (2013). DOI

10.1103/PhysRevE.87.012804
3. C. Vamo, N. Suciu, W. Blaj, Physica A: Statistical Mechanics and its Applications

287(3), 461 (2000). DOI https://doi.org/10.1016/S0378-4371(00)00385-X
4. J.P. Bouchaud, J. Kockelkoren, M. Potters, Quantitative Finance 6(2), 115 (2006).

DOI 10.1080/14697680500397623
5. Y. Yura, H. Takayasu, D. Sornette, M. Takayasu, Phys. Rev. Lett. 112, 098703

(2014). DOI 10.1103/PhysRevLett.112.098703
6. Y. Yura, H. Takayasu, D. Sornette, M. Takayasu, Phys. Rev. E 92, 042811 (2015).

DOI 10.1103/PhysRevE.92.042811
7. G.A. Patterson, P.I. Fierens, F. Sangiuliano Jimka, P.G. König, A. Garcimart́ın,

I. Zuriguel, L.A. Pugnaloni, D.R. Parisi, Phys. Rev. Lett. 119, 248301 (2017). DOI
10.1103/PhysRevLett.119.248301

8. A. Deblais, T. Barois, T. Guerin, P.H. Delville, R. Vaudaine, J.S. Lintuvuori,
J.F. Boudet, J.C. Baret, H. Kellay, Phys. Rev. Lett. 120, 188002 (2018). DOI
10.1103/PhysRevLett.120.188002

9. T. Barois, J.F. Boudet, N. Lanchon, J.S. Lintuvuori, H. Kellay, Phys. Rev. E 99,
052605 (2019). DOI 10.1103/PhysRevE.99.052605

10. HEXBUG Nano. https://www.hexbug.com/nano. Accessed: 2017-05-18
11. Bitcoincharts. https://bitcoincharts.com/charts. Accessed: 2018-06-30
12. R. Cont, M. Potters, J.P. Bouchaud, in Scale Invariance and Beyond, ed. by

B. Dubrulle, F. Graner, D. Sornette (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997), pp. 75–85

13. Z. Ding, C.W.J. Granger, R.F. Engle, (Harvard University Press, Cambridge, MA,
USA, 2001), chap. A Long Memory Property of Stock Market Returns and a New
Model, pp. 349–372

14. J.P. Bouchaud, M. Potters, Theory of financial risk and derivative pricing: from
statistical physics to risk management (Cambridge university press, 2003)

15. R.N. Mantegna, H.E. Stanley, Nature 376(6535), 46 (1995)
16. C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger,

Phys. Rev. E 49, 1685 (1994). DOI 10.1103/PhysRevE.49.1685
17. C. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos: An Interdisciplinary

Journal of Nonlinear Science 5(1), 82 (1995). DOI 10.1063/1.166141


