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Abstract—For general time-varying or switched (nonlinear)
systems, converse Lyapunov theorems for stability are not avail-
able. In these cases, the integral input-to-state stability (iISS)
property is not equivalent to the existence of an iISS-Lyapunov
function but can still be characterized as the combination of
global uniform asymptotic stability under zero input (0-GUAS)
and uniformly bounded energy input-bounded state (UBEBS).
For impulsive systems, asymptotic stability can be weak (when
the asymptotic decay depends only on elapsed time) or strong
(when such a decay depends also on the number of impulses
that occurred). This paper shows that the mentioned characteri-
zation of iISS remains valid for time-varying impulsive systems,
provided that stability is understood in the strong sense.

Index Terms—Stability, impulsive systems, time-varying sys-
tems, bounded energy, nonlinear systems.

I. INTRODUCTION

Impulsive systems are dynamical systems whose state

evolves continuously most of the time but may exhibit jumps

(discontinuities) at isolated time instants (see [1]). The contin-

uous evolution of the state (i.e. between jumps) is governed by

ordinary differential equations. The time instants when jumps

occur are part of the impulsive system definition and the after-

jump value of the state vector is governed by a static (i.e.

not differential) equation. Uniform asymptotic stability of the

origin requires that the norm of the state decays asymptotically

to zero as elapsed time advances. For an impulsive system,

uniform asymptotic stability can be defined in two different

ways, depending on whether the decay depends only on

elapsed time (we use the name weak in this case) [2] or also

on the number of impulses that have occurred (strong) [3].

Input-to-state stability (ISS) [4] and integral-ISS (iISS)

[5] are arguably the most important and useful state-space

based nonlinear notions of stability for systems with inputs.

The iISS property gives a state bound that is the sum of

a decaying-to-zero term whose amplitude depends only on

the initial state, and a term depending (nonlinearly) only on

an integral of a nonlinear function of the input. The latter

term can be interpreted as an input energy bound. As is the

case with uniform asymptotic stability, for impulsive systems

the decaying-to-zero term can take impulse occurrence into

account or not, giving rise to two different ways of defining
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iISS (strong or weak). The weak iISS property is the most

usual for impulsive systems [2], whereas the strong version is

in agreement with iISS for hybrid systems [6].

Several different sufficient conditions for weak iISS of

impulsive systems involving time-invariant or time-varying

flow and jump equations, with or without time delays, exist [2],

[7]–[13]. However, to the best of our knowledge, conditions

that are both necessary and sufficient only exist for strong

iISS when the impulsive system can be posed as a time-

invariant hybrid system where the (time-invariant) flow map,

in addition, satisfies a convexity property with respect to the

input variable [6]. For time-invariant nonimpulsive systems,

iISS was shown to be equivalent to the combination of global

uniform asymptotic stability under zero input (0-GUAS) and

uniformly bounded-energy input bounded state (UBEBS). This

characterization of iISS was extended to time-varying and

switched (nonimpulsive) systems [14], and has been recently

shown to remain valid for impulsive systems provided stability

is understood in the weak sense and the number of jumps that

occur in any given time interval is bounded in relation to the

interval’s length but irrespective of initial time [15].

In this paper, we show that the previously derived character-

ization of iISS (namely, iISS = 0-GUAS + UBEBS) remains

valid for impulsive systems provided stability is understood

in the strong sense and without having to bound the number

of jumps as in the weak case. As was the case with the

previous results [15], the current results apply to cases where

both the ordinary differential equation defining continuous

state evolution (i.e. the flow equation) and the static equation

defining after-jump values (i.e. the jump equation) can be time-

varying and lack time continuity. The results of [15] are then

shown to be a particular case of the current ones.

Notation. N, R, R>0 and R≥0 denote the natural numbers,

reals, positive reals and nonnegative reals, respectively. |x|
denotes the Euclidean norm of x ∈ R

p. We write α ∈ K
if α : R≥0 → R≥0 is continuous, strictly increasing and

α(0) = 0, and α ∈ K∞ if, in addition, α is unbounded. We

write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K∞ for

any t ≥ 0 and, for any fixed r ≥ 0, β(r, t) monotonically

decreases to zero as t → ∞. For every n ∈ N and r ≥ 0, we

define the closed ball Bn
r := {x ∈ R

n : |x| ≤ r}. A function

h : D ⊂ R×R
n → R

n is said to be a Carathéodory function

http://arxiv.org/abs/1907.11673v1


if h(t, ξ) is measurable in t for fixed ξ, continuous in ξ for

fixed t, and for every compact set K ⊂ D, there exists an

integrable function mK(t) such that |h(t, ξ)| ≤ mK(t) for all

(t, ξ) ∈ K (see [16, Sec. I.5]).

II. PROBLEM STATEMENT

A. Impulsive systems

Consider the time-varying impulsive system with inputs

ẋ(t) = f(t, x(t), u(t)), for t /∈ σ, (1a)

x(t) = x(t−) + g(t, x(t−), u(t)), for t ∈ σ, (1b)

where t0 ≥ 0 is the initial time, σ = {τk}
N
k=1, with N finite or

N = ∞, is a strictly increasing sequence of impulse times in

R>0, the state variable x(t) ∈ R
n, the continuous-time input

variable u(t) ∈ R
m and f (the flow map) and g (the jump

map) are functions from R≥0×R
n×R

m to R
n. The ordinary

differential equation (1a) defines the continuous evolution of

the state vector x and (1b) defines the value of x at the impulse

times. To ensure that the jumps in x caused by (1b) cannot

occur infinitely frequently, it is assumed that τk → ∞ when

N = ∞. By convention we define τ0 = 0 (however, τ0 is

not considered an impulse time) and, when N is finite, we set

τN+1 := ∞. We will employ I to denote the set of all these

admissible impulse time sequences, i.e. I denotes the set of

all strictly increasing sequences of positive real numbers that

either have a finite number of elements or are unbounded. Let

U be the set of all the functions u : R≥0 → R
m that are

Lebesgue measurable and locally bounded. We will use the

term “input” to refer to a pair w = (u, σ) ∈ U × I consisting

of a continuous-time input u and an admissible impulse-

time sequence σ. We assume that for each u ∈ U the map

fu(t, ξ) := f(t, ξ, u(t)) is a Carathéodory function and hence

the (local) existence of solutions of the differential equation

ẋ(t) = f(t, x(t), u(t)) is ensured (see [16, Thm. I.5.1]).

A solution to (1) corresponding to an initial time t0, an

initial state x0 ∈ R
n and an input w = (u, σ) ∈ U × I is a

right-continuous function x : [t0, Tx) → R
n such that:

i) x(t0) = x0;

ii) x is a Carathéodory solution of the differential equation

ẋ(t) = f(t, x(t), u(t)) on [τk, τk+1)∩ [t0, Tx) for all 0 ≤
k ≤ N ; and

iii) for all t ∈ σ ∩ (t0, Tx) it happens that x(t) = x(t−) +
g(t, x(t−), u(t)), where x(t−) := lims→t− x(s).

The solution x is said to be maximally defined if no other

solution y satisfies y(t) = x(t) for all t ∈ [t0, Tx) and has

Ty > Tx. A solution x is forward complete if Tx = ∞. We

will use T (t0, x0, w) to denote the set of maximally defined

solutions of (1) corresponding to initial time t0, initial state x0,

and input w. We say that (1) is forward complete for a given

σ ∈ I if for every t0 ≥ 0, x0 ∈ R
n and w = (u, σ) with

u ∈ U , any solution x ∈ T (t0, x0, w) is forward complete.

Given σ ∈ I, we define nσ
(t0,t]

to be the number of elements

of σ (i.e. the number of jumps) that lie in the interval (t0, t]:

nσ
(t0,t]

:= #
[

σ ∩ (t0, t]
]

. (2)

B. Stability definitions

Stability notions for systems with inputs that are uniform

with respect to initial time, such as uniform ISS and iISS,

bound the state trajectory in relation to initial state, elapsed

time and input. In the context of impulsive systems, the input

can be interpreted as having both a continuous-time and an

impulsive component. Given an input w = (u, σ) and ρ1, ρ2 ∈
K∞, we thus define

‖w‖(ρ1,ρ2) :=

∫ ∞

0

ρ1(|u(s)|)ds+
∑

t∈σ

ρ2(|u(t)|). (3)

The quantity defined in (3) can be loosely interpreted as a

measure of the energy content of an input that has some

impulsive behaviour at the time instants t ∈ σ.

We are interested in determining whether some stability

property holds not just for a single impulse-time sequence

σ ∈ I but also for some family S ⊂ I. We thus consider the

uniform stability notions given in Definition 2.1. To simplify

notation, for every interval J ⊂ [0,∞) and u ∈ U , we define

uJ via uJ(t) := u(t) if t ∈ J and uJ(t) := 0 otherwise; for

an input w = (u, σ), we define wJ := (uJ , σ).
Definition 2.1: Given S ⊂ I, we say that the impulsive

system (1) is

a) strongly 0-GUAS uniformly over (the family of impulse-

time sequences) S if there exists β ∈ KL such that

|x(t)| ≤ β(|x(t0)|, t− t0 + nσ
(t0,t]

) ∀t ≥ t0, (4)

for every x ∈ T (t0, x0, w0) with t0 ≥ 0, x0 ∈ R
n and

w0 = (0, σ) with σ ∈ S.

b) UBEBS uniformly over S if there exist α, ρ1, ρ2 ∈ K∞

and c ≥ 0 such that

α(|x(t)|) ≤ |x(t0)|+ ‖w(t0,t]‖(ρ1,ρ2) + c ∀t ≥ t0, (5)

for every x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ R
n and

w ∈ U × S. The pair (ρ1, ρ2) will be referred to as an

UBEBS gain.

c) strongly iISS uniformly over S if there exist β ∈ KL and

α, ρ1, ρ2 ∈ K∞ such that

α(|x(t)|) ≤ β(|x(t0)|, t− t0 + nσ
(t0,t]

)

+ ‖w(t0,t]‖(ρ1,ρ2) (6)

for all t ≥ t0, for every x ∈ T (t0, x0, w) with t0 ≥ 0,

x0 ∈ R
n and w ∈ U ×S. The pair (ρ1, ρ2) will be referred

to as an iISS gain.

Remark 2.1: Due to the blanket assumption we have made

on f , any of the conditions (4), (5) or (6) implies that the

solution x is forward complete. Suppose that x is a solution

satisfying (4), (5) or (6) and that its maximal interval of

definition is [t0, T ) or [t0, T ] with T < ∞. If x(T ) is

defined, then the initial value problem ż(t) = f(t, z(t), u(t)),
z(T ) = x(T ) has a solution z which is defined on some

interval [T, T + δ) with δ > 0. In consequence, x admits

a prolongation defined on some interval [t0, T + δ′) with

δ′ > 0 small enough, which is absurd. If x(T ) is not defined,



then, due to standard results on ordinary differential equations,

|x(t)| → ∞ as t → T−, but this is impossible since x is

bounded on [t0, T ). ◦
The weak versions of 0-GUAS or iISS are obtained by

replacing the second argument of the function β in (4) or (6)

by just t−t0 (i.e. the number of jumps nσ
(t0,t]

does not appear).

If (1) is (weakly or strongly) 0-GUAS uniformly over S, then

under u ≡ 0 the state converges asymptotically to the origin.

In the weak case, the convergence warranty depends on the

elapsed time t−t0 but is insensitive to the occurrence of jumps.

In addition, this convergence is uniform over initial times

and over impulse time sequences within the family S. The

uniform-over-S UBEBS property just imposes a bound on the

state trajectory without necessarily guaranteeing convergence.

The bound is uniform over initial times and over all σ ∈ S,

and depends on the initial state norm and the input energy.

The uniform-over-S (weak or strong) iISS property imposes

a bound that is also uniform over initial times and over all

σ ∈ S. This bound is formed by a term similar to the 0-GUAS

property and another term equal to the input energy.

III. CHARACTERIZATION OF STRONG IISS

A. Main result

We require the following definitions, as employed in [15].

Definition 3.1: A function h : R≥0 × R
n × R

m → R
n is

said to belong to class AL, written h ∈ AL, if the following

items hold:

i) there exist νh ∈ K and a nondecreasing function Nh :
R≥0 → R>0 such that |h(t, ξ, µ)| ≤ Nh(|ξ|)(1+νh(|µ|))
for all t ≥ 0, all ξ ∈ R

n and all µ ∈ R
m;

ii) for every r > 0 and ε > 0 there exists δ > 0 such that

for all t ≥ 0, |h(t, ξ, µ) − h(t, ξ, 0)| < ε if |ξ| ≤ r and

|µ| ≤ δ.

iii) h(t, ξ, 0) is locally Lipschitz in ξ, uniformly in t, i.e. for

every ξ ∈ R
n there are an open ball B containing ξ and

a constant L ≥ 0 so that for every ξ1, ξ2 ∈ B and t ≥ 0
it happens that |h(t, ξ1, 0)− h(t, ξ2, 0)| ≤ L|ξ1 − ξ2|.

Our main result is the following.

Theorem 3.1: Consider the impulsive system (1), suppose

that f, g ∈ AL and let S ⊂ I. Then, (1) is strongly iISS

uniformly over S if and only if it is strongly 0-GUAS and

UBEBS, both uniformly over S.

The proof of Theorem 3.1 will be developed along Sec-

tions III-B and III-C.

B. Intermediate results

The proof of Theorem 3.1 follows the same steps as that

of the proof of Theorem 3.2 of [15] but suitably modified for

the strong case. For the sake of conciseness and to clarify the

current contribution, we will emphasize the main differences

and remove the parts that are identical or very similar.

The integral expression for the solution of (1) is given by:

x(t) = x(t0) +

∫ t

t0

f(s, x(s), u(s))ds+

+
∑

τ∈σ∩(t0,t]

g(τ, x(τ−), u(τ)). (7)

The proof of our main result requires the generalization of

Gronwall inequality for continuous functions with isolated

jumps given as Lemma 3.1 in [15]. We copy the corresponding

statement here for simplicity.

Lemma 3.1 ( [15, Lemma 3.1]): Let 0 ≤ t0 < T ≤ ∞ and

let y : [t0, T ) → R be a right-continuous function having a

finite left-limit at every discontinuity instant. Suppose that the

points of discontinuity of y can be arranged into a sequence

σ ∈ I. Let p ∈ R and q1, q2 ≥ 0. If y satisfies

y(t) ≤ p+ q1

∫ t

t0

y(s)ds+ q2
∑

s∈σ∩(t0,t]

y(s−) (8)

for all t ∈ [t0, T ), then in the same time interval y also satisfies

y(t) ≤ p(1 + q2)
nσ
(t0 ,t] · eq1(t−t0). (9)

We will also require Lemma 3.2 of [15] (which is a

generalization of Lemma 3 in [14]) suitably modified for the

strong 0-GUAS case. The proof is a very minor modification

of the corresponding proof in [15] and hence omitted.

Lemma 3.2 (cf. Lemma 3.2 in [15]): Let S ⊂ I, let the

impulsive system (1) be strongly 0-GUAS uniformly over S
and let β ∈ KL characterize the strong 0-GUAS property.

Suppose that f, g ∈ AL and let νf and νg be, respectively,

the functions corresponding to f and g as per item i) of

Definition 3.1. Let χf , χg ∈ K∞ satisfy χf ≥ νf and χg ≥ νg.

Then, for every r > 0 and every η > 0, there exist L = L(r)
and κ = κ(r, η) such that if x ∈ T (t0, x0, w) with t0 ≥ 0,

x0 ∈ R
n, w = (u, σ) ∈ U × S satisfies |x(t)| ≤ r for all

t ≥ t0, then also

|x(t)| ≤ β(|x0|, t− t0 + nσ
(t0,t]

) +
[

(t−t0+nσ
(t0,t])η

+κ‖w(t0,t]‖(χf ,χg)

]

(1+L)
nσ
(t0,t] ·eL(t−t0). (10)

The only difference with respect to the corresponding bound

in Lemma 3.2 of [15] is the inclusion of the number of

jumps nσ
(t0,t]

within the second argument of β in (10). The

corresponding proof is almost identical.

The proof of our main result also requires a suitably

modified version of Lemma 3.3 of [15]. In this case, the

removal of the assumption on the boundedness of the number

of jumps in a given interval, given by the uniform incremental

boundedness (UIB) property in [15], makes the corresponding

proof sufficiently different so as to include it here.

Lemma 3.3: Consider the impulsive system (1), suppose

that f, g ∈ AL and let S ⊂ I. If (1) is strongly 0-

GUAS and UBEBS, both uniformly over S, then there exist

α̃, ρ̃1, ρ̃2 ∈ K∞ for which the estimate (11) holds for every

x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ R
n and w ∈ U × S.

α̃(|x(t)|) ≤ |x(t0)|+ ‖w(t0,t]‖(ρ̃1,ρ̃2) ∀t ≥ t0. (11)

Proof: Let α, ρ1, ρ2 and c be as in the estimate (5). Let

ρ̃1 := max{ρ1, νf} and ρ̃2 := max{ρ2, νg}. For r ≥ 0 define

ᾱ(r) := sup
x∈T (t0,x0,w), t≥t0≥0, |x0|≤r, w∈U×S, ‖w‖≤r

|x(t)|



where ‖w‖ := ‖w‖(ρ̃1,ρ̃2). From this definition, it follows

that ᾱ is nondecreasing and from (5) that it is finite for all

r ≥ 0. Let β ∈ KL be the function which characterizes

the uniform-over-S strong 0-GUAS property of (1). From the

latter property, it follows that ᾱ(0) = 0. Next, we show that

limr→0+ ᾱ(r) = 0. Let r∗ = α−1(2 + c) and L = L(r∗) > 0
be given by Lemma 3.2. Let ε > 0 be arbitrary. Pick

0 < δ1 < 1 such that δ1 ≤ β(δ1, 0) < ε/2 and T̃ > 0

such that β(δ1, T̃ ) < δ1/2. Define η = δ1
4(T̃+1)

e−L̃(T̃+1),

with L̃ = max {L, log(1 + L)} and let κ = κ(r∗, η) > 0
be given by Lemma 3.2. Last, pick 0 < δ2 < 1 such that

δ2 <
δ1

4κ(T̃+1)
e−L̃(T̃+1). For every j ∈ N0, define

tj+1 := inf
{

t > tj : t− tj + nσ
(tj ,t]

≥ T̃
}

and consider the intervals Ij = [tj , tj+1). Note that tj+1 > tj
for every j ∈ N0. By definition of tj+1 and since t 7→ nσ

(tj,t]

is right-continuous, it follows that for all j ∈ N0,

T̃ ≤ tj+1 − tj + nσ
(tj ,tj+1]

≤ T̃ + 1, and

t− tj + nσ
(tj ,t]

≤ T̃ + 1 ∀t ∈ Ij .

We claim that limj→∞ tj = ∞. For a contradiction, suppose

that limj→∞ tj = M < ∞. As every convergent sequence

is a Cauchy sequence, for every ρ > 0 there exists N =
N(ρ) ∈ N such that |tj+1 − tj | < ρ for all j ≥ N . But

tj+1 − tj + nσ
(tj ,tj+1]

≥ T̃ > 0 and hence 0 < T̃ ≤ ρ +

nσ
(tj ,tj+1]

and T̃ − ρ < nσ
(tj ,tj+1]

. Taking ρ < T̃ we have

that 0 < T̃ − ρ < nσ
(tj ,tj+1]

and thus nσ
(tj ,tj+1]

≥ 1 for all

j ≥ N . Then, nσ
(tN ,M) =

∑∞
j=N nσ

(tj ,tj+1]
≥

∑∞
j=N 1 = ∞,

contradicting the assumption that σ has no finite accumulation

points. Therefore, limj→∞ tj = ∞.

For every x ∈ T (t0, x0, w), with t0 ≥ 0, |x0| ≤ δ1, w ∈
U × S and ‖w‖ ≤ δ2, we also have x ∈ T (tj , x(tj), w) for

all j ∈ N. By induction, we will show that |x(t)| ≤ ε for all

t ∈ Ij = [tj , tj+1) and that |x(tj+1)| < δ1. For j = 0 and

applying Lemma 3.2, it follows that for all t ∈ I0, we have

|x(t)| ≤ β(|x0|, t− t0 + nσ
(t0,t]

)

+ [(t− t0 + nσ
(t0,t]

)η + κ‖w‖]eL̃(t−t0+nσ
(t0,t])

≤ β(δ1, 0) + [(T̃ + 1)η + κδ2]e
L̃(T̃+1) <

ε

2
+
δ1
2
< ε,

and that

|x(t1)| ≤ β(|x0|, t1 − t0 + nσ
(t0,t1]

)

+ [(t1 − t0 + nσ
(t0,t1]

)η + κ‖w‖]eL̃(t1−t0+nσ
(t0,t1])

≤ β(δ1, T̃ ) + [(T̃ + 1)η + κδ2]e
L̃(T̃+1) < δ1.

So our induction assumption holds for j = 0. Next, suppose

that it holds for arbitrary j ∈ N0. Applying Lemma 3.2, then

for t ∈ Ij+1 we have that

|x(t)| ≤ β(|x(tj+1)|, 0) + [(T̃ + 1)η + κδ2]e
L̃(T̃+1)

≤ β(δ1, 0) + [(T̃ + 1)η + κδ2]e
L̃(T̃+1) <

ε

2
+
δ1
2
< ε,

where we have used the fact that |x(tj+1)| ≤ δ1, and that

|x(tj+2)| ≤ β(|x(tj+1)|, tj+2 − tj+1 + nσ
(tj+1,tj+2]

)

+ [(T̃ + 1)η + κδ2]e
L̃(T̃+1)

≤ β(δ1, T̃ ) + [(T̃ + 1)η + κδ2]e
L̃(T̃+1) < δ1.

Hence our induction assumption holds for j + 1. As a con-

sequence, |x(t)| ≤ ε must hold for all t ≥ t0. Thus, if

δ = min{δ1, δ2}, for all x ∈ T (t0, x0, w), with t0 ≥ 0,

|x0| ≤ δ, w ∈ U × S with ‖w‖ ≤ δ, we have |x(t)| ≤ ε
for all t ≥ t0. Therefore, ᾱ(r) ≤ ᾱ(δ) < ε for all 0 < r < δ
and limr→0+ ᾱ(r) = 0.

Since ᾱ is nondecreasing and limr→0+ ᾱ(r) = 0 there exists

α̂ ∈ K∞ such that α̂(r) ≥ ᾱ(r) for all r ≥ 0. Let x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ R

n and w ∈ U×S. Let t ≥ t0.

Due to causality, there exists x∗ ∈ T (t0, x0, w(t0,t]) such that

x∗(τ) = x(τ) for all τ ∈ [t0, t]. By using the definition of ᾱ
and the fact that α̂(r) ≥ ᾱ(r), we then have |x(t)| = |x∗(t)| ≤
α̂(|x0|)+ α̂(‖w(t0,t]‖). Define α̃ ∈ K∞ via α̃(s) = α̂−1(s)/2.

Applying α̃ to both sides of the preceding inequality and using

the fact that α̃(a+ b) ≤ α̃(2a)+ α̃(2b), we reach α̃(|x(t)|) ≤
|x0|+ ‖w(t0,t]‖, which establishes the result.

C. Proof of Theorem 3.1

The proof of our main result requires the following ǫ-δ
characterization of the uniform-over-S strong iISS property.

The statement follows from suitable modification of that of

Theorem 3.1 of [15]. Whether this characterization holds or

not under such a modification is a nontrivial question. We

hence provide the proof in the Appendix.

Theorem 3.2: Let ρ1, ρ2 ∈ K∞ and S ⊂ I. Consider the

notation ‖w‖ = ‖w‖(ρ1,ρ2) and for r ≥ 0,BS
r := {w ∈ U×S :

‖w‖ ≤ r}. Then, system (1) is strongly iISS uniformly over S
with iISS gain (ρ1, ρ2) if and only if the following conditions

hold:

i) For every T ≥ 0, r ≥ 0, s ≥ 0, there exists C > 0 such

that every x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bn
r and

w ∈ BS
s satisfies |x(t)| ≤ C for all t ≥ t0 such that

t+ nσ
(t0,t]

≤ t0 + T .

ii) For each ǫ > 0, there exists δ > 0 such that every x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bn

δ and w ∈ BS
δ satisfies

|x(t)| ≤ ǫ for all t ≥ t0.

iii) There exists α̃ ∈ K∞ such that for every r, ǫ > 0 there

exists T > 0 so that for every x ∈ T (t0, x0, w) with

t0 ≥ 0, x0 ∈ Bn
r and w ∈ U×S, then α̃(|x(t)|) ≤ ǫ+‖w‖

for all t ≥ t0 such that t+ nσ
(t0,t]

≥ t0 + T .

We may finally provide a proof to our main result.

Proof of Theorem 3.1:

(⇒) Considering w = (u, γ) with u = 0, the estimate

(6) reduces to α(|x(t)|) ≤ β(|x(t0)|, t − t0 + nσ
(t0,t]

) and

hence |x(t)| ≤ α−1(β(|x(t0)|, t− t0 + nσ
(t0,t]

)). The function

β̃ := α−1
◦β satisfies β̃ ∈ KL, and hence (4) follows with

β replaced by β̃. Therefore, clearly strongly iISS implies

strongly 0-GUAS, both uniformly over S.

Consider β ∈ KL from (6), define β0 ∈ K∞ via β0(r) =
β(r, 0). Then, |x(t)| ≤ α−1

[

β0(|x(t0)|) + ‖w(t0,t]‖(ρ1,ρ2)

]

.



Define ψ ∈ K∞ via ψ(r) = min
{

β−1
0 (α(r)/2), α(r)/2

}

.

Applying ψ to each side of the latter inequality and using the

fact that φ(a + b) ≤ φ(2a) + φ(2b) for every φ ∈ K and

a, b ≥ 0, yields

ψ(|x(t)|) ≤ ψ ◦α−1
[

β0(|x(t0)|) + ‖w(t0,t]‖(ρ1,ρ2)

]

≤ ψ ◦α−1[2β0(|x(t0)|)] + ψ ◦α−1[2‖w(t0,t]‖(ρ1,ρ2)]

≤ |x(t0)|+ ‖w(t0,t]‖(ρ1,ρ2),

and hence (5) follows with α replaced by ψ. We have shown

that strong iISS implies UBEBS, both uniformly over S.

(⇐) Let α̃, ρ̃1, ρ̃2 ∈ K∞ be given by Lemma 3.3, so

that (11) is satisfied. We will prove that (1) is strongly iISS

uniformly over S with iISS gain (ρ̃1, ρ̃2) by establishing each

of the items of Theorem 3.2.

i) Let T ≥ 0, r ≥ 0 and s ≥ 0. Let x ∈ T (t0, x0, w) with

t0 ≥ 0, x0 ∈ Bn
r , w ∈ BS

s . From (11) we have: α̃(|x(t)|) ≤
|x(t)|+ ‖w(t0,t]‖(ρ̃1,ρ̃2) ≤ r+ s, and hence |x(t)| ≤ α̃−1(r +
s) =: C for all t ≥ t0. This establishes item i) of Theorem 3.2.

ii) Let ǫ > 0. Let δ = α̃(ǫ)/2. Then, if x ∈ T (t0, x0, w)
with t0 ≥ 0, x0 ∈ Bn

δ and w ∈ BS
δ , from (11) then

α̃(|x(t)|) ≤ |x0| + ‖w(t0,t]‖(ρ̃1,ρ̃2) ≤ δ + δ = 2δ. It follows

that |x(t)| ≤ α̃−1(2δ) = ǫ for all t ≥ t0. This establishes

item ii) of Theorem 3.2.

iii) Let α = α̃/2 ∈ K∞. Let r, ǫ > 0 and let x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bn

r and w ∈ U × S. We

distinguish two cases:

(a) ‖w‖ ≥ r,
(b) ‖w‖ < r.

In case (a), from (11) we have α̃(|x(t)|) ≤ |x0|+ ‖w(t0,t]‖ ≤

r + ‖w‖ ≤ 2‖w‖, hence α(|x(t)|) = α̃(|x(t)|)
2 ≤ ‖w‖ ≤ ǫ +

‖w‖ for all t ≥ t0.

Next, consider case (b). From (11), we have α̃(|x(t)|) ≤
r + ‖w‖ < 2r =: r̃ for all t ≥ t0. Let β ∈ KL
characterize uniform-over-S strong 0-GUAS property, so that

(4) is satisfied under zero input, and let L = L(r̃) > 0
be given by Lemma 3.2. Define L̃ := max{L, log(1 + L)},

let ǫ̃ = ǫ and T̃ > 0 satisfy β(r̃, T̃ ) < ǫ̃/2. Define

η = ǫ̃

4(T̃+1)
e−L̃(T̃+1). Let κ = κ(r̃, η) > 0 be given by

Lemma 3.2. Let δ = ǫ̃
4κe

−L̃(T̃+1). Define N :=
⌈

r
δ

⌉

and

T := N(T̃ + 1), where ⌈s⌉ denotes the least integer not less

than s ∈ R. Let s0 := t0 and for i = 1 to N , define

si := inf{t ≥ si−1 : t− si−1 + nσ
(si−1,t]

≥ T̃}.

Then, for i = 1, . . . , N we have si−1 < si <∞ and

T̃ ≤ si − si−1 + nσ
(si−1,si]

≤ T̃ + 1. (12)

Consider the intervals Ii = [si−1, si], with i = 1, . . . , N . We

claim that there exists j ≤ N − 1 for which ‖w(sj ,sj+1]‖ ≤ δ.

For a contradiction, suppose that ‖w(sj ,sj+1]‖ > δ for all 0 ≤

j ≤ N − 1. Then, ‖w‖ ≥ ‖w(s0,sN ]‖ =
∑N−1

j=0 ‖w(sj ,sj+1]‖ >
Nδ ≥ r, contradicting case (b). Therefore, let 0 ≤ j ≤ N − 1
be such that ‖w(sj ,sj+1]‖ ≤ δ.

Since x ∈ T (sj , x(sj), w) and |x(t)| ≤ r̃ for all t ≥ sj ,

from Lemma 3.2 and using the bounds (12), it follows that

|x(sj+1)| ≤ β(|x(sj)|, T̃ )+
[

(T̃ + 1)η + κ‖w(sj ,sj+1]‖
]

eL̃(T̃+1)

≤ β(r̃, T̃ ) + [(T̃ + 1)η + κδ]eL̃(T̃+1) ≤ ǫ̃.

Therefore, using (11) with t0 replaced by sj+1, we reach

α̃(|x(t)|) ≤ |x(sj+1)|+ ‖w(sj+1,t]‖ ≤ ǫ̃+ ‖w‖ (13)

for all t ≥ sj+1 and hence also for all t ≥ sN . Since
∑N

i=1 si−
si−1 +nσ

(si−1,si]
= sN − s0 +nσ

(s0,sN ] ≤ N(T̃ +1) = T , then

t + nσ
(t0,t]

≥ t0 + T implies that t ≥ sN . Therefore, (13)

holds for all t ≥ t0 for which t + nσ
(t0,t]

≥ t0 + T . Since

α = α̃/2 ≤ α̃, it follows that item iii) of Theorem 3.2 also is

satisfied.

D. Previous results as a particular case

In this section we will show that the main result in [15],

namely Theorem 3.2 in [15], is a Corollary of Theorem 3.1.

We recall that a subset S ⊂ I is uniformly incrementally

bounded (UIB) if there exists a nondecreasing function φ :
R>0 → R≥0 so that nσ

(t0,t]
≤ φ(t − t0) for every σ ∈ S and

all t > t0 ≥ 0 (see Definition 3.2 in [15]).

Corollary 3.1: ( [15, Thm. 3.2]) Consider the impulsive

system (1) and suppose that f, g ∈ AL. Let S ⊂ I be a

UIB set of impulse time sequences. Then, (1) is weakly iISS

uniformly over S if and only if it is weakly 0-GUAS and

UBEBS, both uniformly over S.

Proof: The proof of the only if part is straightforward

and does not require the UIB hypothesis. As for the if part,

assume that (1) is weakly 0-GUAS and UBEBS and that S
is UIB. Let β ∈ KL be the function that characterizes the

weak 0-GUAS stability property of the system (1). Let φ be

the function appearing in the definition of the UIB property.

Due to Lemma 6.1 in [17], there exists β̂ ∈ KL such that

β(r, s) ≤ β̂(r, s+ φ(s)), ∀(r, s) ∈ R
2
≥0. (14)

Then, for every x ∈ T (t0, x0, w0) with t0 ≥ 0, x0 ∈ R
n and

w0 = (0, σ) with σ ∈ S we have that for all t ≥ t0

|x(t)| ≤ β(|x(t0)|, t− t0) ≤ β̂(|x(t0)|, t− t0 + φ(t− t0))

≤ β̂(|x(t0)|, t− t0 + nσ
(t0,t]

).

So (1) is strongly 0-GUAS uniformly over S. Applying

Theorem 3.1 it follows that (1) is then strongly iISS and

therefore weakly iISS, both uniformly over S.

IV. CONCLUSIONS

We have addressed the characterization of the integral

input-to-state stability property in terms of global uniform

asymptotic stability under zero input and a uniformly bounded-

energy input bounded state property. We have shown that

this characterization remains valid for impulsive systems with

time-varying flow and jump maps if both global uniform

stability and integral input-to-state stability are understood in



the strong sense. This characterization was established under a

partial Lipschitz continuity assumption on the jump map [see

item iii) of Definition 3.1]. Future work is aimed at removing

this assumption and establishing relationships between the ISS

and iISS properties for impulsive systems.

APPENDIX

A. Proof of Theorem 3.2

Necessity is straightforward, so we just establish sufficiency.

Let α̃ ∈ K∞ and T > 0 be given by item iii), the latter in

correspondence with r > 0 and ǫ = 1. Let C be given by

item i) in correspondence with s = r and T . From items i) and

iii), we then have, whenever t0 ≥ 0, x0 ∈ Bn
r and w ∈ BS

r ,

|x(t)| ≤ C, ∀t ≥ t0, t+ nσ
(t0,t]

≤ t0 + T,

α̃(|x(t)|) ≤ 1 + ‖w‖, ∀t ≥ t0, t+ nσ
(t0,t]

> t0 + T.

It follows that α̃(|x(t)|) ≤ α̃(C) + 1 + ‖w‖ for all t ≥ t0.

Let φ(r) := inf{C̃ ≥ 0 : α̃(|x(t)|) ≤ C̃, ∀x ∈
T (t0, x0, w), ∀t ≥ t0 ≥ 0, ∀x0 ∈ Bn

r , ∀w ∈ BS
r }. By the

previous analysis, then φ(r) ≤ α̃(C)+1+r <∞ for all r ≥ 0.

Also, φ is nondecreasing and α̃(|x(t)|) ≤ φ(|x(t0)|)+φ(‖w‖)
for all t ≥ t0 whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ R

n

and w ∈ U×S. From item ii), it follows that limrց0 φ(r) = 0.

There thus exists η ∈ K∞ such that φ ≤ η and then

α̃(|x(t)|) ≤ η(|x(t0)|) + η(‖w‖) for all t ≥ t0, (15)

whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ R
n and w ∈

U × S. Let ψ, α ∈ K∞ be defined via ψ(s) = η−1(s/2) and

α = min{α̃, ψ ◦ α̃}. Then, applying ψ to (15) and using the

inequality ψ(a+ b) ≤ ψ(2a) + ψ(2b), it follows that

α(|x(t)|) ≤ |x(t0)|+ ‖w‖ for all t ≥ t0, (16)

whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ R
n and w ∈

U × S. Define

Tr,ǫ := inf
{

τ ≥ 0 : α(|x(t)|) ≤ ǫ+ ‖w‖,

∀t ≥ t0, t+ nσ
(t0,t]

≥ t0 + τ,

∀x ∈ T (t0, x0, w), ∀t0 ≥ 0, ∀x0 ∈ Bn
r , ∀w ∈ U × S

}

.

By item iii) and since α ≤ α̃, then Tr,ǫ <∞ for every r, ǫ > 0.

Moreover, Tr,ǫ is nondecreasing in r for fixed ǫ > 0 and

nonincreasing in ǫ for fixed r > 0. By (16), then Tr,ǫ → 0 as

ǫ→ ∞ for fixed r > 0.

Fact 1: Tr,ǫ can be strictly upper bounded by T̄r,ǫ with the

following properties:

a) For each fixed r > 0, T̄r,· : R>0 → R>0 is continuous,

strictly decreasing, and onto, so that limǫց0 T̄r,ǫ = ∞ and

limǫ→∞ T̄r,ǫ = 0.

b) For each fixed ǫ > 0, T̄·,ǫ is strictly increasing and

limr→∞ T̄r,ǫ = ∞.

Let ψr denote the inverse function of T̄r,ǫ considered as a

function of ǫ for fixed r > 0. For every r > 0, then ψr is

continuous on R>0 and limsց0 ψr(s) = ∞. By definition of

Tr,ǫ and since T̄r,ǫ > Tr,ǫ, we have that

t0 ≥ 0, x0 ∈ Bn
r , w ∈ U × S, x ∈ T (t0, x0, w), t ≥ t0, and

t+ nσ
(t0,t]

≥ t0 + T̄r,ǫ ⇒ α(|x(t)|) ≤ ǫ+ ‖w‖ (17)

Note that t − t0 + nσ
(t0,t]

= T̄r,ǫ is equivalent to ǫ = ψr(t −
t0 + nσ

(t0,t]
). Hence, from the implication (17) at t ≥ t0 such

that t− t0 + nσ
(t0,t]

= T̄r,ǫ, it follows that

t > t0 ≥ 0, x0 ∈ Bn
r , w ∈ U × S, x ∈ T (t0, x0, w)

⇒ α(|x(t)|) ≤ ψr(t− t0 + nσ
(t0,t]

) + ‖w‖ (18)

The proof concludes following exactly the same steps as for

the proof of Lemma 2.7 in [18].
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